An Effective Theory on the Light Shell

Total Page:16

File Type:pdf, Size:1020Kb

An Effective Theory on the Light Shell An effective theory on the light shell The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sajjad, Aqil. 2014. An effective theory on the light shell. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13064982 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA An effective theory on the light shell A dissertation presented by Aqil Sajjad to the Department of Physics Center for the Fundamental Laws of Nature in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts September 2014 c 2014 Aqil Sajjad All rights reserved. Dissertation Advisor: Professor Howard Georgi Aqil Sajjad An effective theory on the light shell Abstract We describe work on the construction of an effective field theory on a spherical light shell. The motivation arises from classical electromagnetism: If a collision produces charged particles with zero net charge emerging simultaneously from a point and instantaneously accelerating to the speed of light, then the electromagnetic fields due to these charges lie entirely on a spherical shell expanding at the speed of light. We show that this also applies to classical color radiation from high-energy collisions that produce colored particles. Specifically, the color fields produced in such a process are associated with a non-linear σ-model on the 2D light shell with specific symmetry- breaking terms. The quantum version of such a picture exhibits asymptotic freedom and should therefore be a useful starting point for a light-shell effective theory for QCD. We start in the simplified context of zero-flavor scalar quantum electrodynamics. Our effective theory has 3 major ingredients: breaking down the fields into soft and hard sectors with the large energy of the hard fields in the radial direction scaled out, a special gauge called light-shell gauge in which the picture simplifies, and a gauge-invariant source defined on a spherical light shell having infinitesimal radius. We match the fields between the effective theory and the full theory, meaning zero-flavor scalar QED. This allows us to compute the amplitude for the production of any number of scalars from the gauge-invariant source. We then find the tree-level iii amplitude for the emission of a photon using our effective theory and show that our result agrees with the full theory. To calculate loop effects in our effective theory, we need the photon propagator in light-shell gauge. We derive this propagator and use it to calculate the 1-loop correction to the amplitude for the production of a scalar and anti-scalar pair arising from virtual photon effects. This reduces to a pair of purely angular integrals in the effective theory and reproduces the familiar double logs of the full theory subject to an appropriate interpretation of an angular cutoff. iv Contents 1 Introduction 1 2 Classical motivation 6 2.1 The retarded potential calculation . .6 2.2 The non-abelian case . 10 3 An amusing calculation 22 3.1 The amplitude squared in the quantum theory as an intensity . 22 3.2 The classical fields as probability amplitudes . 24 3.2.1 Energy in a plane wave . 24 3.2.2 Fourier transform for a spherical wave . 25 3.3 Applying to our classical theory . 27 3.4 The QED calculation for comparison . 28 4 Constructing Our Effective Theory 30 4.1 Constructing the light-shell effective theory Lagrangian . 30 4.2 The LSET source . 35 5 Tree-level matching 38 5.1 Matching LRE scalars . 38 5.2 Photon emission . 41 6 The Light-shell gauge propagator 45 6.1 Notation for vector derivatives . 46 6.2 The Kinetic Energy Matrix in LSG . 47 6.3 Inversion on a subspace . 52 6.4 Returning to the LS gauge propagator . 52 7 Radiative corrections 56 7.1 The relevant LSG Green's function on the sphere . 57 7.2 Computing the integral . 59 7.2.1 Computing the off-diagonal (j 6= k) integral . 59 7.2.2 The j = k integral . 61 7.3 Combining the results and comparing with the full theory . 62 8 Some open questions 64 8.1 Finding an exact 2-dimensional theory . 64 8.2 Understanding the σ-model on the sphere . 65 8.3 Multiple photon emissions with large energies . 65 8.4 The meaning of angular cutoffs and jets . 66 8.5 Understanding LSET in terms of holography . 67 9 Conclusion 68 v A The strange looking fourier transform in spherical coordinates 70 B Conventions 72 C 0-Flavor Scalar Quantum Electrodynamics 73 D LRE Canonical Quantization 74 E Operator Notation 75 F Functional forms for inverse operators 76 F.1 Trying canonical quantization . 76 F.2 Using a different approach . 78 G Derivation of C 80 H Does L−2 make sense? 84 I Useful results involving C 85 J Last step for the LSG propagator on the sphere 87 K The last integral in the loop calculation 89 vi Citations to Previously Published Work H. Georgi, G. Kestin, and A. Sajjad, \Color Fields on the Light-Shell," http://arxiv.org/abs/1004.1404arXiv:1004.1404 [hep-ph]. H. Georgi, G. Kestin, and A. Sajjad, \The Photon Propagator in Light-Shell Gauge," http://arxiv.org/abs/1312.1741arXiv:1312.1741 [hep-ph]. H. Georgi, G. Kestin, and A. Sajjad, \Towards an Effective Field Theory on the Light- Shell Effective," http://arxiv.org/abs/1401.7667arXiv:1401.7667 [hep-ph]. vii Acknowledgements I owe a major debt of gratitude to a number of people who have played a major role in making it possible for me to get to the point of writing this thesis. These include family, friends, numerous