Species Identification in Wildlife Crime Investigation Using Diprotodontia

Total Page:16

File Type:pdf, Size:1020Kb

Species Identification in Wildlife Crime Investigation Using Diprotodontia Species Identification in Wildlife Crime Investigation using Diprotodontia By Linzi M. A. Wilson-Wilde BSc La Trobe University 1995 Grad Dip App Sc La Trobe University 1996 A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy (Applied Science) Institute for Applied Ecology University of Canberra December 2010 Certificate of Authorship of Thesis Except where clearly acknowledged in footnotes, quotations and the bibliography, I certify that I am the sole author of the thesis submitted today entitled –Species Identification in Wildlife Crime Investigations using Diprotodontia. I further certify that to the best of my knowledge, the thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis. The material in the thesis has not been the basis of an award or any other degree or diploma except where due reference is made in the text of the thesis. This thesis complies with University requirements for a thesis as set out in http:/www.canberra.edu.au/secretariat/goldbook/forms/thesisrqmt.pdf. Linzi Wilson-Wilde Stephen Sarre December 2010 ii Copyright Under Section 35 of the Copyright Act of 1968, the author of this thesis is the owner of any copyright subsisting in the work, even though it is unpublished. Under Section 31(I)(a)(i), copyright includes the exclusive right to ‘reproduce the work in a material form’. This, copyright is infringed by a person who, not being the owner of the copyright, reproduces or authorises the reproduction of the work, or of more that a reasonable part of the work, in a material form, unless the reproduction is a ‘fair dealing’ with the work ‘for the purpose of research or study’ as further defined in Sections 40 and 41 of the Act. This thesis entitled ‘Species Identification in Wildlife Crime Investigations using Diprotodontia’ must therefore be copied or used only under normal conditions of scholarly fair dealing for the purposes of research, criticism or review, as outlined in the provisions of the Copyright Act 1968. In particular, no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or on part without consent of the author. Proper written acknowledgment should be made for any assistance obtained from this thesis. Copies of the thesis may be made by a library on behalf of another person provided the officer in charge of the library is satisfied that the copy is being made for the purposes of research or study. Linzi Wilson-Wilde December 2010 iii Statement of Contributions As this thesis is written as a series of chapters prepared for publication in peer-reviewed journals, several people other than myself have contributed to the work; and they deserve acknowledgement. • Janette Norman (Melbourne University, previously Victoria Museum), who provided guidance and supervision for all aspects of the PhD study and assisted in the preparation of manuscripts. • James Robertson (Australian Federal Police) who provided guidance and supervision for all aspects of the PhD study and assisted in the preparation of manuscripts. • Stephen Sarre (University of Canberra) who provided guidance and supervision for all aspects of the PhD study and assisted in the preparation of manuscripts. • Arthur Georges (University of Canberra) who provided guidance and supervision for all aspects of the PhD study and assisted in the preparation of manuscripts. • Rebecca Kogios (Victoria Police Forensic Services Department) who greatly assisted in the preparation of the revision (2010 version) of the manuscript presented in Chapter 2, particularly in regards to the legal rulings. These people are included as authors in the following chapters as well as the associated publications, in order of their contribution to the work. However, despite the collaborative nature of this thesis, the work within is my own, and I received no assistance other than that which is stated above. I as Primary Supervisor agree with the above stated proportions of work undertaken for each of the published (or prepared for submission) peer-reviewed manuscripts contributing to this thesis. Prof. Stephen Sarre Date: iv Acknowledgements It has been a long journey. When I began this project I was a Team Leader of the Biology Team for the Australian Federal Police, an active position, but since I had no children completing a PhD seemed feasible. Reality is not always so simple. During the course of this project I have had three children, changed career positions twice and moved interstate. It is safe to say there are numerous people to thank, without whom completing this project would have been impossible. Firstly, Janette Norman should be thanked. Her willingness to accept a student part way through a project and continue to assist beyond the period of requirement, illustrates her dedication and commitment to her students and research. Janette’s high standards drove and inspired me in directions I had not perceived at