In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability

Total Page:16

File Type:pdf, Size:1020Kb

In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability Published OnlineFirst August 3, 2016; DOI: 10.1158/0008-5472.CAN-15-3534 Cancer Microenvironment and Immunology Research In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability Fumio Yamauchi1,2, Yuji Kamioka1,3, Tetsuya Yano2, and Michiyuki Matsuda1 Abstract Vascular hyperpermeability is a pathological hallmark of receptor is a canonical inducer of vascular hyperpermeability cancer. Previous in vitro studies have elucidated roles of various and a molecular target of anticancer drugs, we examined the signaling molecules in vascular hyperpermeability; however, causality between VEGF receptor activity and the PKA activity. the activities of such signaling molecules have not been exam- Motesanib, a kinase inhibitor for VEGF receptor, activated ined in live tumor tissues for technical reasons. Here, by tumor endothelial PKA and reduced the vascular permeability in vivo two-photon excitation microscopy with transgenic mice in the tumor. Conversely, subcutaneous injection of VEGF expressing biosensors based on Forster€ resonance energy trans- decreased endothelial PKA activity and induced hyperperme- fer, we examined the activity of protein kinase A (PKA), which ability of subcutaneous blood vessels. Notably, in cultured maintains endothelial barrier function. The level of PKA activity human umbilical vascular endothelial cells, VEGF activated was significantly lower in the intratumoral endothelial cells PKA rather than decreasing its activity, highlighting the remark- than the subcutaneous endothelial cells. PKA activation with a able difference between its actions in vitro and in vivo.Thesedata cAMP analogue alleviated the tumor vascular hyperpermeabil- suggested that the VEGF receptor signaling pathway increases ity, suggesting that the low PKA activity in the endothelial vascular permeability, at least in part, by reducing endothelial cells may be responsible for the tumor-tissue hyperpermeabil- PKA activity in the live tumor tissue. Cancer Res; 76(18); 1–11. ity. Because the vascular endothelial growth factor (VEGF) Ó2016 AACR. Introduction the intercellular gaps of endothelial cells (15). The inhibition of VEGF and VEGF receptors (VEGFR) results in a decrease of Blood vessels in tumors are significantly different from those in permeability and the normalization of tumor vasculature, which normal tissues in terms of structure and function (1). For example, in turn results in the inhibition of tumor growth and improve- vascular permeability is markedly increased in tumor tissues, and ment of anticancer chemotherapy (7). this increase is associated with angiogenesis and metastasis (2–6). The VEGF-induced increase in vascular permeability is medi- Accordingly, suppression of the vascular permeability results in ated by various intracellular signaling pathways, including those the inhibition of tumor growth and metastasis (7). of PTPs, Src, PI3K, uPA, PLC-g, and eNOS (6). Another signaling The high vascular permeability in tumor tissues is caused by molecule that has been shown to regulate vascular permeability various factors, including the structural abnormality of blood is cAMP. In microvascular endothelial cells, cAMP mediates vessels (2, 8), pressure or concentration gradients between com- endothelial barrier function by suppressing vascular permeability partments, and the properties of endothelial cells and/or pericytes (16, 17). Further studies have shown that increased cAMP triggers (2, 6). Among a number of molecules that regulate blood vessels sequential activation of protein kinase A (PKA), a guanine nucle- in tumor tissues, vascular endothelial growth factor (VEGF) has otide exchange factor Tiam1, and a small GTPase Rac1, resulting been a focus of intensive research (6, 9). VEGF increases vascular in an increase in barrier function (18, 19). On the other hand, permeability by promoting transcytosis (10–14) and enlarging cAMP can also contribute to the endothelial barrier function via cAMP-dependent guanine nucleotide exchange factor Epac/ cAMP-GEF and a small GTPase Rap1 (20, 21). Notably, the 1Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan. 2Medical Imaging System contribution of these potential effectors downstream of VEGFR Development Center, R&D Headquarters, Canon Inc., Japan. 