Finding Nemo Viewing Guide

Total Page:16

File Type:pdf, Size:1020Kb

Finding Nemo Viewing Guide Finding Nemo Viewing Guide Some of the Animals Who Appear in the Movie Clownfish -- Nemo and Marlin belong to one of about 27 species of clownfish (Amphiprion ocellaris ). Clownfish are small and often brightly colored. They belong to the damselfish family. They are 2 - 5 inches (5 - 12.5 cm) long. They live in tropical waters. Clownfish are often sheltered by an anemone with whom they have a symbiotic relationship. In fact, most of the scientific literature refers to them as "anemone fish." Clownfish are not immune to the poison in the anemone's tentacles and at first appear to be stung by them. Scientists believe that by dancing up against the tentacles for a time clownfish develop a protective mucous covering. Clownfish eat leftovers from fish consumed by anemone, planktonic crustaceans, and algae. Clownfish also eat the dead tentacles of their host anemone. Eggs are laid in large batches, usually near and sometimes within the host anemone. Clownfish are not eaten by man but their bright colors make them popular for saltwater aquariums. Divers have damaged many reefs looking for prime specimens. Clownfish live in the tropical parts of the Pacific and Indian Oceans or where warm, tropical waters are carried by currents, such as the east coast of Japan. Pacific Blue Tang -- Dorey's real life models ( Paracanthurus hepatus ) are members of the surgeonfish family. They were given this name because sharp, moveable spines on both sides of their tails were thought to resemble surgeons' scalpels. These spines are for defense. A fisherman trying to hold a blue tang can suffer a deep and painful wound if the fish tries to escape by giving a twist of its tail. The fish are blue with a yellow tail and a black stripe along the upper portion of their body. They live on zooplankton and can grow to be about 12 inches (31 cm) long. Pacific blue tangs are found in the central and Indo-Pacific from Africa's east coast to Micronesia. A different species of surgeonfish, found in the Atlantic Ocean and without a yellow tail, is also called a blue tang. It eats only algae. Loggerhead Sea Turtles -- Usually about 3 feet (1 m) in length and weighing 350 to 400 pounds (182 kg) loggerhead sea turtles (Caretta caretta ) reach maturity at between 16 and 40 years. Sightings of 5 foot long turtles weighing as much as 1000 pounds have been recorded. Loggerheads mate in late March through early June. Eggs are laid throughout the summer in shallow pits dug in open beaches. After laying her eggs the female turtle covers them with sand and leaves. Biologists are not sure where juvenile turtles grow, but it is thought they inhabit floating islands of seaweed where they feed and grow to young adult size. Loggerheads live in most of the tropical and temperate coastal waters around the globe. They are, for example, the most common turtles in the Mediterranean, in the oceans around the U.S., and in the coastal ocean waters of Brazil etc. In the Atlantic, their range is from Newfoundland to Argentina, including the Gulf of Mexico, and Caribbean Sea. Their major nesting beaches in the United States are in South Carolina, Georgia, and Florida. The loggerhead is named for its disproportionately large head (when compared with other turtles), which may measure 9 inches wide (25 cm). It has a heart- shaped reddish brown shell. The usual life span is 30 - 50 years. Loggerheads have powerful jaws designed to crush shellfish. They eat mollusks, such as shrimp, horseshoe crabs, blue crabs, clams, and mussels. They also eat invertebrates and some types of sea grasses. Loggerheads can see well underwater and are believed to have an acute sense of smell. They breathe air and when active must swim to the surface after a few minutes. When they are resting, they can remain underwater for as long as two hours. Loggerheads migrate the breadth of the Pacific Ocean, often traveling along ocean currents. Loggerhead turtles are a threatened species. Their population has declined as they drown in fishing nets and as land animals, such as raccoons, cats, and dogs, prey upon their eggs. Development also harms turtles by encroaching upon their beaches and confusing the innate directional signals of hatchlings. Concepts from Biology The term the food chain describes the fact that each living creature survives by feeding on plants or other animals. Plants or other autotrophic organisms are always the base of the food chain. The heterotrophs that eat the plants are one trophic level or link up the food chain. When the plant-eating animal is killed and eaten by another animal, it is said that the animal that is eating is higher on the food chain than the animal being eaten. In the ocean the base of the food chain is phytoplankton or algae that live near the surface of the water (to get maximum sun) and carry out photosynthesis. The term "plankton" comes from the Greek word "planktos" which means "drifting." Phytoplankton encompass microscopic organisms to seaweed. Phytoplankton are eaten by small fish and by zooplankton , a class of plankton-eating microscopic organisms that include single celled protists, larvae of larger animals, and tiny crustaceans. The zooplankton are then eaten by