Cystine–Glutamate Antiporter Xct Deficiency Suppresses Tumor Growth While Preserving Antitumor Immunity

Total Page:16

File Type:pdf, Size:1020Kb

Cystine–Glutamate Antiporter Xct Deficiency Suppresses Tumor Growth While Preserving Antitumor Immunity Cystine–glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity Michael D. Arensmana, Xiaoran S. Yanga, Danielle M. Leahya, Lourdes Toral-Barzaa, Mary Mileskia, Edward C. Rosfjorda, Fang Wanga, Shibing Dengb, Jeremy S. Myersa, Robert T. Abrahamb, and Christina H. Enga,1 aOncology Research & Development, Pfizer, Pearl River, NY 10965; and bOncology Research & Development, Pfizer, San Diego, CA 92121 Edited by William G. Kaelin Jr., Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, and approved April 2, 2019 (received for review September 1, 2018) T cell-invigorating cancer immunotherapies have near-curative Thus, tumor cells may rely on xCT to fulfill the majority of their potential. However, their clinical benefit is currently limited, as cysteine and GSH needs by importing cystine. only a fraction of patients respond, suggesting that these regimens Inhibition of xCT has been investigated as a therapeutic may benefit from combination with tumor-targeting treatments. As strategy for cancer based on observations that elevated xCT ex- oncogenic progression is accompanied by alterations in metabolic pression on tumor cells correlates with poor prognosis (10–12) pathways, tumors often become heavily reliant on antioxidant and that inhibition of xCT in preclinical studies suppresses tumor machinery and may be susceptible to increases in oxidative stress. growth (10, 12–14). However, these studies relied heavily on the The cystine–glutamate antiporter xCT is frequently overexpressed in use of sulfasalazine, a clinical compound used for the treatment cancer and fuels the production of the antioxidant glutathione; thus, of rheumatoid arthritis, ulcerative colitis, and Crohn’s disease. tumors prone to redox stress may be selectively vulnerable to xCT While sulfasalazine inhibits xCT-mediated uptake of cystine disruption. However, systemic inhibition of xCT may compromise (15), sulfasalazine also inhibits NF-κB (16), sepiapterin reductase antitumor immunity, as xCT is implicated in supporting antigen- (17), and reduced folate carrier (18). Thus, the interpretation of induced T cell proliferation. Therefore, we utilized immune-competent reports attributing sulfasalazine-mediated reductions in tumor murine tumor models to investigate whether cancer cell expres- growth to xCT inhibition is hampered by the lack of specificity of MEDICAL SCIENCES sion of xCT was required for tumor growth in vivo and if deletion this drug. Furthermore, immunocompromised mice bearing human of host xCT impacted antitumor immune responses. Deletion of tumor xenografts were used to investigate the effects of xCT in- xCT in tumor cells led to defective cystine uptake, accumulation hibition in vivo (10, 12–14). While these models provide evidence of reactive oxygen species, and impaired tumor growth, supporting a that tumors rely on xCT for proliferation in vivo, they do not ac- cancer cell-autonomous role for xCT. In contrast, we observed that, count for the possibility that whole-body xCT inhibition may have although T cell proliferation in culture was exquisitely dependent on deleterious effects on immune responses, potentially undermining xCT expression, xCT was dispensable for T cell proliferation in vivo the effects of xCT deficiency in tumor cells. and for the generation of primary and memory immune responses to Antigen-specific T cells play critical roles in immuno- tumors. These findings prompted the combination of tumor cell xCT surveillance and are effectors of tumor cell killing during cancer – deletion with the immunotherapeutic agent anti CTLA-4, which dra- immunotherapy. Naïve T cells proliferate, differentiate, and ac- matically increased the frequency and durability of antitumor re- quire effector functions in response to antigenic stimulation of sponses. Together, these results identify a metabolic vulnerability the T cell receptor (TCR) together with costimulatory signals. specific to tumors and demonstrate that xCT disruption can expand Upon stimulation, activated human T cells express xCT (19, 20), the efficacy of anticancer immunotherapies. and