3Innova- to the hyperpermeability in tumor tissue has not been assessed in tive Techno-Hubfor Integrated Medical Bio-Imaging, Kyoto University, live tissues. Kyoto, Japan. Visualization of tumor tissues by two-photon excitation Note: Supplementary data for this article are available at Cancer Research microscopy has opened new windows into the dynamics of Online (http://cancerres.aacrjournals.org/). angiogenesis and the involvement of hematopoietic cells in Corresponding Author: Michiyuki Matsuda, Department of Pathology and tumorigenesis (22, 23). Meanwhile, using cancer cells expressing Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida- Forster€ resonance energy transfer (FRET) biosensors, the effects of Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan. Phone: 81-75-753-4421; Fax: 81- anticancer drugs on the target molecules have been visualized in 75-753-4655; E-mail: [email protected] the xenograft/homograft recipient mice, revealing considerable doi: 10.1158/0008-5472.CAN-15-3534 heterogeneity among cancer cells (24, 25). To conduct similar Ó2016 American Association for Cancer Research. approaches for the host cells, transgenic mice expressing the FRET www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on September 23, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst August 3, 2016; DOI: 10.1158/0008-5472.CAN-15-3534 Yamauchi et al. biosensors are needed. We and others have developed such MetaMorph software (Molecular Devices) as described previously transgenic mice, collectively designated FRET mice, for the visu- (26, 31). alization of activities of protein kinases and small GTPases in vivo (26, 27). Here, by FRET imaging of the intratumoral blood In vivo observation of the vascular endothelial cells vessels, we show that the basal activity of tumor endothelial PKA is Mice were anesthetized with 1.5% to 2% isoflurane inhala- fi signi cantly lower than that of normal endothelial cells and that tion and placed in the prone position. Skin flap was then placed the cAMP analogue could alleviate the increased vascular perme- on a cover-glass. As controls, subcutaneous capillaries with a ability in the tumors. diameter of less than 15 mm and subcutaneous arterioles or venules from 15 to 50 mm in diameter were also observed in Materials and Methods each experiment. Images were acquired every 2 or 4 minutes at Cells and reagents a scan speed of 2 ms/pixel. During imaging, reagents were Panc-02 mouse pancreatic cancer cells were obtained from administered in 100 mL PBS via the orbital plexus, if necessary: the NIH (Bethesda, MD). B16-F10 mouse melanoma cells Motesanib (50 mg/kg), VEGF164 (5 mg/mouse), dbcAMP were obtained from the ATCC. Primary human umbilical (50 mg/kg), 6-Bnz (50 mg/kg), 007 (50 mg/kg), and Qtracker vascular endothelial cells (HUVEC) were purchased from the 655 (5 mL/mouse). Images of the FRET/CFP ratio as an index of Lonza Group, Ltd. These cell lines were acquired after 2012. PKA or ERK activity were prepared as described in the supple- Frozen stocks were prepared from initial stocks, and within mentary Materials and Methods (32). every 2 months, a new frozen stock was used for the experi- To visualize endothelial PKA activity under VEGF stimulation, ments. Colon-38 mouse colon cancer cells and 3LL mouse mouse VEGF164 (400 ng in 50 mL PBS) was injected intradermally lung carcinoma cells were provided by Drs. Setoyama and 30 minutes before observation. To examine PKA activity under the fi