small fish and some whales. The small fish are eaten by larger fish and those are eaten by even larger fish and so on up the food chain. A species is at the top of its food chain if there are no animals who kill and eat it regularly. For example sharks, lions, human beings, and elephants are said to be at the top of their food chains. Whales were at the top of their food chain until man started to hunt and kill them. An animal that catches another animal and eats it is called a predator. Most fish are predators. Predators must have some advantage over their prey , the animals they eat, in order to capture them. For example, the predator must be faster or must use surprise and ambush. Some predators just sit and wait. Stonefish and scorpion fish are covered with small patches of bright color that look like a colony of algae . The rest of their body is camouflaged to look like the sea floor. Small fish come to eat the algae not recognizing the larger outlines of the predator. Corals are also predators that sit still and wait for their prey. Their tentacles have a poison that kills or injures its prey and draws it into the coral's mouth. Some predators, such as the moray eel, hide in holes or tunnels in the coral reefs and ambush their prey as it swims by. There are as many different strategies for catching prey as there are predators in the ocean. The most efficient and fearsome predator of all is man who, through livestock raising, fish farming, hunting and fishing, preys upon more species than any other animal. Most species in the ocean are also prey to other animals. Corals, for example, are eaten by parrotfish, butterfly fish and a starfish called the crown of thorns. In one day, a single crown of thorns starfish can eat all the coral polyps in an area the size of a dollar bill. Most species that are prey to others also have strategies to A fish with eyespot avoid being captured. These include speed, diversionary markings camouflage , disruptive patterns (which break up the outline of a fish and make it harder for predators to see it) and eyespots (markings on various parts of the body that look like eyes which take attention away from the fish's head), counter- shading, in which the fish looks dark on top and light on the bottom (contrary to what other fish expect in an environment in which light comes down from the surface of the water), hiding, schooling, and dispersal. Dispersal means having many young and dispersing them over a wide area so that some will survive to carry on the species. Often, the defenses employed by prey animals are aimed at preserving the species rather than individual members of the species. Just as predators employ many different strategies for catching prey, there are many different strategies for avoiding capture. Scavengers are creatures who keep the environment clean by eating the flesh and bone that predators leave behind. Scavengers don't usually kill their own prey. In the ocean, scavengers such as shrimp, crabs, and sea cucumbers keep the ocean floor clean by eating bits and pieces of fish that the predators leave behind. All animals constantly interact with other animals and plants. Some of the different types of relationships are: symbiotic, commensal, parasitic and predatory. Symbiosis occurs when two different animal species help each other. Here are just a few examples. (1) Clownfishes live within the stinging tentacles of anemones. The anemone provides protection and food for the clownfish who in turn cleans the anemone of debris. Clownfish may even swim out onto the reef and with their bright colors lure other fish to their host anemone to be stung and trapped in the tentacles. (2) When a hermit crab carries an anemone on its shell, little fish won't bite the hermit crab for fear of being poisoned and eaten by the anemone. The anemone gets a free ride to places in which it can find new sources of food. (The hermit crab knows that the anemones protect it. When the hermit crab changes its shell, it will stroke the anemones on its old shell to get them to move to the new shell.) (3) Several types of fish clean the bodies of other fish, eating parasites and dead scales.
Recommended publications
  • Geographic and Individual Variation in Carotenoid Coloration in Golden-Crowned Kinglets (Regulus Satrapa)
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2009 Geographic and individual variation in carotenoid coloration in golden-crowned kinglets (Regulus satrapa) Celia Chui University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Chui, Celia, "Geographic and individual variation in carotenoid coloration in golden-crowned kinglets (Regulus satrapa)" (2009). Electronic Theses and Dissertations. 280. https://scholar.uwindsor.ca/etd/280 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. GEOGRAPHIC AND INDIVIDUAL VARIATION IN CAROTENOID COLORATION IN GOLDEN-CROWNED KINGLETS ( REGULUS SATRAPA ) by Celia Kwok See Chui A Thesis Submitted to the Faculty of Graduate Studies through Biological Sciences in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2009 © 2009 Celia Kwok See Chui Geographic and individual variation in carotenoid coloration in golden-crowned kinglets (Regulus satrapa ) by Celia Kwok See Chui APPROVED BY: ______________________________________________ Dr.