their expansion is dependent on adequate concentrations of xCT | cystine | cancer | T cells | immunotherapy Significance he development of T cell-stimulating immunotherapies, such xCT, the cystine–glutamate antiporter, has been implicated in Tas immune checkpoint blockade (ICB), has led to un- supporting both tumor growth and T cell proliferation; thus, precedented durable responses. However, not all tumor types antitumor effects of systemic xCT inhibition may be blunted by succumb to treatment, and the response rate even in sensitive compromised antitumor immunity. This report details the un- – tumor types is less than 30% (1 3). Thus, the clinical benefit of expected finding that xCT is dispensable for T cell proliferation anticancer immunotherapies may be expanded if used in combina- in vivo and for antitumor immune responses. Consequently, tion with therapeutics that target tumor cell-specific vulnerabilities. tumor cell xCT loss acts synergistically with the immunothera- Cancer cells are distinguished from normal cells by their peutic agent anti–CTLA-4, laying the foundation for utilizing oncogene-driven alteration of metabolic pathways (4). A conse- specific xCT inhibitors clinically to expand the efficacy of quence of this metabolic reprogramming is increased production existing anticancer immunotherapeutics. of reactive oxygen species (ROS), which must be countered by endogenous antioxidants to avoid loss of cell viability (5). A key Author contributions: M.D.A., E.C.R., F.W., J.S.M., and C.H.E. designed research; M.D.A., X.S.Y., D.M.L., L.T.-B., M.M., E.C.R., F.W., and C.H.E. performed research; M.D.A., F.W., participant in cellular redox homeostasis is xCT (encoded by the S.D., R.T.A., and C.H.E. analyzed data; and M.D.A., R.T.A., and C.H.E. wrote the paper. Slc7a11 Slc3a2 − gene). xCT together with CD98/ form system xc , Conflict of interest statement: All authors are employees and shareholders of Pfizer. which transports cystine (but not cysteine) into the cell in ex- This article is a PNAS Direct Submission. change for glutamate export (6, 7). Intracellularly, cystine is re- This open access article is distributed under Creative Commons Attribution-NonCommercial- duced to its monomeric form, cysteine, which is important for NoDerivatives License 4.0 (CC BY-NC-ND). several cellular processes, including the production of glutathi- 1To whom correspondence should be addressed. Email: [email protected]. one (GSH), a key intracellular antioxidant. Due to the oxidizing This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. extracellular environment, cystine is more abundant in plasma 1073/pnas.1814932116/-/DCSupplemental. (and in tissue culture medium) compared with cysteine (8, 9). Published online April 24, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1814932116 PNAS | May 7, 2019 | vol. 116 | no. 19 | 9533–9542 Downloaded by guest on October 2, 2021 cystine (19, 21) and the ability to produce GSH (22, 23). Taken resulted in a remarkable increase in durable responses, suggesting together, these findings indirectly support the concept that T cells that systemic inhibition of xCT is a viable strategy to expand the require xCT in a cell-autonomous fashion for proliferation. If this efficacy of anticancer immunotherapies. model is correct, then systemic inhibition of xCT may negatively impact T cell function. Although xCT has been implicated in pro- Results moting the pathophysiology of experimental autoimmune enceph- Loss of xCT Inhibits Tumor Growth. To examine the role of xCT in alomyelitis (EAE), a T cell-driven form of autoimmunity (24, 25), tumor growth, we generated xCT knockout cell lines by the requirement for xCT in supporting T cell proliferation or an- CRISPR-Cas9–mediated targeting of the Slc7a11 gene followed titumor immunity has not been evaluated in vivo. by expansion of single-cell clones. Murine MC38 colon cancer The effects of xCT loss on tumor cells in immunocompetent and Pan02 pancreatic cancer cell lines were selected for gene models and on antitumor immunity were evaluated by genetically editing based on their ability to grow in immunocompetent mice. deleting xCT in both murine tumor lines and immunocompetent Two MC38 clones (2-1 and 2-6) and two Pan02 clones (1-5 and hosts. Loss of xCT in cancer cells led to ROS accumulation, 1-11) that