Chiba at Kyoto University (Kyoto, Japan) and Drs. Shime and speci c inhibitor treatment, H89 (5 mmol/L in 50 mLof5% Seya at Hokkaido University (Sapporo, Japan), respectively, DMSO/saline) or vehicle (5% DMSO/saline) was added to the and periodically authenticated by morphologic inspection. surface of Colon-38 tumors on the PKAchu mice. TumorornormalendothelialcellswereisolatedfromFRET mice as described previously (28). A pCX4 retroviral vector Vascular permeability assays (modified Miles assays) wasusedtoexpresstheKeimafluorescent protein or the Epac- Evans blue (10 mg/mL in PBS) was injected intravenously into cAMP sensor (29, 30). Cancer cells and HUVECs were main- tumor-bearing C57BL/6N Jcl mice at a concentration of 50 mg/kg tained in DMEM containing 10% fetal bovine serum and in with or without following reagents: dbcAMP (50 or 100 mg/kg), EGM-2MV media (Lonza), respectively. Following reagents 007 (10, 25, or 50 mg/kg), 6-Bnz (10, 25, or 50 mg/kg), or were used: Motesanib (Selleck Chemicals), Qtracker 655 Motesanib (50 mg/kg). Mice were subjected to PBS perfusion (Thermo Fisher ScientificInc.),N6,20-O-dibutyryladenosine 2 hours after the dye injection and sacrificed. The tumor and skin 30,50-cyclic monophosphate sodium salt (dbcAMP; Daiichi were then excised, dried at 60C for 24 hours, and weighed. The Sankyo Company, Ltd.), 8-(4-chlorophenylthio)-20–O-methy- dye was extracted from the tissues by incubation with 0.5 mL N,N- ladenosine 30,50-cyclic monophosphate (007) and N6-benzoy- dimethylformamide (Nacalai Tesque Inc.) at 56C for 48 hours. ladenosine-30,50-cyclic monophosphate (6-Bnz) (Biolog Life The dye was quantified by measuring
Recommended publications
  • REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
    REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content.
    [Show full text]
  • Chapter 23 Nucleic Acids
    7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids **************************************************************************************
    [Show full text]
  • Human Hypoxanthine (Guanine) Phosphoribosyltransferase: An
    Proc. NatL Acad. Sci. USA Vol. 80, pp. 870-873, Febriary 1983 Medical Sciences Human hypoxanthine (guanine) phosphoribosyltransferase: An amino acid substitution in a mutant form of the enzyme isolated from a patient with gout (reverse-phase HPLC/peptide mapping/mutant enzyme) JAMES M. WILSON*t, GEORGE E. TARRt, AND WILLIAM N. KELLEY*t Departments of *Internal Medicine and tBiological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 Communicated by James B. Wyngaarden, November 3, 1982 ABSTRACT We have investigated the molecular basis for a tration ofenzyme protein. in both erythrocytes (3) and lympho- deficiency ofthe enzyme hypoxanthine (guanine) phosphoribosyl- blasts (4); (ii) a normal Vm., a normal Km for 5-phosphoribosyl- transferase (HPRT; IMP:pyrophosphate-phosphoribosyltransfer- 1-pyrophosphate, and a 5-fold increased Km for hypoxanthine ase, EC 2.4.2.8) in a patient with a severe form of gout. We re-. (unpublished data); (iii) a normal isoelectric point (3, 4) and ported in previous studies the isolation of a unique structural migration during nondenaturing polyacrylamide gel electro- variant of HPRT from this patient's erythrocytes and cultured phoresis (4); and (iv) -an apparently smaller subunit molecular lymphoblasts. This enzyme variant, which is called HPRTOnd0., weight as evidenced by an increased mobility during Na- is characterized by a decreased concentration of HPRT protein DodSO4/polyacrylamide gel electrophoresis (3, 4). in erythrocytes and lymphoblasts, a normal Vm.., a 5-fold in- Our study ofthe tryptic peptides and amino acid composition creased Km for hypoxanthine, a normal isoelectric point, and an of apparently smaller subunit molecular weight. Comparative pep- HPRTLondon revealed a single amino acid substitution (Ser tide mapping-experiments revealed a single abnormal tryptic pep- Leu) at position 109.
