Visual Effect of the Combined Correction of Spherical and Longitudinal Chromatic Aberrations
Total Page:16
File Type:pdf, Size:1020Kb
Visual effect of the combined correction of spherical and longitudinal chromatic aberrations Pablo Artal 1,* , Silvestre Manzanera 1, Patricia Piers 2 and Henk Weeber 2 1Laboratorio de Optica, Centro de Investigación en Optica y Nanofísica (CiOyN), Universidad de Murcia, Campus de Espinardo, 30071 Murcia, Spain 2AMO Groningen, Groningen, The Netherlands *[email protected] Abstract: An instrument permitting visual testing in white light following the correction of spherical aberration (SA) and longitudinal chromatic aberration (LCA) was used to explore the visual effect of the combined correction of SA and LCA in future new intraocular lenses (IOLs). The LCA of the eye was corrected using a diffractive element and SA was controlled by an adaptive optics instrument. A visual channel in the system allows for the measurement of visual acuity (VA) and contrast sensitivity (CS) at 6 c/deg in three subjects, for the four different conditions resulting from the combination of the presence or absence of LCA and SA. In the cases where SA is present, the average SA value found in pseudophakic patients is induced. Improvements in VA were found when SA alone or combined with LCA were corrected. For CS, only the combined correction of SA and LCA provided a significant improvement over the uncorrected case. The visual improvement provided by the correction of SA was higher than that from correcting LCA, while the combined correction of LCA and SA provided the best visual performance. This suggests that an aspheric achromatic IOL may provide some visual benefit when compared to standard IOLs. ©2010 Optical Society of America OCIS codes: (330.0330) Vision, color, and visual optics; (330.4460) Ophthalmic optics and devices; (330.5510) Psycophysics; (220.1080) Active or adaptive optics. References and Links 1. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18 (8), 1793–1803 (2001). 2. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42 (13), 1611–1617 (2002). 3. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19 (1), 137–143 (2002). 4. J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47 (10), 4651–4658 (2006). 5. T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Vis. Sci. 40 (7), 1351–1355 (1999). 6. A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17 (10), 1697–1702 (2000). 7. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120 (9), 1143–1151 (2002). 8. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. S. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18 (6), 683–691 (2002). 9. P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refract. Surg. 35 (6), 962–963, author reply 963–964 (2009). 10. U. Mester, P. Dillinger, and N. Anterist, “Impact of a modified optic design on visual function: clinical comparative study,” J. Cataract Refract. Surg. 29 (4), 652–660 (2003). 11. R. M. Kershner, “Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation,” J. Cataract Refract. Surg. 29 (9), 1684–1694 (2003). 12. M. Packer, I. H. Fine, R. S. Hoffman, and P. A. Piers, “Prospective randomized trial of an anterior surface modified prolate intraocular lens,” J. Refract. Surg. 18 (6), 692–696 (2002). #118780 - $15.00 USD Received 19 Oct 2009; revised 11 Jan 2010; accepted 11 Jan 2010; published 13 Jan 2010 (C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 1637 13. H. Zhao, and M. A. Mainster, “The effect of chromatic dispersion on pseudophakic optical performance,” Br. J. Ophthalmol. 91 (9), 1225–1229 (2007). 14. P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45 (12), 4601–4610 (2004). 15. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18 (5), S634–S638 (2002). 16. G. Wald, and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37 (5), 321–336 (1947). 17. R. E. Bedford, and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47 (6), 564– 565 (1957). 18. W. N. Charman, and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16 (9), 999–1005 (1976). 19. P. A. Howarth, and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26 (2), 361–366 (1986). 20. E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14 (13), 6213–6225 (2006). 21. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle-psi in a population of young-adult eyes,” J. Opt. Soc. Am. A 12 (10), 2348–2357 (1995). 22. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41 (28), 3861–3871 (2001). 23. F. W. Campbell, and R. W. Gubisch, “Effect of chromatic aberration on visual acuity,” Journal of Physiology- London 192 , 345 (1967). 24. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417 (6885), 174–176 (2002). 25. S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25 (10), 2395–2407 (2008). 26. G. Y. Yoon, and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19 (2), 266–275 (2002). 27. A. C. S. Van Heel, “Correcting the spherical and chromatic aberrations of the eye,” J. Opt. Soc. Am. 36 , 237–239 (1946). 28. A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59 (11), 909–911 (1982). 29. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20 (24), 4152–4155 (1981). 30. J. A. Diaz, M. Irlbauer, and J. A. Martinez, “Diffractive-refractive hybrid doublet to achromatize the human eye,” J. Mod. Opt. 51 (14), 2223–2234 (2000). 31. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24 (6), 1538–1544 (2007). 32. D. A. Atchison, M. Ye, A. Bradley, M. J. Collins, X. X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69 (10), 797–804 (1992). 33. P. Piers, and H. Weeber, “Ophthalmic lens,” US Patent 6,830,332, Dec. 14, 2004. 34. A. Bradley, “Glenn A. Fry Award Lecture 1991: perceptual manifestations of imperfect optics in the human eye: attempts to correct for ocular chromatic aberration,” Optom. Vis. Sci. 69 (7), 515–521 (1992). 35. C. Lapicque, “La formation des Images retiniennes,” (Ed. de la Revue d'Optique, Paris, 1937). 36. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33 (10), 1721–1726 (2007). 37. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17 (8), 1388–1398 (2000). 38. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28 (5), 976–983 (1989). 39. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16 (11), 7748–7755 (2008). 40. L. N. Thibos, M. Ye, X. X. Zhang, and A. Bradley, “The chromatic eye. A new reduced eye model of ocular chromatic aberration in humans,” Appl. Opt. 31 (19), 3594–3600 (1992). 41. A. B. Watson, and D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33 (2), 113–120 (1983). 42. Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20 (4), 323–334 (2000). 43. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004). 44. X. X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991). 45. M. Baumeister, J.