the beginning. Without her guidance I simply could not have completed this project. I would like to thank James Robertson who continually made the time to encourage me and support me in the face of numerous obstacles. James, you provided great advice and were always willing to listen. I would also like to thank the generosity of the Australian Federal Police who, through James, funded this project and provided study leave and support for conference attendance. My University of Canberra Supervisors Stephen Sarre and Arthur Georges must also be thanked. Steve, your ‘pep talks’ were invaluable, you listened to my ranting and provided good, level headed advice. Arthur, your wonderful guidance in statistical analysis and encouragement to make the most out of my data was greatly appreciated. The Institute for Applied Ecology also provided a laboratory work space for the initial stages of the research and funding support for conference attendance. I would also like to thank my fellow students Jo Lee, Erika Alacs, Anna Macdonald (who also provided Macropus eugenii samples) and Niccy Aiken (who also provided Trichosurus vulpecular samples) for their support and encouragement. I would like to thank Museum Victoria who provided a laboratory and work space where I conducted a majority of my research. Jo Sumner for her helpful advice, Stella Claudas for always ensuring I had the right paperwork, monitoring my budget and just encouraging me, v Rory O’Brien for helping me sort through the collections to find the correct Diprotodontid specimens. Fellow students Paul Ferraro, Joshua Hale, Stephanie Chapple and Katie Smith for being wonderful to bounce ideas off, provide advice and friendship. I would like to thank the Australia New Zealand Policing Advisory Agency (ANZPAA) and the National Institute of Forensic Science (NIFS) team who took me on and were willing to support me in completing my PhD by generously providing me with study leave, supporting conference attendance and mostly for believing in me. Of particular mention is Alastair Ross who constantly provided encouragement and support – it was greatly appreciated. Also at ANZPAA I would like to thank Bruce Kerr for IT assistance and Nancy Bakker for assistance with my posters for conferences. At NIFS I would like to thank Ann Gidley for proof reading and formatting assistance. I would also like to thank everyone at ANZPAA who constantly gave me encouragement and seemed interested when I talked about my research. Thanks also go to Runa Daniel and Lorna Hendry for editing assistance even though they knew nothing about species identification or phylogenetics. I would like to thank the Australian National Wildlife Collection for the very generous provision of a majority of the samples. I would also like to thank the Victoria Museum, Peter Spencer at Murdoch University, Victoria Police Forensic Services Department, Australia Museum and Collingwood Children’s Farm for provision of samples. Last, but not least, I would like to sincerely thank my family for their love and support. Jim, Zachary, Sienna and Eloise, I know it was not easy putting up with me over the years; mummy’s laptop and paperwork all over the kitchen bench, the stress and time away from you all. Jim you really came through for me. I love you all and thank you. Linzi Wilson-Wilde vi Abstract This research investigated the issues surrounding species identification in a forensic wildlife crime context using Diprotodontia as a model group. Wildlife crime covers a broad range of offences where there is a deliberate and purposeful illegal activity involving animals and plants for which purposeful gain is the principle motive. Worldwide it is thought to cost between US$10 and US$20 billion dollars annually. Native Australian marsupials such as sugar gliders and wallabies are thought to be targeted for their unique appeal and are currently sold overseas as pets. Numerous marsupials are also the subject of regulated harvesting and international trade, some of which are listed on the Convention on International Trade in Endangered Species of Fauna and Flora Appendices. The application of molecular DNA techniques and population genetics theory, in the context of a broader understanding of genetic variation within and among taxa, can provide the basis for determining the provenance of animals or their parts that have been seized as a result of wildlife crime investigations or regulation of legal trade. Current human and non-human analysis systems and equipment in forensic laboratories were reviewed. This information was used to inform what changes in equipment and training are required to implement methods for species identification and the investigation of wildlife crime. Current expertise and methods used for species identification were assessed. It was found that the Ouchterlony antigen/antibody method was being used under the (now confirmed) mistaken belief that it was a definitive or confirmatory test, as opposed to an indicative or opinion based test, as it should correctly be used.