    [Show full text]
  • Pdfs/0551.Pdf
    1 Structures of the Molecular Components in DNA and RNA with Bond Lengths Interpreted as Sums of Atomic Covalent Radii Raji Heyrovská* Institute of Biophysics of the Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic. *E-mail: [email protected] Abstract: The author has found recently that the lengths of chemical bonds are sums of the covalent and or ionic radii of the relevant atoms constituting the bonds, whether they are completely or partially covalent or ionic. This finding has been tested here for the skeletal bond lengths in the molecular constituents of nucleic acids, adenine, thymine, guanine, cytosine, uracil, ribose, deoxyribose and phosphoric acid. On collecting the existing data and comparing them graphically with the sums of the appropriate covalent radii of C, N, O, H and P, it is found that there is a linear dependence with unit slope and zero intercept. This shows that the bond lengths in the above molecules can be interpreted as sums of the relevant atomic covalent radii. Based on this, the author has presented here (for the first time) the atomic structures of the above molecules and of DNA and RNA nucleotides with Watson-Crick base pairs, which satisfy the known dimensions. INTRODUCTION Following the exciting discovery [1] of the molecular structure of nucleic acids, the question of the skeletal bond lengths in the molecules constituting DNA and RNA has continued to be of interest. The author was enthused to undertake this work by the recent findings [2a, b] that the length of the chemical bond between any two atoms or ions is, in general, the sum of the radii of 2 the atoms and or ions constituting the bond.
    [Show full text]
  • In Vitro Modulation of Cisplatin Accumulation in Human Ovarian Carcinoma Cells by Pharmacologic Alteration of Microtubules
    In vitro modulation of cisplatin accumulation in human ovarian carcinoma cells by pharmacologic alteration of microtubules. R D Christen, … , D R Shalinsky, S B Howell J Clin Invest. 1993;92(1):431-440. https://doi.org/10.1172/JCI116585. Research Article We have previously shown that forskolin and 3-isobutyl-1-methylxanthine (IBMX) increased accumulation of cisplatin (DDP) in DDP-sensitive 2008 human ovarian carcinoma cells in proportion to their ability to increase cAMP. Since the major function of cAMP is to activate protein kinase A, it was conjectured that the stimulation of DDP accumulation was mediated by a protein kinase A substrate. We now show that exposure of 2008 cells to forskolin resulted in phosphorylation of a prominent 52-kD membrane protein. Microsequencing of the band demonstrated it to be human beta-tubulin. Similarly, pretreatment of 2008 cells with the microtubule stabilizing drug taxol increased platinum accumulation in a dose-dependent manner. In 11-fold DDP-resistant 2008/C13*5.25 cells, decreased DDP accumulation was associated with enhanced spontaneous formation of microtubule bundles and decreased expression of beta-tubulin and the tubulin-associated p53 antioncogene relative to 2008 cells. 2008/C13*5.25 cells had altered sensitivity to tubulin- binding drugs, being hypersensitive to taxol and cross-resistant to colchicine. We conclude that pharmacologic alterations of tubulin enhance accumulation of DDP, and that the DDP-resistant phenotype in 2008/C13*5.25 cells is associated with tubulin abnormalities. Find the latest version: https://jci.me/116585/pdf In Vitro Modulation of Cisplatin Accumulation in Human Ovarian Carcinoma Cells by Pharmacologic Alteration of Microtubules Randolph D.
