Aposematism: an Alternative Hypothesis on How We Discover Medicinal Organisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geographic and Individual Variation in Carotenoid Coloration in Golden-Crowned Kinglets (Regulus Satrapa)
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2009 Geographic and individual variation in carotenoid coloration in golden-crowned kinglets (Regulus satrapa) Celia Chui University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Chui, Celia, "Geographic and individual variation in carotenoid coloration in golden-crowned kinglets (Regulus satrapa)" (2009). Electronic Theses and Dissertations. 280. https://scholar.uwindsor.ca/etd/280 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. GEOGRAPHIC AND INDIVIDUAL VARIATION IN CAROTENOID COLORATION IN GOLDEN-CROWNED KINGLETS ( REGULUS SATRAPA ) by Celia Kwok See Chui A Thesis Submitted to the Faculty of Graduate Studies through Biological Sciences in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2009 © 2009 Celia Kwok See Chui Geographic and individual variation in carotenoid coloration in golden-crowned kinglets (Regulus satrapa ) by Celia Kwok See Chui APPROVED BY: ______________________________________________ Dr. -
Aposematic Coloration
Preprint for: Joron, M. 2003. In Encyclopedia of insects (R. T. Cardé & V. H. Resh, eds), pp. 39-45. Academic Press, New York. Aposematic Coloration Mathieu Joron Leiden University nsects attract collectors’ attention because they are ex- tremely diverse and often bear spectacular colors. To I biologists, however, bright coloration has been a con- stantly renewed puzzle because it makes an insect a highly FIGURE 1 Pseudosphinx tetrio hawk moth caterpillar from the Peruvian conspicuous prey to prospective predators. Charles Darwin Amazon showing a combination of red and black, classical colors used by aposematic insects. These larvae feed on toxic latex-sapped trees in understood that bright colors or exaggerated morphologies the Apocynaceae. Length 14 cm. (Photograph © M. Joron, 1999.) could evolve via sexual selection. However, he felt sexual selection could not account for the conspicuous color pattern Unprofitability is difficult to define, and even more difficult of non-reproductive larvae in, for example, Pseudosphinx to measure. It is certainly contextually defined, because the hawk moth caterpillars (Fig. 1). In a reply to Darwin about propensity of an animal to eat something is highly dependent this puzzle, Alfred R. Wallace proposed that bright colors on its level of hunger and its ability to use the prey for energy could advertise the unpalatability of the caterpillars to experi- once eaten. Palatability (i.e., the predator’s perception of prey enced predators. Indeed, prey that are not edible to predators profitability), greatly determines whether the predator will or are predicted to gain by exhibiting conspicuous and very rec- will not eat the prey. -
INTERNATIONAL JOURNAL of RESEARCH –GRANTHAALAYAH a Knowledge Repository Art
[Conference-Composition of Colours :December , 2014 ] ISSN- 2350-0530 DOI: https://doi.org/10.29121/granthaalayah.v2.i3SE.2014.3515 INTERNATIONAL JOURNAL of RESEARCH –GRANTHAALAYAH A knowledge Repository Art PROTECTIVE COLORATION IN ANIMALS Leena Lakhani Govt. Girls P.G. College, Ujjain (M.P.) India [email protected] INTRODUCTION Animals have range of defensive markings which helps to the risk of predator detection (camouflage), warn predators of the prey’s unpalatability (aposematism) or fool a predator into mimicry, masquerade. Animals also use colors in advertising, signalling services such as cleaning to animals of other species, to signal sexual status to other members of the same species. Some animals use color to divert attacks by startle (dalmatic behaviour), surprising a predator e.g. with eyespots or other flashes of color or possibly by motion dazzle, confusing a predator attack by moving a bold pattern like zebra stripes. Some animals are colored for physical protection, such as having pigments in the skin to protect against sunburn; some animals can lighten or darken their skin for temperature regulation. This adaptive mechanism is known as protective coloration. After several years of evolution, most animals now achieved the color pattern most suited for their natural habitat and role in the food chains. Animals in the world rely on their coloration for either protection from predators, concealment from prey or sexual selection. In general the purpose of protective coloration is to decrease an organism’s visibility or to alter its appearance to other organisms. Sometimes several forms of protective coloration are superimposed on one animal. TYPES OF PROTECTIVE COLORATION PREVENTIVE DETECTION AND RECOGNITION CRYPSIS AND DISRUPTION Cryptic coloration helps to disguise an animal so that it is less visible to predators or prey. -
Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM
Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM Mimicry David W. Kikuchi, David W. Pfennig Introduction Among nature’s most exquisite adaptations are examples in which natural selection has favored a species (the mimic) to resemble a second, often unrelated species (the model) because it confuses a third species (the receiver). For example, the individual members of a nontoxic species that happen to resemble a toxic species may dupe any predators by behaving as if they are also dangerous and should therefore be avoided. In this way, adaptive resemblances can evolve via natural selection. When this phenomenon—dubbed “mimicry”—was first outlined by Henry Walter Bates in the middle of the 19th century, its intuitive appeal was so great that Charles Darwin immediately seized upon it as one of the finest examples of evolution by means of natural selection. Even today, mimicry is often used as a prime example in textbooks and in the popular press as a superlative example of natural selection’s efficacy. Moreover, mimicry remains an active area of research, and studies of mimicry have helped illuminate such diverse topics as how novel, complex traits arise; how new species form; and how animals make complex decisions. General Overviews Since Henry Walter Bates first published his theories of mimicry in 1862 (see Bates 1862, cited under Historical Background), there have been periodic reviews of our knowledge in the subject area. Cott 1940 was mainly concerned with animal coloration. Subsequent reviews, such as Edmunds 1974 and Ruxton, et al. 2004, have focused on types of mimicry associated with defense from predators. -
Coral Reefs Biology 200 Lecture Notes and Study Guide David A
Coral Reefs Biology 200 Lecture Notes and Study Guide David A. Krupp Fall 2001 © Copyright 1 Using this Lecture Outline and Study Guide This lecture outline and study guide was developed to assist you in your studies for this class. It was not meant to replace your attendance and active participation in class, including taking your own lecture notes, nor to substitute for reading and understanding text assignments. In addition, the information presented in this outline and guide does not necessarily represent all of the information that you are expected to learn and understand in this course. You should try to integrate the information presented here with that presented in lecture and in other written materials provided. It is highly recommended that you fully understand the vocabulary and study questions presented. The science of biology is always changing. New information and theories are always being presented, replacing outdated information and theories. In addition, there may be a few errors (content, spelling, and typographical) in this first edition. Thus, this outline and guide may be subject to revision and corrections during the course of the semester. These changes will be announced during class time. Note that this lecture outline and study guide may not be copied nor reproduced in any form without the permission of the author. TABLE OF CONTENTS The Nature of Natural Science ........................................................ 1 The Characteristics of Living Things ............................................... 6 The -
Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings. -
Does Spatial Variation in Predation Pressure Modulate Selection for Aposematism?
Received: 3 April 2017 | Revised: 25 May 2017 | Accepted: 30 May 2017 DOI: 10.1002/ece3.3221 ORIGINAL RESEARCH Does spatial variation in predation pressure modulate selection for aposematism? S. Tharanga Aluthwattha1,2 | Rhett D. Harrison3 | Kithsiri B. Ranawana4 | Cheng Xu5 | Ren Lai5 | Jin Chen1 1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Abstract Garden, Chinese Academy of Sciences, It is widely believed that aposematic signals should be conspicuous, but in nature, they Mengla, Yunnan, China vary from highly conspicuous to near cryptic. Current theory, including the honest 2University of Chinese Academy of Sciences, Beijing, China signal or trade- off hypotheses of the toxicity–conspicuousness relationship, cannot 3World Agroforestry Centre, East & Southern explain why adequately toxic species vary substantially in their conspicuousness. Africa Region, Woodlands, Lusaka, Zambia Through a study of similarly toxic Danainae (Nymphalidae) butterflies and their mimics 4Department of Zoology, University of Peradeniya, Peradeniya, Sri Lanka that vary remarkably in their conspicuousness, we show that the benefits of conspicu- 5Kunming Institute of Zoology, Chinese ousness vary