    [Show full text]
  • INTERNATIONAL JOURNAL of RESEARCH –GRANTHAALAYAH a Knowledge Repository Art
    [Conference-Composition of Colours :December , 2014 ] ISSN- 2350-0530 DOI: https://doi.org/10.29121/granthaalayah.v2.i3SE.2014.3515 INTERNATIONAL JOURNAL of RESEARCH –GRANTHAALAYAH A knowledge Repository Art PROTECTIVE COLORATION IN ANIMALS Leena Lakhani Govt. Girls P.G. College, Ujjain (M.P.) India [email protected] INTRODUCTION Animals have range of defensive markings which helps to the risk of predator detection (camouflage), warn predators of the prey’s unpalatability (aposematism) or fool a predator into mimicry, masquerade. Animals also use colors in advertising, signalling services such as cleaning to animals of other species, to signal sexual status to other members of the same species. Some animals use color to divert attacks by startle (dalmatic behaviour), surprising a predator e.g. with eyespots or other flashes of color or possibly by motion dazzle, confusing a predator attack by moving a bold pattern like zebra stripes. Some animals are colored for physical protection, such as having pigments in the skin to protect against sunburn; some animals can lighten or darken their skin for temperature regulation. This adaptive mechanism is known as protective coloration. After several years of evolution, most animals now achieved the color pattern most suited for their natural habitat and role in the food chains. Animals in the world rely on their coloration for either protection from predators, concealment from prey or sexual selection. In general the purpose of protective coloration is to decrease an organism’s visibility or to alter its appearance to other organisms. Sometimes several forms of protective coloration are superimposed on one animal. TYPES OF PROTECTIVE COLORATION PREVENTIVE DETECTION AND RECOGNITION CRYPSIS AND DISRUPTION Cryptic coloration helps to disguise an animal so that it is less visible to predators or prey.
    [Show full text]
  • Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM
    Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM Mimicry David W. Kikuchi, David W. Pfennig Introduction Among nature’s most exquisite adaptations are examples in which natural selection has favored a species (the mimic) to resemble a second, often unrelated species (the model) because it confuses a third species (the receiver). For example, the individual members of a nontoxic species that happen to resemble a toxic species may dupe any predators by behaving as if they are also dangerous and should therefore be avoided. In this way, adaptive resemblances can evolve via natural selection. When this phenomenon—dubbed “mimicry”—was first outlined by Henry Walter Bates in the middle of the 19th century, its intuitive appeal was so great that Charles Darwin immediately seized upon it as one of the finest examples of evolution by means of natural selection. Even today, mimicry is often used as a prime example in textbooks and in the popular press as a superlative example of natural selection’s efficacy. Moreover, mimicry remains an active area of research, and studies of mimicry have helped illuminate such diverse topics as how novel, complex traits arise; how new species form; and how animals make complex decisions. General Overviews Since Henry Walter Bates first published his theories of mimicry in 1862 (see Bates 1862, cited under Historical Background), there have been periodic reviews of our knowledge in the subject area. Cott 1940 was mainly concerned with animal coloration. Subsequent reviews, such as Edmunds 1974 and Ruxton, et al. 2004, have focused on types of mimicry associated with defense from predators.