    [Show full text]
  • The Effects of Adenosine Antagonists on Distinct Aspects of Motivated Behavior: Interaction with Ethanol and Dopamine Depletion
    Facultat de Ciències de la Salut Departament de Psicologia Bàsica, Clínica i Psicobiologia The effects of adenosine antagonists on distinct aspects of motivated behavior: interaction with ethanol and dopamine depletion. PhD Candidate Laura López Cruz Advisor Dr. Mercè Correa Sanz Co-advisor Dr. John D.Salamone Castelló, May 2016 Als meus pares i germà A Carlos AKNOWLEDGEMENTS This work was funded by two competitive grants awarded to Mercè Correa and John D. Salamone: Chapters 1-4: The experiments in the first chapters were supported by Plan Nacional de Drogas. Ministerio de Sanidad y Consumo. Spain. Project: “Impacto de la dosis de cafeína en las bebidas energéticas sobre las conductas implicadas en el abuso y la adicción al alcohol: interacción de los sistemas de neuromodulación adenosinérgicos y dopaminérgicos”. (2010I024). Chapters 5 and 6: The last 2 chapters contain experiments financed by Fundació Bancaixa-Universitat Jaume I. Spain. Project: “Efecto del ejercicio físico y el consumo de xantinas sobre la realización del esfuerzo en las conductas motivadas: Modulación del sistema mesolímbico dopaminérgico y su regulación por adenosina”. (P1.1B2010-43). Laura López Cruz was awarded a 4-year predoctoral scholarship “Fornación de Profesorado Universitario-FPU” (AP2010-3793) from the Spanish Ministry of Education, Culture and Sport. (2012/2016). TABLE OF CONTENTS ABSTRACT ...................................................................................................................1 RESUMEN .....................................................................................................................3
    [Show full text]
  • Phosphodiesterase Inhibitors Stimulate Osteoclast Formation Via TRANCE/RANKL Expression in Osteoblasts: Possible Involvement of ERK and P38 MAPK Pathways
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 579 (2005) 832–838 FEBS 29223 Phosphodiesterase inhibitors stimulate osteoclast formation via TRANCE/RANKL expression in osteoblasts: possible involvement of ERK and p38 MAPK pathways Masamichi Takamia,1, Eun Sook Chob,1, Soo Young Leec, Ryutaro Kamijoa, Mijung Yimb,* a Department of Biochemistry, School of Dentistry, Showa University, Tokyo 142-8555, Japan b College of Pharmacy, Sookmyung WomenÕs University, Seoul 140-742, Republic of Korea c Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha WomenÕs University, Seoul 120-750, Republic of Korea Received 20 October 2004; revised 1 December 2004; accepted 14 December 2004 Available online 12 January 2005 Edited by Lukas Huber several factors, such as 1,25-dihydroxyvitamin D Abstract Phosphodiesterases (PDEs) are enzymes that degrade 3 intracellular cAMP. In the present study, 3-isobutyl-1-methyl- [1,25(OH)2D3], parathyroid hormone (PTH), interleukin xanthine (IBMX) and pentoxifylline, PDE inhibitors, induced (IL)-6 plus soluble IL-6 receptor, prostaglandin E2 (PGE2), osteoclast formation in cocultures of mouse bone marrow cells and calcium [2–4]. Those factors induce the expression of and calvarial osteoblasts. These inhibitors induced the expression TNF-related activation-induced cytokine (TRANCE, also of the osteoclast differentiation factor, TNF-related activation known as RANKL, ODF, or OPGL) in osteoblasts, which induced cytokine (TRANCE, identical to RANKL, ODF, and triggers osteoclast differentiation [5–8]. Osteoblasts also pro- OPGL), in calvarial osteoblasts. IBMX induced phosphorylation duce osteoprotegerin (OPG), a decoy receptor for TRANCE, of extracellular signal-regulated kinase (ERK) and p38 mitogen- to inhibit osteoclast formation [9].