teachers I have had throughout my life, many helpful people in the administration of the educational institutes I have attended, especially after the loss of my eye-sight, a number of very friendly and supportive staff members working in these institutes, and last but not the least, those who have contributed in one form or another to making science and education accessible to people with disabilities. I write this section with the apprehension that I will not be able to do justice to everyone, and it is possible that I might miss a few names. First, I am really grateful to my Ph.D adviser Howard Georgi for all his guidance and support. I have always been impressed by how much physics he knows and how he keeps on coming up with exciting new ideas. But more importantly, in addition to physics, he loves to mentor students. Thank you for everything. I would also like to thank my thesis committee members Matthew Schwartz and Subir Sachdev for all their support and encouragement, especially in moments of self-doubt. You may not know, but it really meant a lot. I am really grateful to Greg Kestin who worked with Georgi and myself on this project. He has become a valued friend and we have had many long hours of conversations working through the intricacies of our theory. In addition to being really good at physics, Greg is also very enthusiastic in his outreach to the wider community about science and research. Wish you all the best wherever you go. I should also thank Matthew Reece, Andrey Katz, John Mason, Tongyan Lin and Thomas Ryttov for their research collaborations on other projects during the course of my Ph.D. While these collaborations may have been on projects other than light-shell ef- fective theory, they were a major source of help and confidence as I worked through my thesis research. viii The Harvard physics department and the university's disability support services deserve a special mention for all the support they provided which have enabled me to carry out my studies at Harvard with my visual impairment. Several really great individuals have been involved through this process. In the physics department, David Norcross, Anne Trubia, David Morin, Jacob Barandes, Prof John Huth and Prof Melissa Franklin at the physics department have especially played a major role in making sure that I got all the accessibility related support that I needed. Graduate students David Thompson, Itay Yavin, WANG Yihua, Jonathan Ruel, Eunju Lee and Nicholas Manzi played a crucial role in the transcription of reading material in accessible reading format for me. At the adaptive technology lab, Rob Eveleigh in the initial years, and later Tanya Washburn, were closely involved in the scanning of reading material that needed to be converted for me, with Curtis Wilcox always readily available at the administrative end. Katherine Callaghan, Louise Russell and Sheila Petruccelli at the Harvard Accessible Education Office were always there to make sure that the entire system was running properly. This list would be totally incomplete if I did not mention Joseph Kolb, the mobility instructor who taught me the routes on campus with my white cane. The staff at the physics department has been exceptionally nice and makes it really fun to walk into the physics building. Dayle Maynard has throughout been a motherly figure looking after my needs, helping me do any paperwork, reading my mail (since I cannot read it due to my visual impairment), and above all, being always there as a great friend. Grad- uate student administrators Sheila Ferguson initially and then Lisa Cacciabaudo towards the end of my Ph.D have both been very supportive and helpful.
Recommended publications
  • Numerical Evaluation of Feynman Loop Integrals by Reduction to Tree Graphs
    Numerical Evaluation of Feynman Loop Integrals by Reduction to Tree Graphs Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universit¨atHamburg vorgelegt von Tobias Kleinschmidt aus Duisburg Hamburg 2007 Gutachter des Dissertation: Prof. Dr. W. Kilian Prof. Dr. J. Bartels Gutachter der Disputation: Prof. Dr. W. Kilian Prof. Dr. G. Sigl Datum der Disputation: 18. 12. 2007 Vorsitzender des Pr¨ufungsausschusses: Dr. H. D. R¨uter Vorsitzender des Promotionsausschusses: Prof. Dr. G. Huber Dekan der Fakult¨atMIN: Prof. Dr. A. Fr¨uhwald Abstract We present a method for the numerical evaluation of loop integrals, based on the Feynman Tree Theorem. This states that loop graphs can be expressed as a sum of tree graphs with additional external on-shell particles. The original loop integral is replaced by a phase space integration over the additional particles. In cross section calculations and for event generation, this phase space can be sampled simultaneously with the phase space of the original external particles. Since very sophisticated matrix element generators for tree graph amplitudes exist and phase space integrations are generically well understood, this method is suited for a future implementation in a fully automated Monte Carlo event generator. A scheme for renormalization and regularization is presented. We show the construction of subtraction graphs which cancel ultraviolet divergences and present a method to cancel internal on-shell singularities. Real emission graphs can be naturally included in the phase space integral of the additional on-shell particles to cancel infrared divergences. As a proof of concept, we apply this method to NLO Bhabha scattering in QED.