    [Show full text]
  • Coral Reefs Biology 200 Lecture Notes and Study Guide David A
    Coral Reefs Biology 200 Lecture Notes and Study Guide David A. Krupp Fall 2001 © Copyright 1 Using this Lecture Outline and Study Guide This lecture outline and study guide was developed to assist you in your studies for this class. It was not meant to replace your attendance and active participation in class, including taking your own lecture notes, nor to substitute for reading and understanding text assignments. In addition, the information presented in this outline and guide does not necessarily represent all of the information that you are expected to learn and understand in this course. You should try to integrate the information presented here with that presented in lecture and in other written materials provided. It is highly recommended that you fully understand the vocabulary and study questions presented. The science of biology is always changing. New information and theories are always being presented, replacing outdated information and theories. In addition, there may be a few errors (content, spelling, and typographical) in this first edition. Thus, this outline and guide may be subject to revision and corrections during the course of the semester. These changes will be announced during class time. Note that this lecture outline and study guide may not be copied nor reproduced in any form without the permission of the author. TABLE OF CONTENTS The Nature of Natural Science ........................................................ 1 The Characteristics of Living Things ............................................... 6 The
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • Predation Selects for Background Matching in the Body Colour of a Land fish
    Animal Behaviour 86 (2013) 1241e1249 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Natural selection in novel environments: predation selects for background matching in the body colour of a land fish Courtney L. Morgans*, Terry J. Ord Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia article info The invasion of a novel habitat often results in a variety of new selective pressures on an individual. One Article history: pressure that can severely impact population establishment is predation. The strategies that animals use Received 8 April 2013 to minimize predation, especially the extent to which those strategies are habitat or predator specific, Initial acceptance 14 May 2013 will subsequently affect individuals’ dispersal abilities. The invasion of land by a fish, the Pacific leaping Final acceptance 6 September 2013 blenny, Alticus arnoldorum, offers a unique opportunity to study natural selection following the coloni- Available online 23 October 2013 zation of a novel habitat. Various studies have examined adaptations in respiration and locomotion, but MS. number: A13-00297R how these fish have responded to the predation regime on land was unknown. We studied five replicate populations of this fish around the island of Guam and found their body coloration converged on the Keywords: terrestrial rocky backgrounds on which the fish were most often found. Subsequent experiments adaptive evolution confirmed that this background matching significantly reduced predation. Natural selection has there- Alticus arnoldorum fore selected for background matching in the body coloration of the Pacific leaping blenny to minimize antipredator fi camouflage predation, but it is a strategy that is habitat speci c.
    [Show full text]
  • The Evolution of Crypsis When Pigmentation Is Physiologically Costly G. Moreno–Rueda
    Animal Biodiversity and Conservation 43.1 (2020) 89 The evolution of crypsis when pigmentation is physiologically costly G. Moreno–Rueda Moreno–Rueda, G., 2020. The evolution of crypsis when pigmentation is physiologically costly. Animal Biodi- versity and Conservation, 43.1: 89–96, Doi: https://doi.org/10.32800/abc.2020.43.0089 Abstract The evolution of crypsis when pigmentation is physiologically costly. Predation is one of the main selective forces in nature, frequently selecting for crypsis in prey. Visual crypsis usually implies the deposition of pig- ments in the integument. However, acquisition, synthesis, mobilisation and maintenance of pigments may be physiologically costly. Here, I develop an optimisation model to analyse how pigmentation costs may affect the evolution of crypsis. The model provides a number of predictions that are easy to test empirically. It predicts that imperfect crypsis should be common in the wild, but in such a way that pigmentation is less than what is required to maximise crypsis. Moreover, optimal crypsis should be closer to “maximal” crypsis as predation risk increases and/or pigmentation costs decrease. The model predicts for intraspecific variation in optimal crypsis, depending on the difference in the predation risk or the costs of pigmentation experienced by different individuals. Key words: Predation, Pigmentation, Coloration Resumen La evolución de la cripsis cuando la pigmentación es fisiológicamente costosa. La depredación es una de las principales fuerzas de selección de la naturaleza y a menudo favorece la cripsis en las presas. Por lo general, la cripsis visual implica el depósito de pigmentos en el tegumento. Sin embargo, adquirir, sintetizar, movilizar y mantener los pigmentos puede ser fisiológicamente costoso.