    [Show full text]
  • Xj 128 IUMP Glucose Substance Will Be Provisionally Referred to As UDPX (Fig
    426 Studies on Uridine-Diphosphate-Glucose By A. C. PALADINI AND L. F. LELOIR Instituto de Inve8tigacione&s Bioquimicas, Fundacion Campomar, J. Alvarez 1719, Buenos Aires, Argentina (Received 18 September 1951) A previous paper (Caputto, Leloir, Cardini & found that the substance supposed to be uridine-2'- Paladini, 1950) reported the isolation of the co- phosphate was uridine-5'-phosphate. The hydrolysis enzyme of the galactose -1- phosphate --glucose - 1 - product of UDPG has now been compared with a phosphate transformation, and presented a tenta- synthetic specimen of uridine-5'-phosphate. Both tive structure for the substance. This paper deals substances were found to be identical as judged by with: (a) studies by paper chromatography of puri- chromatographic behaviour (Fig. 1) and by the rate fied preparations of uridine-diphosphate-glucose (UDPG); (b) the identification of uridine-5'-phos- 12A UDPG phate as a product of hydrolysis; (c) studies on the ~~~~~~~~~~~~~(a) alkaline degradation of UDPG, and (d) a substance similar to UDPG which will be referred to as UDPX. UMP Adenosine UDPG preparation8 8tudied by chromatography. 0 UjDPX Paper chromatography with appropriate solvents 0 has shown that some of the purest preparations of UDP UDPG which had been obtained previously contain two other compounds, uridinemonophosphate 0 4 (UMP) and a substance which appears to have the same constitution as UDPG except that it contains an unidentified component instead of glucose. This Xj 128 IUMP Glucose substance will be provisionally referred to as UDPX (Fig. la). The three components have been tested for co- enzymic activity in the galactose-1-phosphate-- 0-4 -J UDPX glucose-l-phosphate transformation, and it has been confirmed that UDPG is the active substance.
    [Show full text]
  • Exploring Cocoa Properties: Is Theobromine a Cognitive Modulator?
    Psychopharmacology https://doi.org/10.1007/s00213-019-5172-0 REVIEW Exploring cocoa properties: is theobromine a cognitive modulator? Ilaria Cova1 & V. Leta1,2 & C. Mariani2 & L. Pantoni2 & S. Pomati1 Received: 7 May 2018 /Accepted: 16 January 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Nutritional qualities of cocoa have been acknowledged by several authors; a particular focus has been placed on its high content of flavanols, known for their excellent antioxidant properties and subsequent protective effect on cardio- and cerebrovascular systems as well as for neuromodulatory and neuroprotective actions. Other active components of cocoa are methylxanthines (caffeine and theobromine). Whereas the effects of caffeine are extensively researched, the same is not the case for theobromine; this review summarizes evidence on the effect of theobromine on cognitive functions. Considering animal studies, it can be asserted that acute exposition to theobromine has a reduced and delayed nootropic effect with respect to caffeine, whereas both animal and human studies suggested a potential neuroprotective action of long-term assumption of theobromine through a reduction of Aβ amyloid pathology, which is commonly observed in Alzheimer’s disease patients’ brains. Hence, the conceiv- able action of theobromine alone and associated with caffeine or other cocoa constituents on cognitive modulation is yet underexplored and future studies are needed to shed light on this promising molecule. Keywords Cocoa . Theobromine . Cognitive modulator . Cognition Introduction predominant fraction of triglyceride molecules species (in particular oleic, stearic, palmitic, and linoleic acid) Theobroma cacao and its products (Pittenauer and Allmaier 2009); proteins contribute to 10–15% of the dry weight of cocoa seeds and consist Cocoa comes from the processing of seeds of a tropical tree, mainly of albumin and globulin fractions (Zak and considered by the Aztecs as a sacred plant.
    [Show full text]
  • Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues
    International Journal of Molecular Sciences Review Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues 1,2, 2,3, 1,2 1,2, Rosa Mancinelli y, Giorgio Fanò-Illic y, Tiziana Pietrangelo and Stefania Fulle * 1 Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; [email protected] (R.M.); [email protected] (T.P.) 2 Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy; [email protected] 3 Libera Università di Alcatraz, Santa Cristina di Gubbio, 06024 Gubbio, Italy * Correspondence: [email protected] Both authors contributed equally to this work. y Received: 30 January 2020; Accepted: 25 February 2020; Published: 26 February 2020 Abstract: Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-50-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines.