lacked expression of xCT compared with parental xCT resulting in decreased tumor growthinvitroandinvivo.Surpris- WT cells (Fig. 1A) were chosen for additional analysis. The ingly, T cell proliferation and antitumor immunity were not im- functional loss of xCT was assessed by measuring uptake of ra- − − paired in xCT knockout mice, leading us to evaluate the possibility dioactively labeled cystine. All xCT / clones were deficient in of combining systemic xCT loss with the immunotherapeutic agent cystine uptake (Fig. 1 B and C), demonstrating that xCT is the anti–CTLA-4. The combination of xCT deletion with anti–CTLA-4 predominant cystine transporter in these cell types. To confirm A MC38 Pan02 -11 2-6 2-1 WT 1 WT 1-5 xCT HI MC38 Proliferation Pan02 Proliferation 100 100 Vinculin 80 80 e e c MC38 Cystine Uptake c BCPan02 Cystine Uptake n **** en 60 60 u 40 150 **** * ue **** **** *** *** PM 40 40 30 onfl 100 C **** d C ed CPM % Confl 20 % 20 20 ze 50 10 0 0 rmali 0 o 0 0 244872 02448 72 N Normaliz -/- -/- -/- -/-
Recommended publications
  • Transport of Sugars
    BI84CH32-Frommer ARI 29 April 2015 12:34 Transport of Sugars Li-Qing Chen,1,∗ Lily S. Cheung,1,∗ Liang Feng,3 Widmar Tanner,2 and Wolf B. Frommer1 1Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305; email: [email protected] 2Zellbiologie und Pflanzenbiochemie, Universitat¨ Regensburg, 93040 Regensburg, Germany 3Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 Annu. Rev. Biochem. 2015. 84:865–94 Keywords First published online as a Review in Advance on glucose, sucrose, carrier, GLUT, SGLT, SWEET March 5, 2015 The Annual Review of Biochemistry is online at Abstract biochem.annualreviews.org Soluble sugars serve five main purposes in multicellular organisms: as sources This article’s doi: of carbon skeletons, osmolytes, signals, and transient energy storage and as 10.1146/annurev-biochem-060614-033904 transport molecules. Most sugars are derived from photosynthetic organ- Copyright c 2015 by Annual Reviews. isms, particularly plants. In multicellular organisms, some cells specialize All rights reserved in providing sugars to other cells (e.g., intestinal and liver cells in animals, ∗ These authors contributed equally to this review. photosynthetic cells in plants), whereas others depend completely on an ex- Annu. Rev. Biochem. 2015.84:865-894. Downloaded from www.annualreviews.org ternal supply (e.g., brain cells, roots and seeds). This cellular exchange of Access provided by b-on: Universidade de Lisboa (UL) on 09/05/16. For personal use only. sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is criti- cal for plants, animals, and humans.
    [Show full text]
  • Renal Membrane Transport Proteins and the Transporter Genes
    Techno e lo n g Gowder, Gene Technology 2014, 3:1 e y G Gene Technology DOI; 10.4172/2329-6682.1000e109 ISSN: 2329-6682 Editorial Open Access Renal Membrane Transport Proteins and the Transporter Genes Sivakumar J T Gowder* Qassim University, College of Applied Medical Sciences, Buraidah, Kingdom of Saudi Arabia Kidney this way, high sodium diet favors urinary sodium concentration [9]. AQP2 has a role in hereditary and acquired diseases affecting urine- In humans, the kidneys are a pair of bean-shaped organs about concentrating mechanisms [10]. AQP2 regulates antidiuretic action 10 cm long and located on either side of the vertebral column. The of arginine vasopressin (AVP). The urinary excretion of this protein is kidneys constitute for less than 1% of the weight of the human body, considered to be an index of AVP signaling activity in the renal system. but they receive about 20% of blood pumped with each heartbeat. The Aquaporins are also considered as markers for chronic renal allograft renal artery transports blood to be filtered to the kidneys, and the renal dysfunction [11]. vein carries filtered blood away from the kidneys. Urine, the waste fluid formed within the kidney, exits the organ through a duct called the AQP4 ureter. The kidney is an organ of excretion, transport and metabolism. This gene encodes a member of the aquaporin family of intrinsic It is a complicated organ, comprising various cell types and having a membrane proteins. These proteins function as water-selective channels neatly designed three dimensional organization [1]. Due to structural in the plasma membrane.
