Male–Female Conflict and Genitalia

Total Page:16

File Type:pdf, Size:1020Kb

Male–Female Conflict and Genitalia Biol. Rev. (2004), 79, pp. 121–186. f Cambridge Philosophical Society 121 DOI: 10.1017/S1464793103006237 Printed in the United Kingdom Male–female conflict and genitalia: failure to confirm predictions in insects and spiders William G. Eberhard Smithsonian Tropical Research Institute, and Escuela de Biologı´a, Universidad de Costa Rica Ciudad Universitaria, Costa Rica (E-mail: [email protected]) (Received 9 May 2002; revised 4 March 2003; accepted 7 March 2003) ABSTRACT Some recent models suggest a new role for evolutionary arms races between males and females in sexual selec- tion. Female resistance to males is proposed to be driven by the direct advantage to the female of avoiding male- imposed reductions in the number of offspring she can produce, rather than by the indirect advantage of selecting among possible sires for her offspring, as in some traditional models of sexual selection by female choice. This article uses the massive but hitherto under-utilized taxonomic literature on genitalic evolution to test, in a two- step process, whether such new models of arms races between males and females have been responsible for rapid divergent evolution of male genitalia. The test revolves around the prediction that ‘new arms races’ are less likely to occur in species in which females are largely or completely protected from unwanted sexual attentions from males (e.g. species which mate in leks or in male swarms, in which males attract females from a distance, or in which females initiate contact by attracting males from a distance). The multiple possible mechanical functions of male genitalia are summarized, and functions of male genitalic structures in 43 species in 21 families of Diptera are compiled. Functions associated with intromission and insemination (e.g. seizing and positioning the female appropriately, pushing past possible barriers within the female, orienting within the female to achieve sperm transfer), which are unlikely to be involved in new arms races when females are protected, are shown to be common (>50% of documented cases). This information is then used to generate the new arms race prediction: differences in genitalic form among congeneric species in which females are protected should be less common than differences among congeneric species in which females are vulnerable to harassment by males. This prediction was tested using a sample of 361 genera of insects and spiders. The prediction clearly failed, even when the data were adjusted to take into account several possible biases. Comparative analyses within particular taxonomic groups also failed to show the predicted trends, as did less extensive data on other non-genitalic male display traits. Arms races, as defined in some recent models, seem to have been less important in male–female coevolution of genitalic structures than has been suggested. By elimination, alternative interpretations, such as traditional female choice, which do not predict associations between female protection from harassment and rapid divergent evolution, are strengthened. Key words: genitalic evolution, sexual selection, cryptic female choice, male–female conflict. CONTENTS I. Introduction ................................................................................................................................................. 122 II. Methods ........................................................................................................................................................ 128 III. Results ........................................................................................................................................................... 143 (1) Functions of male genitalic structures in Diptera ............................................................................. 143 (2) Comparisons of groups with protected and unprotected females .................................................. 157 (a) Totals of genus-by-genus counts ................................................................................................... 157 (b) Analyses at higher taxonomic levels ............................................................................................. 161 IV. Discussion ..................................................................................................................................................... 162 (1) Genitalic functions in Diptera ............................................................................................................. 162 122 William G. Eberhard (2) Comparisons of groups with protected and unprotected females .................................................. 163 (a) Genus-by-genus comparisons ........................................................................................................ 163 (i) Totals ......................................................................................................................................... 163 (ii) Possible limitations of the analyses ......................................................................................... 163 (A) Data on genitalia ............................................................................................................... 163 (B) Data on mating behaviour ............................................................................................... 164 (C) The analyses ....................................................................................................................... 166 (D) Summary of limitations .................................................................................................... 166 (b) Large taxa with uniformly protected females ............................................................................. 166 (c) Other hypotheses and data ............................................................................................................ 167 (3) Non-genitalic traits ................................................................................................................................ 167 (4) Can one generalize from genitalia? .................................................................................................. 168 V. Conclusions .................................................................................................................................................. 169 VI. Acknowledgements ...................................................................................................................................... 169 VII. References .................................................................................................................................................... 