Recommended publications
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
    Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Husbandry Guidelines for Feathertail Gliders
    Husbandry Guidelines for (Photo: Luke Hogan, 1996) Feathertail Gliders Acrobates frontalis & Acrobates pygmaeus (Mammalia: Acrobatidae) Date By From Version 2012 Tom Patterson WSI Richmond v 1 Husbandry Manual for the Feathertail Glider DISCLAIMER These husbandry guidelines were produced by the compiler/author at TAFE NSW Western Sydney Institute, Richmond College, N.S.W. Australia as part assessment for completion of Certificate III in Captive Animals, Course number 18913. Since the husbandry guidelines are the result of student project work, care should be taken in the interpretation of information therein. In effect, all care taken but no responsibility is assumed for any loss or damage that may result from the use of these guidelines. Care has been taken to acknowledge the correct ownership of work. Should It is offered to the ASZK Husbandry Manuals Register for the benefit of animal welfare and care. Husbandry guidelines are utility documents and are ‘works in progress’, so enhancements to these guidelines are invited. 2 Annual Cycle of Maintenance Breeding Torpor Exhibit Change Replace Scrub Replace Soil Decrease Pest Collect Scrub Leaf nesting Nest (if applicable) food Control Faecal (1) (2) Litter materials Boxes (Torpor) Samples January February March April May June July August September October November December Note: (1) Northern populations – most likely all Acrobates frontalis, (2) Southern populations – most likely all Acrobates pygmaeus. All maintenance cycle should be used as a guide only. These tasks are noted at a minimum, but should be done as required. Record keeping, weights, observations and environmental enrichment should occur all year round OCCUPATIONAL HEALTH AND SAFETY RISKS OH&S hazards can include anything that may be seen as a potential risk to you as a keeper or a member of the public.
    [Show full text]
  • Greater Glider Management Plan: South Gippsland. Draft
    1 Greater Glider Management Plan: South Gippsland. Draft Greater Glider, Mirboo Regional Park (HVP). Powerful Owls, Mirboo Regional Park (Dickies Hill). 2 INDEX 1. Aim……………………………………………………………………………………..…………………………. 2. Biology………………………………………………………………………………….……………………….. 3. Current Distribution South Gippsland…………………………………………………………….. P.2 4. Greater Glider Populations…………………………………………………....……………………... P.2 4.1. Mirboo Regional Park & Dickies Hill……………………………..…………………………..…. P.2 4.2. Hallston…………………………………………………………………………………………………….…. P.3 4.3. Gunyah rainforest Reserve……………………………………………................................ P.3 5. Threats……………………………………………………………………………………………………….…. P.3 5.1. Habitat Connectivity…………………………………………………..……………………………..… P.4 5.2. Habitat Destruction…………………………………………………………………………………..... P.5 5.3. Predators…………………………………………………………….………………………………….…... P.5 5.4. Climate Change………………………………………………………………………………………….... P.5 5.5. Firewood Collection………………………………………………………………………………….….. P.5 5.6. Timber Production…………………………………………………………………………………..…... P.6 5.7. Other Threats………………………………………………………………….……………………….….. P.6 P.6 6. Management Actions…………………………………………………………………………. P.6 5.1 Current and Future Habitat Restoration …………………………………………………………….… P.7 Hallston……………………………………………………………………………………………………………………… P.8 Mirboo RP…………………………………………………………………………………………………………………. P.8 5.2 Genetic diversity……………………………………………………………………………………………….... P.10 5.3 Predation………………………………………………………………………………………………………..….. P.13 5.4 Climate Change…………………………………………………………………………………………..………. P.14
    [Show full text]
  • Sugarloaf Pipeline Project Toolangi Habitat Linkage Monitoring Effectiveness of Glider Pole Linkages May 2017
    Melbourne Water Corporation Sugarloaf Pipeline Project Toolangi Habitat Linkage Monitoring Effectiveness of Glider Pole Linkages May 2017 Acknowledgements The following individuals or groups have assisted in the preparation of this report. However, it is acknowledged that the contents and views expressed within this report are those of GHD Pty Ltd and do not necessarily reflect the views of the parties acknowledged below: The Department of Environment, Land, Water and Planning (DELWP) for allowing access to records in the VBA database Melbourne Water Corporation staff including Andrea Burns, Paul Evans, Alex Sneskov, Anna Zsoldos, Mark Scida, Warren Tomlinson and Steve McGill for providing assistance, support and advice throughout the project GHD | Report for Melbourne Water Corporation - Sugarloaf Pipeline Project Toolangi Habitat Linkage Monitoring, 31/29843 | i Abbreviations DELWP Victorian Department of Environment, Land, Water and Planning (formerly DEPI) DEPI Victorian Department of Environment and Primary Industries (now DELWP) DSE Department of Sustainability and Environment (now DELWP) EPBC Environment Protection and Biodiversity Conservation Act 1999 EVC Ecological Vegetation Class EWP Elevated Work Platform FFG Flora and Fauna Guarantee Act 1988 GHD GHD Pty Ltd ROW Right of Way MW Melbourne Water Corporation Spp. More than one species TSF Toolangi State Forest ii | GHD | Report for Melbourne Water Corporation - Sugarloaf Pipeline Project Toolangi Habitat Linkage Monitoring, 31/29843 Table of contents Acknowledgements ..................................................................................................................................