    [Show full text]
  • Passive and Active Transport
    Passive and Active Transport 1. Thermodynamics of transport 2. Passive-mediated transport 3. Active transport neuron, membrane potential, ion transport Membranes • Provide barrier function – Extracellular – Organelles • Barrier can be overcome by „transport proteins“ – To mediate transmembrane movements of ions, Na+, K+ – Nutrients, glucose, amino acids etc. – Water (aquaporins) 1) Thermodynamics of Transport • Aout <-> Ain (ressembles a chemical equilibration) o‘ • GA - G A = RT ln [A] • ∆GA = GA(in) - GA(out) = RT ln ([A]in/[A]out) • GA: chemical potential of A o‘ • G A: chemical potential of standard state of A • If membrane has a potential, i.e., plasma membrane: -100mV (inside negative) then GA is termed the electrochemical potential of A Two types of transport across a membrane: o Nonmediated transport occurs by passive diffusion, i.e., O2, CO2 driven by chemical potential gradient, i.e. cannot occur against a concentration gradient o Mediated transport occurs by dedicated transport proteins 1. Passive-mediated transport/facilitated diffusion: [high] -> [low] 2. Active transport: [low] -> [high] May require energy in form of ATP or in form of a membrane potential 2) Passive-mediated transport Substances that are too large or too polar to diffuse across the bilayer must be transported by proteins: carriers, permeases, channels and transporters A) Ionophores B) Porins C) Ion Channels D) Aquaporins E) Transport Proteins A) Ionophores Organic molecules of divers types, often of bacterial origin => Increase the permeability of a target membrane for ions, frequently antibiotic, result in collapse of target membrane potential by ion equilibration 1. Carrier Ionophore, make ion soluble in membrane, i.e. valinomycin, 104 K+/sec 2.
    [Show full text]
  • Amino Acid Transporters As Tetraspanin TM4SF5 Binding Partners Jae Woo Jung1,Jieonkim2,Eunmikim2 and Jung Weon Lee 1,2
    Jung et al. Experimental & Molecular Medicine (2020) 52:7–14 https://doi.org/10.1038/s12276-019-0363-7 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Amino acid transporters as tetraspanin TM4SF5 binding partners Jae Woo Jung1,JiEonKim2,EunmiKim2 and Jung Weon Lee 1,2 Abstract Transmembrane 4 L6 family member 5 (TM4SF5) is a tetraspanin that has four transmembrane domains and can be N- glycosylated and palmitoylated. These posttranslational modifications of TM4SF5 enable homophilic or heterophilic binding to diverse membrane proteins and receptors, including growth factor receptors, integrins, and tetraspanins. As a member of the tetraspanin family, TM4SF5 promotes protein-protein complexes for the spatiotemporal regulation of the expression, stability, binding, and signaling activity of its binding partners. Chronic diseases such as liver diseases involve bidirectional communication between extracellular and intracellular spaces, resulting in immune-related metabolic effects during the development of pathological phenotypes. It has recently been shown that, during the development of fibrosis and cancer, TM4SF5 forms protein-protein complexes with amino acid transporters, which can lead to the regulation of cystine uptake from the extracellular space to the cytosol and arginine export from the lysosomal lumen to the cytosol. Furthermore, using proteomic analyses, we found that diverse amino acid transporters were precipitated with TM4SF5, although these binding partners need to be confirmed by other approaches and in functionally relevant studies. This review discusses the scope of the pathological relevance of TM4SF5 and its binding to certain amino acid transporters. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction on the plasma membrane and the mitochondria, lyso- Importing and exporting biological matter in and out of some, and other intracellular organelles.