    [Show full text]
  • Lectures on Conformal Field Theory Arxiv:1511.04074V2 [Hep-Th] 19
    Prepared for submission to JHEP Lectures on Conformal Field Theory Joshua D. Quallsa aDepartment of Physics, National Taiwan University, Taipei, Taiwan E-mail: [email protected] Abstract: These lectures notes are based on courses given at National Taiwan University, National Chiao-Tung University, and National Tsing Hua University in the spring term of 2015. Although the course was offered primarily for graduate students, these lecture notes have been prepared for a more general audience. They are intended as an introduction to conformal field theories in various dimensions working toward current research topics in conformal field theory. We assume the reader to be familiar with quantum field theory. Familiarity with string theory is not a prerequisite for this lectures, although it can only help. These notes include over 80 homework problems and over 45 longer exercises for students. arXiv:1511.04074v2 [hep-th] 19 May 2016 Contents 1 Lecture 1: Introduction and Motivation2 1.1 Introduction and outline2 1.2 Conformal invariance: What?5 1.3 Examples of classical conformal invariance7 1.4 Conformal invariance: Why?8 1.4.1 CFTs in critical phenomena8 1.4.2 Renormalization group 12 1.5 A preview for future courses 16 1.6 Conformal quantum mechanics 17 2 Lecture 2: CFT in d ≥ 3 22 2.1 Conformal transformations for d ≥ 3 22 2.2 Infinitesimal conformal transformations for d ≥ 3 24 2.3 Special conformal transformations and conformal algebra 26 2.4 Conformal group 28 2.5 Representations of the conformal group 29 2.6 Constraints of Conformal
    [Show full text]
  • Infrared Divergences
    2012 Matthew Schwartz III-6: Infrared divergences 1 Introduction We have shown that the 1, 2 and 3 point functions in QED are UV finite at one loop. We were able to introduce 4 counterterms ( δm , δ1 , δ2 , δ3) which canceled all the infinities. Now let us move on to four point functions, such as Ω T ψ( x ) ψ¯ ( x ) ψ( x ) ψ¯ ( x ) Ω (1) h | { 1 2 3 4 }| i This could represent, for example, Møller scattering ( e − e − e − e − ) or Bhabha scattering → ( e+ e − e+ e − ). We will take it to be e+ e − µ+ µ− for simplicity, since at tree-level this process only has→ an s-channel diagram. Looking→ at these 4-point functions at one-loop will help us understand how to combine previous loop calculations and counterterms into new observables, and will also illustrate a new feature: cancellation of infrared divergences. Although important results and calculational techniques are introduced in this lecture, it can be skipped without much loss of continuity with the rest of the text. Recall that in the on-shell subtraction scheme we found δ1 and δ2 depended on a fictitious photon mass m γ. This mass was introduced to make the loops finite and is an example of an infrared regulator. As we will see, the dependence on IR regulators, like m γ, drops out not in differences between the Green’s functions at different scales, as with UV regulators, but in the sum of different types of Green’s functions contributing to the same observable at the same scale.