    [Show full text]
  • West Papua Expedition
    The fabulous Spangled Kookaburra was one of the many highlights (Mark Van Beirs) WEST PAPUA EXPEDITION 22/28 OCTOBER – 10 NOVEMBER 2019 LEADER: MARK VAN BEIRS 1 BirdQuest Tour Report: West Papua Expedition www.birdquest-tours.com The cracking Kofiau Paradise Kingfisher posed ever so well (Mark Van Beirs) This unusual trip was set up to fill in some of the remaining gaps in the Birdquest New Guinea lifelist, so the plan was to visit several hard to reach venues in West Papua. The pre-trip was aiming to climb to the top of 2 BirdQuest Tour Report: West Papua Expedition www.birdquest-tours.com Mount Trikora in the Snow Mountains, but because of recent rioting and civil unrest (whereby several dozen people had been killed), access to the town of Wamena was totally denied to foreign visitors by the authorities. So, sadly, no Snow Mountain Robin… We did manage to visit the famous Wasur National Park, which produced the fantastic Spangled Kookaburra and Grey-crowned and Black Mannikins (all Birdquest lifers) and we reached the island of Kofiau, where the fabulous Kofiau Paradise Kingfisher and the modestly- plumaged Kofiau Monarch (two more Birdquest lifers) showed extremely well. The fabulous lowland rainforest site of Malagufuk gave us a long list of exquisite species amongst which a truly impressive Northern Cassowary, a cute Wallace’s Owlet-nightjar, a sublime Papuan Hawk-Owl and a tremendous Red- breasted Paradise Kingfisher stood out. Kingfishers especially performed extremely well on this tour as we saw no fewer than 15 species, including marvels like Hook-billed, Common Paradise, Blue-black, Beach, Yellow-billed and Papuan Dwarf Kingfishers and Blue-winged and Rufous-bellied Kookaburras.
    [Show full text]
  • A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
    www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition.
    [Show full text]
  • Ecological Consequences of Human Niche Construction: Examining Long-Term Anthropogenic Shaping of Global Species Distributions Nicole L
    SPECIAL FEATURE: SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions Nicole L. Boivina,b,1, Melinda A. Zederc,d, Dorian Q. Fuller (傅稻镰)e, Alison Crowtherf, Greger Larsong, Jon M. Erlandsonh, Tim Denhami, and Michael D. Petragliaa Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved March 18, 2016 (received for review December 22, 2015) The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global bio- sphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agricul- ture, the era of island colonization, and the emergence of early urbanized societies and commercial net- works.
    [Show full text]
  • The Chinchilla Local Fauna: an Exceptionally Rich and Well-Preserved Pliocene Vertebrate Assemblage from Fluviatile Deposits of South-Eastern Queensland, Australia
    The Chinchilla Local Fauna: An exceptionally rich and well-preserved Pliocene vertebrate assemblage from fluviatile deposits of south-eastern Queensland, Australia JULIEN LOUYS and GILBERT J. PRICE Louys, J. and Price, G.J. 2015. The Chinchilla Local Fauna: An exceptionally rich and well-preserved Pliocene verte- brate assemblage from fluviatile deposits of south-eastern Queensland, Australia. Acta Palaeontologica Polonica 60 (3): 551–572. The Chinchilla Sand is a formally defined stratigraphic sequence of Pliocene fluviatile deposits that comprise interbed- ded clay, sand, and conglomerate located in the western Darling Downs, south-east Queensland, Australia. Vertebrate fossils from the deposits are referred to as the Chinchilla Local Fauna. Despite over a century and a half of collection and study, uncertainties concerning the taxa in the Chinchilla Local Fauna continue, largely from the absence of stratigraph- ically controlled excavations, lost or destroyed specimens, and poorly documented provenance data. Here we present a detailed and updated study of the vertebrate fauna from this site. The Pliocene vertebrate assemblage is represented by at least 63 taxa in 31 families. The Chinchilla Local Fauna is Australia’s largest, richest and best preserved Pliocene ver- tebrate locality, and is eminently suited for palaeoecological and palaeoenvironmental investigations of the late Pliocene. Key words: Mammalia, Marsupialia, Pliocene, Australia, Queensland, Darling Downs. Julien Louys [[email protected]], Department of Archaeology and Natural History, School of Culture, History, and Languages, ANU College of Asia and the Pacific, The Australian National University, Canberra, 0200, Australia. Gilbert J. Price [[email protected]], School of Earth Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.
    [Show full text]