    [Show full text]
  • Nucleobases Thin Films Deposited on Nanostructured Transparent Conductive Electrodes for Optoelectronic Applications
    www.nature.com/scientificreports OPEN Nucleobases thin flms deposited on nanostructured transparent conductive electrodes for optoelectronic applications C. Breazu1*, M. Socol1, N. Preda1, O. Rasoga1, A. Costas1, G. Socol2, G. Petre1,3 & A. Stanculescu1* Environmentally-friendly bio-organic materials have become the centre of recent developments in organic electronics, while a suitable interfacial modifcation is a prerequisite for future applications. In the context of researches on low cost and biodegradable resource for optoelectronics applications, the infuence of a 2D nanostructured transparent conductive electrode on the morphological, structural, optical and electrical properties of nucleobases (adenine, guanine, cytosine, thymine and uracil) thin flms obtained by thermal evaporation was analysed. The 2D array of nanostructures has been developed in a polymeric layer on glass substrate using a high throughput and low cost technique, UV-Nanoimprint Lithography. The indium tin oxide electrode was grown on both nanostructured and fat substrate and the properties of the heterostructures built on these two types of electrodes were analysed by comparison. We report that the organic-electrode interface modifcation by nano- patterning afects both the optical (transmission and emission) properties by multiple refections on the walls of nanostructures and the electrical properties by the efect on the organic/electrode contact area and charge carrier pathway through electrodes. These results encourage the potential application of the nucleobases thin flms deposited on nanostructured conductive electrode in green optoelectronic devices. Te use of natural or nature-inspired materials in organic electronics is a dynamic emerging research feld which aims to replace the synthesized materials with natural (bio) ones in organic electronics1–3.
    [Show full text]
  • 3-Isobutyl-1-Methylxanthine
    Catalog Number: 195262 3-Isobutyl-1-methylxanthine Structure: Molecular Formula: C10H14N4O2 Formula Weight: 222.24 (as anhydrous) CAS #: 28822-58-4 Synonym: IBMX; MIX; MeiBu-Xan; IBX Solubility: Soluble in Krebs-Henseleit bicarbonate buffer, ethanol (10 mg/ml or 25 mg/ml with sonication17), DMSO (1 M with warming), or aqueous NaOH (pH 9.5); slightly soluble in water (0.3 mg/ml hot water). Solubility in 45% (w/v) aqueous 2-hydroxy-propyl--cyclodextrin is 3.2 mg/ml. Ethanol solutions can be stored at 2-8°C for approximately three (3) months.17 DMSO solutions should be aliquoted and stored at -20°C for 3 to 4 months. Aqueous solutions can be aliquoted and stored at -20°C for approximately 3 months.22 The aqueous solutions should be thawed for use by heating in a boiling water bath. Description: IBMX has been shown to be a potent, non-specific inhibitor of adenosine 3',5'-cyclic monophosphate phosphodiesterase (cAMP PDE)4, significantly more effective than theophylline.1,2,14,15,21 Also inhibits cGMP phosphodiesterases. IBMX inhibits cyclic nucleotide PDE with subsequent inhibition of cyclic nucleotide hydrolysis, resulting in accumulation of cyclic AMP and guanosine 3',5'-cyclic monophosphate.11,20 In a study of cyclic AMP and insulin release by islets of Langerhans, IBMX at 1 mM caused a marked increase in the intracellular concentration of cyclic AMP in the presence of glucose.14 IBMX, when used at 0.05 mM, was 20-fold more effective than theophylline at stimulating lipolysis in fat cells.2 It has been shown to promote the conversion of fibroblast cells into adipose cells, apparently without altering the amount of bromodeoxyuridine (BrdU) present in the DNA of the cells.16 The increase in cAMP level as a result of phosphodiesterase inhibition by IBMX activates PKA leading to decreased proliferation, increased differentiation, and induction of apoptosis.5,7,18 Other actions of IBMX: Inhibition of phenylephrine-induced release of 5-hydroxytryptamine from neuroendocrine epithelial cells of 9 the airway mucosa (IC50 = 1.3 uM).
    [Show full text]