    [Show full text]
  • Locomotor, Chromatic, Postural, and Bioluminescent Behaviors of the Deep-Sea Squid Octopoteuthis Deletron Young 1972
    Reference: Biol. Bull. 216: 7–22. (February 2009) © 2009 Marine Biological Laboratory Behaving in the Dark: Locomotor, Chromatic, Postural, and Bioluminescent Behaviors of the Deep-Sea Squid Octopoteuthis deletron Young 1972 STEPHANIE L. BUSH1,2,*, BRUCE H. ROBISON2, AND ROY L. CALDWELL1 1University of California, Berkeley, Department of Integrative Biology, Berkeley, California 94720; and 2Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd., Moss Landing, California 95039 Abstract. Visual behaviors are prominent components of tion (Packard and Sanders, 1971; Packard and Hochberg, intra- and interspecific communication in shallow-water 1977; Hanlon and Messenger, 1988, 1996). These cephalo- cephalopods. Meso- and bathypelagic cephalopods were be- pods assess their surroundings with well-developed vision, lieved to have limited visual communication, other than biolu- though in most species vision is monochromatic (Messen- minescence, due to the reduced illumination at depth. To ger, 1977; Kito et al., 1992; Shashar et al., 1998; Sweeney explore potential visual behaviors in mesopelagic squid, we et al., 2007). Individuals are capable of polyphenism con- used undersea vehicles to observe 76 individuals of Octopo- sisting of near instantaneous changes in appearance through teuthis deletron. In contrast to predictions, we found this spe- a broad range of camouflage and communication methods cies capable of a variety of visually linked behaviors not (Packard and Sanders, 1971; Packard and Hochberg, 1977; previously reported for a deep-ocean cephalopod. The resultant Hanlon and Messenger, 1988; Roper and Hochberg, 1988; ethogram describes numerous chromatic, postural, locomotor, Hanlon et al., 1999a; Barbato et al., 2007). An individual’s and bioluminescent behavioral components. A few common overall appearance, or body pattern, is composed of the body patterns—the whole appearance of the individual involv- following component types: chromatic, textural, postural, ing multiple components—are characterized.
    [Show full text]
  • Anti-Predator Coloration and Behaviour: a Longstanding Topic with Many Outstanding Questions
    Current Zoology 61 (4): 702–707, 2015 Editorial Anti-Predator Coloration and Behaviour: A Longstanding Topic with Many Outstanding Questions Martin STEVENS Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK; [email protected] 1 Introduction coloration is camouflage. While in many regards an intuitively simple concept, this strategy is actually far The study of anti-predator coloration and behaviour more rich and complex than is often appreciated. To has a long and rich history in biology. It has from the begin with, successful camouflage is not just about very outset of Darwin’s theory of natural selection pro- looking like the background (though clearly that is an vided numerous areas to test mechanisms and function essential basic component). Instead, there are multiple in evolution. While Darwin perhaps concentrated most ways that camouflage can be achieved, including mat- of his attention regarding animal coloration on his ching the general colour and patterns of the visual en- theory of sexual selection (Darwin, 1871), his contem- vironment (background matching; e.g. Endler, 1984; poraries placed much greater emphasis and time to ex- Merilaita, 2003; Rosenblum et al., 2004; Bond and Ka- plain the variety of ways that coloration and behaviour mil, 2006; Merilaita and Stevens, 2011), breaking up the protected animals from attack from predators. Wallace body outline and key features by using disruptive pat- in particular devoted considerable effort in discussing terns (e.g. Thayer, 1909; Cuthill et al., 2005; Merilaita anti-predator coloration in nature, playing a leading role and Lind, 2005; Schaefer and Stobbe, 2006; Stevens in developing key concepts regarding camouflage and and Cuthill, 2006; Stevens et al., 2006; Stevens and warning signals (aposematism) (Wallace, 1867, 1877, Merilaita, 2009; Espinosa and Cuthill, 2014; Kang et al., 1889).
    [Show full text]
  • Ocean Explorers Activity Guide for Grades K-5
    Ocean Explorers Activity Guide for Grades K-5 Publication of this Resource Guide was made possible by a grant from the Environmental Endowment Fund of the Community Foundation for Palm Beach and Martin Counties 2 Loggerhead Marinelife Center Mission Statement The Loggerhead Marinelife Center is a non-profit organization dedicated to “promoting the conservation of Florida’s coastal ecosystems through education, research and rehabilitation, with a special focus on threatened and endangered sea turtles”. To The Teacher This “Ocean Explorers” guide was designed by the Education Department of the Loggerhead Marinelife Center to help your students better understand the ocean. Not only will you find useful information about the ocean and marine life, but there are also fun activities for your students to enjoy. This book has been designed to be used with kindergarten through 5th grades and has many activities that can be modified for use with other grade levels. These activities have been aligned with Florida Sunshine State Standards. At the back of the guide you will find puzzles, games and coloring pages, just for fun! We thank you for visiting the center and hope that this book will be useful in you classroom. Please return the survey found in the beginning of this book; we appreciate your feedback and are always looking for ways to improve. Objectives After completing the Ocean Explorers Guide, students will have a better understanding of ocean habitats, its wildlife, and conservation concerns. Students will be able to: • Understand that the ocean supports diverse and abundant wildlife • Recognize that much of life on Earth depends upon the ocean • Share their knowledge and appreciation of the ocean with others • Recognize that conservation is an on-going process and that our actions can make a difference.