    [Show full text]
  • Introduction to Renormalization
    Introduction to Renormalization A lecture given by Prof. Wayne Repko Notes: Michael Flossdorf April 4th 2007 Contents 1 Introduction 1 2 RenormalizationoftheQEDLagrangian 2 3 One Loop Correction to the Fermion Propagator 3 4 Dimensional Regularization 6 4.1 SuperficialDegreeofDivergence. 6 4.2 TheProcedureofDimensionalRegularization . .. 8 4.3 AUsefulGeneralIntegral. 9 4.4 Dirac Matrices in n Dimensions .................. 11 4.5 Dimensional Regularization of Σ2 ................. 11 5 Renormalization 12 5.1 Summary ofLastSection and OutlineoftheNextSteps . .. 12 5.2 MomentumSubtractionSchemes. 13 5.3 BacktoRenormalizationinQED. 14 5.4 Leading Order Expression of Σ2 for Small ǫ ............ 17 6 Outline of the Following Procedure 19 7 The Vertex Correction 19 8 Vacuum Polarization 22 CONTENTS 2 9 The Beta Function of QED 25 Appendix 27 References 30 1 INTRODUCTION 1 First Part of the Lecture 1 Introduction Starting with the Lagrangian of any Quantum Field Theory, we have seen in some of the previous lectures how to obtain the Feynman rules, which sufficiently de- scribe how to do pertubation theory in that particular theory. But beyond tree level, the naive calculation of diagrams involving loops will often yield infinity, since the integrals have to be performed over the whole momentum space. Renormal- ization Theory deals with the systematic isolation and removing of these infinities from physical observables. The first important insight is, that it is not the fields or the coupling constants which represent measurable quantities. Measured are cross sections, decay width, etc.. As long as we make sure that this observables are finite in the end and can be unambiguously derived from the Lagrangian, we are free to introduce new quantities, called renormalized quantities for every, so called, bare quantity.
    [Show full text]
  • Infrared Divergence Phenomena, High-Energy Processes, and Regge Poles
    INFRARED DIVERGENCE PHENOMENA, HIGH-ENERGY PROCESSES, AND REGGE POLES S. FRAUTSCHI NEWMAN LABORATORY OF NUCIEAR STUDIES, CORNELL UNIVERSITY, ITHACA, N.Y., UNITED STATES OP AMERICA 1. INTRODUCTION Infrared divergence phenomena are already well known from semi- classical arguments. For example, suppose an electron in motion is de­ flected due to its interaction with a potential, the Lorentz-contracted proper field of the electron will be altered by the collision, and the change in the proper field will be emitted as electromagnetic radiation. For sufficiently long wavelengths (kR < < 1, where k is the wave number and R is a dimension of the scattering region), the radiation can be calculated without knowledge of the details of the trajectory in the scattering region. It depends only on the initial and final momenta of the electron and the direction in which the radiation is observed (assuming the electron suffers no time delay in the scattering region). As is well known, the energy emitted per unit frequency is constant in this limit. Making the transcription to the photon description, it is clear that the number of photons emitted per unit frequency range is inversely proportional to the frequency; i. e., the photon spectrum is of the form dk/k, which diverges as k — 0. This is the infrared divergence for real photons. The angular distribution can also be understood by the semiclassical argument. In the extreme relativistic limit, the proper fields will be Lorentz - contracted in a small region near the plane perpendicular to the direction of motion of the charge and moving along with the charge.
    [Show full text]
  • Cancellation of Infrared Divergences in QCD
    Cancellation of infrared divergences in QCD Daniel Wennberg Physics specalization project Submission date: January 2014 Supervisor: Michael Kachelrieß Norwegian University of Science and Technology Department of Physics Abstract The scattering process hadrons is considered at next-to- + − leading order, . It is demonstrated푒 푒 → that the cross sections for both the real gluon emission풪(훼푠) and virtual gluon exchange have infrared singu- larities. Using dimensional regularization it is shown that the divergent terms cancel exactly when adding the contributions, such that the total cross section for hadrons is finite at this order. This result, and + − the general implications푒 푒 → of infrared divergences and their cancellation, is discussed in light of the Kinoshita-Lee-Nauenberg theorem and the concept of infrared safety. 2 Contents List of figures 5 List of tables 6 List of symbols and notation 7 Preface 9 1 Introduction 10 1.1 Perturbative quantum chromodynamics . 10 1.2 Infrared divergences . 13 2 Cancellation of infrared divergences in hadrons 14 + − 2.1 Leading order amplitude for 푒 푒 →. 15 + − 2.2 Cross sections for hadrons푒 푒 → . 푞 .푞 . 19 + − 2.3 Real gluon emission:푒 푒 → at leading order . 21 + − 2.4 Virtual gluon exchange:푒 푒 → 푞푞푔 at next-to-leading order . 26 + − 2.5 Cancellation: hadrons푒 푒 → at 푞 next-to-leading푞 order . 34 + − 2.6 The ultraviolet푒 divergence푒 → . 35 3 Discussion 38 3.1 Infrared divergences in general quantum field theories . 38 3.2 The optical theorem and cutting rules . 41 3.3 Infrared safety in QCD . 44 4 Summary 46 A Feynman rules for QED and QCD 47 A.1 General remarks .