    [Show full text]
  • Membrane Transport Quiz
    Membrane Transport Quiz 1. Which of the following is an example of extracellular fluid? a. Cytosol b. Plasma c. Interstitial Fluid d. Both b and c 2. Which of the following correctly describes passive transport? a. the cell uses ATP in passive transport b. most pumps are examples of passive transport c. diffusion is an example of passive transport d. exocytosis is an example of passive transport 3. Simple diffusion occurs ______________. a. with transporters in the cell membrane b. directly across the cell membrane c. through exocytosis d. through endocytosis 4. Which of the following is an example of active transport? a. Filtration b. Osmosis c. Endocytosis d. Exocytosis e. Both c and d 5. Which type of active transport uses ATP directly? a. Primary Active Transport b. Secondary Active Transport c. Both a and b 6. Which of the following is an example of receptor mediated endocytosis? a. Phagocytosis b. Primary Active Transport c. Exocytosis d. ALL are For use with TCC iTunes University Membrane Transport Lecture. 1 Developed by: Martha Kutter 2009 for the Learning Commons at Tallahassee Community College. 7. A transporter that moves one type of particle in one direction is _______________. a. Uniporter b. Symporter c. Antiporter 8. A transporter the moves two different particles in two different directions is ________. a. Endocytosis b. Exocytosis c. Uniporter d. Symporter e. Antiporter 9. Which of the following is an example of a primary active transporter? a. Na+/Ca2+ transporter on cardiac contractile cells b. Na+ channels on neurons c. Na+/K+ ATPase on all cells d.
    [Show full text]
  • Plasma Membrane Sandwich Model Unit Membrane
    Plasma Membrane Sandwich Model Unit Membrane FLUID MOSAIC MODEL FLUID- because individual phospholipids and proteins can move side-to-side within the layer, like it’s a liquid. MOSAIC- because of the pattern produced by the scattered protein molecules when the membrane is viewed from above. 5 Functions • Protection and support – Maintains cell shape and size Solubility • Materials that are soluble in lipids can pass through the cell membrane easily 7 Selective Permeablility • Small molecules Ions, hydrophilic and larger molecules larger than hydrophobic water, and large molecules move molecules such as through easily. proteins do not move through the • e.g. O2, CO2, H2O membrane on their own. DIFFUSION Diffusion is a PASSIVE process which means no energy is used to make the molecules move, they have a natural KINETIC ENERGY 9 Passive Transport Simple Diffusion ❖ Doesn’t require energy ❖ Moves high to low concentration ❖ Example: Oxygen or water diffusing into a cell and carbon dioxide diffusing out. 10 Diffusion through a Membrane Cell membrane Solute moves DOWN concentration gradient (HIGH to LOW) 11 Osmosis • Diffusion of water Diffusion across a membrane across a membrane • Moves from HIGH water potential (low Semipermeable solute) to LOW water membrane potential (high solute) 12 Diffusion of H2O Across A Membrane High H O potential 2 Low H2O potential Low solute concentration High solute concentration 13 Passive Transport Facilitated diffusion ❖Doesn’t require energy ❖Uses transport proteins to move high to low concentration Examples: Glucose or amino acids moving from blood into a cell. 14 Types of Transport Proteins • Channel proteins are embedded in the cell membrane & have a pore for materials to cross • Carrier proteins can change shape to move material from one side of the membrane to the other 15 Facilitated Diffusion Molecules will randomly move through the pores in Channel Proteins.
