Research Interspecific variation across angiosperms in global DNA methylation: phylogeny, ecology and plant features in tropical and Mediterranean communities Conchita Alonso1 ,Monica Medrano1 , Ricardo Perez2, Azucena Canto3 ,Vıctor Parra-Tabla4 and Carlos M. Herrera1 1Estacion Biologica de Donana,~ CSIC, Avenida Americo Vespucio 26, 41092, Sevilla, Spain; 2Instituto de Investigaciones Quımicas, Centro de Investigaciones Cientıficas Isla de La Cartuja, CSIC-US, Avenida Americo Vespucio 49, 41092, Sevilla, Spain; 3Centro de Investigacion Cientıfica de Yucatan, A.C., Calle 43 No. 130 x 32 y 34, Chuburna de Hidalgo, 97205, Merida, Yucatan, Mexico; 4Departamento de Ecologıa Tropical, Universidad Autonoma de Yucatan, Campus de Ciencias Biologicas y Agropecuarias, Km. 15.5 Carretera Merida-Xtmakui, 97000, Merida, Yucatan, Mexico Summary Author for correspondence: The interspecific range of epigenetic variation and the degree to which differences between Conchita Alonso angiosperm species are related to geography, evolutionary history, ecological settings or Tel: +34 954 466 700 species-specific traits, remain essentially unexplored. Genome-wide global DNA cytosine Email:
[email protected] methylation is a tractable ‘epiphenotypic’ feature suitable for exploring these relationships. Received: 16 April 2019 Global cytosine methylation was estimated in 279 species from two distant, ecologically dis- Accepted: 28 June 2019 parate geographical regions: Mediterranean Spain and tropical Mexico. At each region, four distinct plant communities were analyzed. New Phytologist (2019) Global methylation spanned a 10-fold range among species (4.8–42.2%). Interspecific dif- doi: 10.1111/nph.16046 ferences were related to evolutionary trajectories, as denoted by a strong phylogenetic signal. Genomes of tropical species were on average less methylated than those of Mediterranean Key words: DNA methylation, epigenetics, ones.