    [Show full text]
  • Notas De Física CBPF-NF-008/10 February 2010
    ISSN 0029-3865 CBPF - CENTRO BRASILEIRO DE PESQUISAS FíSICAS Rio de Janeiro Notas de Física CBPF-NF-008/10 February 2010 Pascual Jordan's legacy and the ongoing research in quantum field theory Bert Schroer Ministét"io da Ciência e Tecnologia Pascual Jordan’s legacy and the ongoing research in quantum field theory to be published in EPJH - Historical Perspectives on Contemporary Physics Bert Schroer present address: CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil email [email protected] permanent address: Institut f¨urTheoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin, Germany December 2009 Abstract After recalling Pascual Jordan’s pathbreaking work in shaping quantum mechan- ics I explain his role as the protagonist of quantum field theory (QFT). Particular emphasis is given to the 1929 Kharkov conference where Jordan not only presents a quite modern looking panorama about the state of art, but were some of his ideas already preempt an intrinsic point of view about a future QFT liberated from the classical parallelism and quantum field theory, a new approach for which the conceptional basis began to emerge ony 30 years later. Two quite profound subjects in which Jordan was far ahead of his contempo- raries will be presented in separate sections: ”Bosonization and Re-fermionization instead of Neutrino theory of Light” and ”Nonlocal gauge invariants and an alge- braic monopole quantization”. The last section contains scientific episodes mixed with biographical details. It includes remarks about his much criticized conduct during the NS regime. Without knowing about his entanglement with the Nazis it is not possible to understand that such a giant of particle physics dies without having received a Nobel prize.
    [Show full text]
  • Springer Series on Atomic, Optical, and Plasma Physics
    Springer Series on Atomic, Optical, and Plasma Physics Volume 63 Series Editors W.E. Baylis Uwe Becker Philip George Burke Robert N. Compton M.R. Flannery Charles J. Joachain Brian R. Judd Kate Kirby Peter Lambropoulos Gerd Leuchs Pierre Meystre For further volumes: http://www.springer.com/series/411 Ingvar Lindgren Relativistic Many-Body Theory A New Field-Theoretical Approach With 97 Figures ABC Ingvar Lindgren Department of Physics University of Gothenburg SE-412 96 Go¨teborg Sweden [email protected] ISSN 1615-5653 ISBN 978-1-4419-8308-4 e-ISBN 978-1-4419-8309-1 DOI 10.1007/978-1-4419-8309-1 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011921721 c Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To Eva Preface It is now almost 30 years since the first edition of my book together with John Morrison, Atomic Many-Body Theory [6], appeared, and the second edition ap- peared some years later.
    [Show full text]
  • Notas De Física CBPF-NF-008J10 February 2010
    ISSN 0029-3865 CBPF - CENTRO BRASILEIRO DE PESQUISAS FíSICAS Rio de Janeiro Notas de Física CBPF-NF-008j10 February 2010 Pascual Jordan's legacy and the ongoing research in quantum field theory Bert Schroer Ministét"io da Ciência e Tecnologia Pascual Jordan’s legacy and the ongoing research in quantum field theory to be published in EPJH - Historical Perspectives on Contemporary Physics Bert Schroer present address: CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil email [email protected] permanent address: Institut f¨urTheoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin, Germany December 2009 Abstract After recalling Pascual Jordan’s pathbreaking work in shaping quantum mechan- ics I explain his role as the protagonist of quantum field theory (QFT). Particular emphasis is given to the 1929 Kharkov conference where Jordan not only presents a quite modern looking panorama about the state of art, but were some of his ideas already preempt an intrinsic point of view about a future QFT liberated from the classical parallelism and quantum field theory, a new approach for which the conceptional basis began to emerge ony 30 years later. Two quite profound subjects in which Jordan was far ahead of his contempo- raries will be presented in separate sections: ”Bosonization and Re-fermionization instead of Neutrino theory of Light” and ”Nonlocal gauge invariants and an alge- braic monopole quantization”. The last section contains scientific episodes mixed with biographical details. It includes remarks about his much criticized conduct during the NS regime. Without knowing about his entanglement with the Nazis it is not possible to understand that such a giant of particle physics dies without having received a Nobel prize.