    [Show full text]
  • Lysosomal Biology and Function: Modern View of Cellular Debris Bin
    cells Review Lysosomal Biology and Function: Modern View of Cellular Debris Bin Purvi C. Trivedi 1,2, Jordan J. Bartlett 1,2 and Thomas Pulinilkunnil 1,2,* 1 Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; [email protected] (P.C.T.); jjeff[email protected] (J.J.B.) 2 Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada * Correspondence: [email protected]; Tel.: +1-(506)-636-6973 Received: 21 January 2020; Accepted: 29 April 2020; Published: 4 May 2020 Abstract: Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
    [Show full text]
  • Metabolite Transporters As Regulators of Immunity
    H OH metabolites OH Review Metabolite Transporters as Regulators of Immunity Hauke J. Weiss * and Stefano Angiari School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; [email protected] * Correspondence: [email protected] Received: 4 September 2020; Accepted: 16 October 2020; Published: 19 October 2020 Abstract: In the past decade, the rise of immunometabolism has fundamentally reshaped the face of immunology. As the functions and properties of many (immuno)metabolites have now been well described, their exchange among cells and their environment have only recently sparked the interest of immunologists. While many metabolites bind specific receptors to induce signaling cascades, some are actively exchanged between cells to communicate, or induce metabolic reprograming. In this review, we give an overview about how active metabolite transport impacts immune cell function and shapes immunological responses. We present some examples of how specific transporters feed into metabolic pathways and initiate intracellular signaling events in immune cells. In particular, we focus on the role of metabolite transporters in the activation and effector functions of T cells and macrophages, as prototype adaptive and innate immune cell populations. Keywords: cell metabolism; immunity; metabolite transporter; solute carrier; T cells; macrophages 1. Metabolites and Their Transporters: Key Players in Immunity Active metabolite transport is key for the survival of every cell. In immune cells, availability of extracellular metabolites also shapes immune responses and cellular interactions. Metabolite transporters indeed largely dictate immune cell activity by providing, or restricting, access to nutrients, and thereby determining the cellular metabolic profile [1]. For example, while glucose and amino acids (AAs) are largely imported as part of pro-inflammatory responses, fatty acid (FA) uptake has been found to drive pro-resolving, anti-inflammatory phenotypes [2].
    [Show full text]
  • Bio102 Problems Transport Across Membranes
    Bio102 Problems Transport Across Membranes 1. Antiport is one type of A. facilitated transport. B. active transport. C. endocytosis. D. channel protein. E. carrier protein. 2. Pinocytosis is one type of A. exocytosis. B. phagocytosis. C. facilitated transport. D. endocytosis. E. diffusion. 3A. Consider a bacterial cell that is hypertonic in comparison to its environment. Will water move into the cell or out of the cell? 3B. We now add a large amount of either O2, N2, or Pyruvate to the fluid surrounding the cell. Which one will have the biggest effect on the movement of water? Will its addition increase or decrease the movement of water? Please explain your answer. 4. Imagine a bacterial cell living in a test tube under the following conditions: K+ Mg2+ Na+ inside the cell 50 mM 0.1 mM 10 mM outside the cell 10 mM 3 mM 150 mM 4A. Is the G value for Mg2+ movement into the cell positive, negative or zero? 4B. Under these conditions, is the solution hypotonic, hypertonic or isotonic relative to the cell? 4C. Under these conditions, will the net movement of water be into the cell or out of the cell? Why? 4D. If we added a large concentration (say, 1M) of CO2 to the outside of the cell, it would have no effect on the net movement of water. Why not? 4E. If the fatty acid tails in the phospholipids that make up this cell’s membranes were more saturated, would that increase or decrease the rate at which water moves? Or would it have no effect? Please explain.