along a gradient of predation pressure. Highly conspicuous butterflies Academy of Sciences, Kunming, Yunnan, China experienced lower avian attack rates when background predation pressure was low, Correspondence but attack rates increased rapidly as background predation pressure increased. Jin Chen, Key Laboratory of Tropical Forest Conversely, the least conspicuous butterflies experienced higher attack rates at low Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, predation pressures, but at high predation pressures, they appeared to benefit from Mengla, Yunnan, China. crypsis. Attack rates of intermediately conspicuous butterflies remained moderate and Email: [email protected] constant along the predation pressure gradient. -
Light and Vision in the Deep-Sea Benthos: I
Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences 10-1-2012 Light and Vision in the Deep-Sea Benthos: I. Bioluminescence at 500-1000 m Depth in the Bahamian Islands Sönke Johnsen Duke University Tamara M. Frank Nova Southeastern University, [email protected] Steven H.D. Haddock Monterey Bay Aquarium Research Institute Edith A. Widder Ocean Research and Conservation Association Charles G. Messing Nova Southeastern University, [email protected] Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Johnsen, Sönke, Tamara M. Frank, Steven HD Haddock, Edith A. Widder, and Charles G. Messing. "Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000 m depth in the Bahamian Islands." The ourJ nal of experimental biology 215, no. 19 (2012): 3335-3343. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. 3335 The Journal of Experimental Biology 215, 3335-3343 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.072009 RESEARCH ARTICLE Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000m depth in the Bahamian Islands Sönke Johnsen1,*, Tamara M. -
Predation Selects for Background Matching in the Body Colour of a Land fish
Animal Behaviour 86 (2013) 1241e1249 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Natural selection in novel environments: predation selects for background matching in the body colour of a land fish Courtney L. Morgans*, Terry J. Ord Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia article info The invasion of a novel habitat often results in a variety of new selective pressures on an individual. One Article history: pressure that can severely impact population establishment is predation. The strategies that animals use Received 8 April 2013 to minimize predation, especially the extent to which those strategies are habitat or predator specific, Initial acceptance 14 May 2013 will subsequently affect individuals’ dispersal abilities. The invasion of land by a fish, the Pacific leaping Final acceptance 6 September 2013 blenny, Alticus arnoldorum, offers a unique opportunity to study natural selection following the coloni- Available online 23 October 2013 zation of a novel habitat. Various studies have examined adaptations in respiration and locomotion, but MS. number: A13-00297R how these fish have responded to the predation regime on land was unknown. We studied five replicate populations of this fish around the island of Guam and found their body coloration converged on the Keywords: terrestrial rocky backgrounds on which the fish were most often found. Subsequent experiments adaptive evolution confirmed that this background matching significantly reduced predation. Natural selection has there- Alticus arnoldorum fore selected for background matching in the body coloration of the Pacific leaping blenny to minimize antipredator fi camouflage predation, but it is a strategy that is habitat speci c. -
The Evolution of Crypsis When Pigmentation Is Physiologically Costly G. Moreno–Rueda
Animal Biodiversity and Conservation 43.1 (2020) 89 The evolution of crypsis when pigmentation is physiologically costly G. Moreno–Rueda Moreno–Rueda, G., 2020. The evolution of crypsis when pigmentation is physiologically costly. Animal Biodi- versity and Conservation, 43.1: 89–96, Doi: https://doi.org/10.32800/abc.2020.43.0089 Abstract The evolution of crypsis when pigmentation is physiologically costly. Predation is one of the main selective forces in nature, frequently selecting for crypsis in prey. Visual crypsis usually implies the deposition of pig- ments in the integument. However, acquisition, synthesis, mobilisation and maintenance of pigments may be physiologically costly. Here, I develop an optimisation model to analyse how pigmentation costs may affect the evolution of crypsis. The model provides a number of predictions that are easy to test empirically. It predicts that imperfect crypsis should be common in the wild, but in such a way that pigmentation is less than what is required to maximise