    [Show full text]
  • Planck Scale, Dirac Delta Function and Ultraviolet Divergence
    Planck scale, Dirac delta function and ultraviolet divergence Hua Zhang,a;1 Mingshun Yuanb aShenzhen Forms Syntron Information Co.,Ltd., Shenzhen 518000, P.R. China bFujian University of Technology,Mathematics and Physics Institute Fuzhou 350118, P.R. China E-mail: [email protected] Abstract: The Planck length is the minimum length which physical law do not fail. The Dirac delta function was created to deal with continuous range issue, and it is zero except for one point. Thus contradict the Planck length. Renormalization method is the usual way to deal with divergence difficulties. The authors proposed a new way to solve the problem of ultraviolet divergence and this method is self-consistent with the Planck length. For this purpose a redefine function δP in position representation was introduced to han- dle with the canonical quantization. The function δP tends to the Dirac delta function if the Planck length goes to zero. By logical deduction the authors obtains new commuta- tion/anticommutation relations and new Feynman propagators which are convergent. This article will deduce the new Feynman propagators for the Klein-Gordon field, the Dirac field and the Maxwell field. Through the new Feynman propagators, we can eliminate ultraviolet divergence. arXiv:1911.01789v5 [physics.gen-ph] 2 Jan 2020 1Corresponding author. Contents 1 Introduction2 1.1 History of renormalization2 1.2 The Planck scale & the Dirac delta function2 2 The renormalization function3 2.1 Rectangular coordinate system3 2.2 Cylindrical coordinate system4 2.3 Spherical coordinate
    [Show full text]
  • Ground States and Spectral Properties in Quantum Field Theories
    Ground states and spectral properties in quantum field theories Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium vorgelegt dem Rat der Fakultät für Mathematik und Informatik der Friedrich–Schiller–Universität Jena von M.Sc. Markus Lange geboren am 10.02.1987 in Münster 1. Gutachter: Prof. Dr. David Hasler (Friedrich-Schiller-University Jena, Ernst-Abbe- Platz 2, 07743 Jena, Germany) 2. Gutachter: Prof. Dr. Marcel Griesemer (University Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany) 3. Gutachter: Prof. Dr. Jacob Schach Møller (Aarhus University, Ny Munkegade 118, 8000 Aarhus C, Denmark) Tag der öffentlichen Verteidigung: 29. Juni 2018 Abstract In this thesis we consider non-relativistic quantum electrodynamics in dipole approximation and study low-energy phenomenons of quantum mechanical systems. We investigate the analytic dependence of the lowest-energy eigenvalue and eigenvector on spectral parameters of the system. In particular we study situations where the ground-state eigenvalue is assumed to be degenerate. In the first situation the eigenspace of a degenerate ground-state eigenvalue is assumed to split up in a specific way in second order formal perturbation theory. We show, using a mild infrared assumption, that the emerging unique ground state and the corresponding ground-state eigenvalue are analytic functions of the coupling constant in a cone with apex at the origin. Secondly we analyse the situation that the degeneracy is protected by a set of symmetries for the considered quantum mechanical system. We prove, in accordance with known results for the non-degenerate situation, that the ground-state eigenvalue and eigenvectors depend analytically on the coupling constant. In order to show these results we extend operator-theoretic renormalization to such degenerate situations.
    [Show full text]
  • [Hep-Th] 11 May 2017 Infrared Divergences in QED, Revisited
    Infrared Divergences in QED, Revisited Daniel Kapec†, Malcolm Perry∗, Ana-Maria Raclariu† and Andrew Strominger† Abstract Recently it has been shown that the vacuum state in QED is infinitely degenerate. Moreover a transition among the degenerate vacua is induced in any nontrivial scatter- ing process and determined from the associated soft factor. Conventional computations of scattering amplitudes in QED do not account for this vacuum degeneracy and there- fore always give zero. This vanishing of all conventional QED amplitudes is usually attributed to infrared divergences. Here we show that if these vacuum transitions are properly accounted for, the resulting amplitudes are nonzero and infrared finite. Our construction of finite amplitudes is mathematically equivalent to, and amounts to a physical reinterpretation of, the 1970 construction of Faddeev and Kulish. arXiv:1705.04311v1 [hep-th] 11 May 2017 † Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA, USA ∗ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK Contents 1 Introduction 1 2 Vacuum selection rules 2 3 Dressed quantum states 7 4 FK states 10 5 Massive Particles 12 6 Charged states 15 1 Introduction Recently it has been shown [1–5] (see [6] for a review) that the infrared (IR) sector of all abelian gauge theories, including QED, is governed by an infinite-dimensional symmetry group. The symmetry group is generated by large gauge transformations that approach angle-dependent constants at null infinity. The soft photon theorem is the matrix element of the associated conservation laws. This large gauge symmetry is spontaneously broken, resulting in an infinite vacuum degeneracy.
    [Show full text]