    [Show full text]
  • Relationship Between the Na+/H' Antiporter and Na+/Substrate Symport in Bacillus Alcalophilus (Nonalkalophilic Mutant/Efflux/Vesicles) ARTHUR A
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 3, pp. 1481-1484, March 1981 Biochemistry Relationship between the Na+/H' antiporter and Na+/substrate symport in Bacillus alcalophilus (nonalkalophilic mutant/efflux/vesicles) ARTHUR A. GUFFANTI*, DUNELL E. COHN+, H. RONALD KABACKt, AND TERRY A. KRULWICH*t *Department of Biochemistry, Mount Sinai School of Medicine of the Citv of New York, New York, New York 10029; and tLaboratory of Membrane Biochemistrv, Roche Institute of Molecular Biology, Nutley, New Jersey 07110 Communicated by B. L. Horecker, November 24, 1980 ABSTRACT The Na+/H+ antiporter of the obligate alkalo- pendently isolated nonalkalophilic strains lacks both Na+/H+ phile Bacillus alcalophilus facilitates growth at alkaline pH and antiport and Na+/AIB symport activity (15); and at least a dozen precludes growth below pH 8.5. Thus, nonalkalophilic mutant revertants have regained both activities simultaneously, as well strains do not exhibit Na+/H+ antiport activity and, interestingly, such strains concomitantly lose the ability to catalyze Na+-depen- as the characteristic wild-type properties of the respiratory dent accumulation of a-aminoisobutyrate [Krulwich, T. A., Man- chain (15, 16). For these reasons, the possibility was considered del, D. G. Bornstein, R. F. & Guffanti, A. A. (1979) Biochem. that there may be a more direct relationship between the Na+- Biophys. Res. Commun. 91, 58-62]. Several other Na'-dependent translocating antiport and symport systems than generally transport systems are now documented in vesicles from the wild- thought to be the case. The experiments presented here support type strain, and it is demonstrated that these systems are defective this notion by demonstrating that mutational loss of Na+/H+ in vesicles from the nonalkalophilic mutant KM23.
    [Show full text]
  • Solute Carriers in Metabolism
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1380 Solute Carriers in Metabolism Regulation of known and putative solute carriers in the central nervous system EMILIA LEKHOLM ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0104-4 UPPSALA urn:nbn:se:uu:diva-331328 2017 Dissertation presented at Uppsala University to be publicly examined in B21, Biomedicinskt Centrum (BMC), Husargatan 3, Uppsala, Thursday, 30 November 2017 at 09:30 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Docent David Drew (Stockholms Universitet, Department of Biochemistry and Biophysics). Abstract Lekholm, E. 2017. Solute Carriers in Metabolism. Regulation of known and putative solute carriers in the central nervous system. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1380. 44 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0104-4. Solute carriers (SLCs) are membrane-bound transporter proteins, important for nutrient, ion, drug and metabolite transport across membranes. A quarter of the human genome codes for membrane-bound proteins, and SLCs make up the largest group of transporter proteins. Due to their ability to transport a large repertoire of substances across, not just the plasma membrane, but also the membrane of internal organelles, they hold a key position in maintaining homeostasis affecting metabolic pathways. Unfortunately, some of the more than 400 identified SLCs are still not fully characterized, even though a quarter of these are associated with human disease. In addition, there are about 30 membrane-bound proteins with strong resemblance to SLCs, of which very little is known.
    [Show full text]
  • The Abcs of Membrane Transporters in Health and Disease (SLC Series): Introduction Q,Qq ⇑ Matthias A
    Molecular Aspects of Medicine 34 (2013) 95–107 Contents lists available at SciVerse ScienceDirect Molecular Aspects of Medicine journal homepage: www.elsevier.com/locate/mam Review The ABCs of membrane transporters in health and disease (SLC series): Introduction q,qq ⇑ Matthias A. Hediger a,b, , Benjamin Clémençon a,b, Robert E. Burrier b,c, Elspeth A. Bruford d a Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland b Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland c Stemina Biomarker Discovery, Madison, WI, USA d HUGO Gene Nomenclature Committee, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom Guest Editor Matthias A. Hediger Transporters in health and disease (SLC series) article info abstract Article history: The field of transport biology has steadily grown over the past decade and is now recog- Received 15 November 2012 nized as playing an important role in manifestation and treatment of disease. The SLC Accepted 18 December 2012 (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue Keywords: features mini-reviews for each of these SLC families written by the experts in each field. Transporter The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.biopar- Carrier adigms.org), has been updated and significantly extended with additional information and Nomenclature Solute carrier genes cross-links to other relevant databases, and the nomenclature used in this database has SLC been validated and approved by the HGNC.
    [Show full text]