    [Show full text]
  • Coloration Exploration Lesson Plan This Activity Will Teach Students How Animals Use Coloration to Stay Alive Within Their Environments
    FNR-470-W Coloration Exploration Lesson Plan This activity will teach students how animals use coloration to stay alive within their environments. Lesson Plan Overview . 2 Teacher’s Notes . 4 Frog Tally Worksheets . 5 Vocabulary Worksheet & Key . 7 Camo Frogs Picture & Key . 9 Bright Frogs Picture & Key . 11 Animal Line Drawings . 13 Animal Coloration Photo Examples . 17 Kaeda Boyles, Heather Fink, Ellen Kapitan, Suzy Lyttle, Nicole Pakan, Allison Pfeifer, Sarah Tuttle, and Rod Williams Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 www.purdue.edu/nature Coloration Exploration Lesson Plan Lesson Plan Overview Estimated Time Required Materials 60 minutes • Camo Frogs Picture and Key Vocabulary • Bright Frogs Picture and Key • Coloration • Frog Tally A and B Worksheets • Aposematic coloration • Animal Line Drawings • Cryptic coloration • Animal Coloration Photo Examples • Sexual dimorphism • Forest Ecosystem Poster • Vocabulary Worksheet and Key Lesson Objective • Thick paper for animal printouts Students will be able to identify and give examples of different coloration strategies and indicate how • Crayons/markers they affect an animal’s behavior and survival. Reference Materials Targeted Grade-Level Indiana Standards See teacher’s notes. Math 2.1.8; 2.1.9; 2.1.12 3.1.2; 3.1.10; 3.1.13; 4.2.3; 4.3.2; 4.6.2; 4.6.3 5.1.1; 5.1.4; 5.1.5; 5.2.1; 5.2.2; 5.2.5 Science 2.2.5; 2.4.1; 2.4.4 3.1.2; 3.1.3; 3.2.1; 3.2.5; 3.4.1; 3.4.2; 3.4.3 4.2.4; 4.5.4 5.4.4; 5.4.5; 5.4.7; 5.5.1; 5.5.10 Authors Kaeda Boyles, Heather Fink, Ellen Kapitan, Suzy Lyttle, Nicole Pakan, Allison Pfeifer, Sarah Tuttle, and Rod Williams Acknowledgments The authors would like to thank the Indiana licensed teachers Mrs.
    [Show full text]
  • (QCPA): a Comprehensive Framework for the Analysis of Colour Patterns in Nature
    bioRxiv preprint doi: https://doi.org/10.1101/592261; this version posted March 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Quantitative Colour Pattern Analysis (QCPA): A Comprehensive Framework for 2 the Analysis of Colour Patterns in Nature 3 4 Cedric P. van den Berg1*, Jolyon Troscianko2*Ɨ, John A. Endler3, N. Justin Marshall4, Karen L. Cheney1,4 5 1: The School of Biological Sciences, The University of Queensland, Australia 6 2: Centre for Ecology & Conservation, Exeter University, UK 7 3: School of Life & Environmental Sciences, Deakin University 8 4: Queensland Brain Institute, The University of Queensland, Australia 9 * Joint first authors Ɨ Corresponding Author: [email protected] 10 11 Abstract 12 1. To understand the function of colour signals in nature, we require robust quantitative 13 analytical frameworks to enable us to estimate how animal and plant colour patterns appear 14 against their natural background as viewed by ecologically relevant species. Due to the 15 quantitative limitations of existing methods, colour and pattern are rarely analysed in 16 conjunction with one another, despite a large body of literature and decades of research on 17 the importance of spatiochromatic colour pattern analyses. Furthermore, key physiological 18 limitations of animal visual systems such as spatial acuity, spectral sensitivities, photoreceptor 19 abundances and receptor noise levels are rarely considered together in colour pattern 20 analyses. 21 2. Here, we present a novel analytical framework, called the ‘Quantitative Colour Pattern 22 Analysis’ (QCPA).
    [Show full text]