crypsis. Moreover, optimal crypsis should be closer to “maximal” crypsis as predation risk increases and/or pigmentation costs decrease. The model predicts for intraspecific variation in optimal crypsis, depending on the difference in the predation risk or the costs of pigmentation experienced by different individuals. Key words: Predation, Pigmentation, Coloration Resumen La evolución de la cripsis cuando la pigmentación es fisiológicamente costosa. La depredación es una de las principales fuerzas de selección de la naturaleza y a menudo favorece la cripsis en las presas. Por lo general, la cripsis visual implica el depósito de pigmentos en el tegumento. Sin embargo, adquirir, sintetizar, movilizar y mantener los pigmentos puede ser fisiológicamente costoso. -
Locomotor, Chromatic, Postural, and Bioluminescent Behaviors of the Deep-Sea Squid Octopoteuthis Deletron Young 1972
Reference: Biol. Bull. 216: 7–22. (February 2009) © 2009 Marine Biological Laboratory Behaving in the Dark: Locomotor, Chromatic, Postural, and Bioluminescent Behaviors of the Deep-Sea Squid Octopoteuthis deletron Young 1972 STEPHANIE L. BUSH1,2,*, BRUCE H. ROBISON2, AND ROY L. CALDWELL1 1University of California, Berkeley, Department of Integrative Biology, Berkeley, California 94720; and 2Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd., Moss Landing, California 95039 Abstract. Visual behaviors are prominent components of tion (Packard and Sanders, 1971; Packard and Hochberg, intra- and interspecific communication in shallow-water 1977; Hanlon and Messenger, 1988, 1996). These cephalo- cephalopods. Meso- and bathypelagic cephalopods were be- pods assess their surroundings with well-developed vision, lieved to have limited visual communication, other than biolu- though in most species vision is monochromatic (Messen- minescence, due to the reduced illumination at depth. To ger, 1977; Kito et al., 1992; Shashar et al., 1998; Sweeney explore potential visual behaviors in mesopelagic squid, we et al., 2007). Individuals are capable of polyphenism con- used undersea vehicles to observe 76 individuals of Octopo- sisting of near instantaneous changes in appearance through teuthis deletron. In contrast to predictions, we found this spe- a broad range of camouflage and communication methods cies capable of a variety of visually linked behaviors not (Packard and Sanders, 1971; Packard and Hochberg, 1977; previously reported for a deep-ocean cephalopod. The resultant Hanlon and Messenger, 1988; Roper and Hochberg, 1988; ethogram describes numerous chromatic, postural, locomotor, Hanlon et al., 1999a; Barbato et al., 2007). An individual’s and bioluminescent behavioral components. A few common overall appearance, or body pattern, is composed of the body patterns—the whole appearance of the individual involv- following component types: chromatic, textural, postural, ing multiple components—are characterized. -
Aposematism and Mimicry in Caterpillars
Journal of the Lepidopterists' Society 49(4), 1995,386-396 APOSEMA TISM AND MIMICRY IN CATERPILLARS MAY R. BERENBAUM Department of Entomology, University of Illinois, Urbana, llinois 61801, USA ABSTRACT. In the Lepidoptera, described instances of larval mimicry are vastly and curiously fewer in number than those tabulated for adults. This disparity may arise in large part from a lack of pertinent research, rather than actual differences between the two life stages. The evolution of larval coloration and its role in the development of possible larval mimicry complexes represents largely unbroken and fertile ground for study. Aposematic coloration is a conspicuous characteristic of many larval lepidopterans-so conspicuous, in fact, that Darwin (1871:326) was prompted to remark: " ... distastefulness alone would be insufficient to protect a caterpillar unless some outward sign indicated to its would-be destroyer that its prey was a disgusting morsel. ... Under these circumstances it would be highly advantageous to a caterpillar to be instantaneously and certainly recognized as unpalatable by all birds and other animals. Thus the most gaudy colors would be serviceable and might have been gained by variation and the survival of the most easily-recognized individual." Conspicuous in their absence, however, are the mimicry complexes that are associated so frequently with aposematic adult Lepidoptera. Virtually all of mimicry theory as it relates to Lepidoptera revolves around discussions of wing patterns in adults and has done so for over a hundred years (Remington 1963). This bizarre apparent asymmetry in the frequency of mimetic resemblance in larval versus adult stages has been remarked upon, but not satisfactorily accounted for, by several authors (e.g., Sillen-Tullberg 1988, Turner 1984).