169 I. INTRODUCTION activities such as feeding, sheltering, or resting. Costs could also be imposed on females after copulation ends, as a result Recent empirical and theoretical developments have of male effects on her reproductive physiology, such as suggested new interpretations of sexual selection. Some causing her to make disadvantageously large or premature evolutionary phenomena that were previously explained by investments in oviposition due to male induction of egg mate choice may be better explained by coevolution of males maturation or oviposition, or to lose the benefits (direct or and females resulting from conflicts of interest between the indirect) that she might obtain from other males due to sexes over control of copulation and fertilization (Parker, male-imposed suppression of her receptivity (Chen, 1984). 1979; Chapman et al., 1995, 2003; Rice, 1996; Alexander, Males and females are envisioned as being engaged in co- Marshall & Cooley, 1997; Holland & Rice, 1998, 1999; evolutionary arms races for control of the events that are Rice & Holland, 1999; Johnstone & Keller, 2000; Michiels, associated with copulation, insemination, and ultimately 1998; Gavrilets, Arnqvist & Friberg, 2001; Pitnick, Brown fertilization of the female’s eggs. Explicit models of this sort & Miller, 2001a; Pitnick, Reagan & Holland, 2001b; Stutt have been proposed for both classic, pre-copulatory female & Siva-Jothy, 2001; Moore et al., 2001). These recent dis- rejections (the ‘chase-away’ model of Holland & Rice, cussions emphasize one particular class of direct benefits 1998; Gavrilets et al., 2001), and female rejection during or that a female could derive from resisting male sexual following coupling (the male–female conflict model of behaviour: avoidance of male-inflicted reductions in her Alexander et al., 1997). These ideas will be referred to here ability to produce offspring. Evolutionary interactions as ‘new arms race’ models. As noted by Gavrilets et al. between males and females are thought to be driven by (2001) they contrast with ‘traditional’ ideas that emphasize selection on females to avoid these costs that are imposed other possible types of benefits that a female could derive by the male, resulting in subsequent male countermeasures. from rejecting some types of conspecific males (reviewed by For instance, in their ‘chase away’ model, Holland and Andersson, 1994). Setting aside the probably small subset Rice (1998) listed the possible costs of mating for females of species in which females gain direct benefits (Andersson, as mating ‘too often, [or at a] less-than-ideal time or place’. 1994), the distinction between the new arms race models Gavrilets et al. (2001) contrasted the proposed benefits to and the traditional female choice models involves selection females from rejecting males under their sexual conflict on the female that
Recommended publications
  • Taxonomic Overview of the Greater Fritillary Genus Speyeria Scudder
    INSECTA MUNDI A Journal of World Insect Systematics 0090 Taxonomic overview of the greater fritillary genus Speyeria Scudder and the atlantis hesperis species complexes, with species accounts, type images, and relevant literature (Lepidoptera: Nymphalidae) James C. Dunford McGuire Center for Lepidoptera and Biodiversity Florida Museum of Natural History, University of Florida PO Box 112710, Gainesville, FL 326112710, USA Date of Issue: September 26, 2009 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL James C. Dunford Taxonomic overview of the greater fritillary genus Speyeria Scudder and the atlantis hesperis species complexes, with species accounts, type images, and relevant literature (Lepidoptera: Nymphalidae) Insecta Mundi 0090: 174 Published in 2009 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 326141874 U. S. A. http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any nonmarine arthropod taxon. Manuscripts considered for publication include, but are not limited to, systematic or taxonomic studies, revisions, nomenclatural changes, faunal studies, book reviews, phylo genetic analyses, biological or behavioral studies, etc. Insecta Mundi is widely distributed, and refer- enced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. As of 2007, Insecta Mundi is published irregularly throughout the year, not as quarterly issues. As manuscripts are completed they are published and given an individual number. Manuscripts must be peer reviewed prior to submission, after which they are again reviewed by the editorial board to insure quality. One author of each submitted manuscript must be a current member of the Center for System- atic Entomology.
    [Show full text]
  • Dipterists Digest
    Dipterists Digest 2019 Vol. 26 No. 1 Cover illustration: Eliozeta pellucens (Fallén, 1820), male (Tachinidae) . PORTUGAL: Póvoa Dão, Silgueiros, Viseu, N 40º 32' 59.81" / W 7º 56' 39.00", 10 June 2011, leg. Jorge Almeida (photo by Chris Raper). The first British record of this species is reported in the article by Ivan Perry (pp. 61-62). Dipterists Digest Vol. 26 No. 1 Second Series 2019 th Published 28 June 2019 Published by ISSN 0953-7260 Dipterists Digest Editor Peter J. Chandler, 606B Berryfield Lane, Melksham, Wilts SN12 6EL (E-mail: [email protected]) Editorial Panel Graham Rotheray Keith Snow Alan Stubbs Derek Whiteley Phil Withers Dipterists Digest is the journal of the Dipterists Forum . It is intended for amateur, semi- professional and professional field dipterists with interests in British and European flies. All notes and papers submitted to Dipterists Digest are refereed. Articles and notes for publication should be sent to the Editor at the above address, and should be submitted with a current postal and/or e-mail address, which the author agrees will be published with their paper. Articles must not have been accepted for publication elsewhere and should be written in clear and concise English. Contributions should be supplied either as E-mail attachments or on CD in Word or compatible formats. The scope of Dipterists Digest is: - the behaviour, ecology and natural history of flies; - new and improved techniques (e.g. collecting, rearing etc.); - the conservation of flies; - reports from the Diptera Recording Schemes, including maps; - records and assessments of rare or scarce species and those new to regions, countries etc.; - local faunal accounts and field meeting results, especially if accompanied by ecological or natural history interpretation; - descriptions of species new to science; - notes on identification and deletions or amendments to standard key works and checklists.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Investigations Into Mating Disruption, Delayed Mating, and Multiple Mating in Oriental Beetle, Anomala Orientalis (Waterhouse) (Coleoptera: Scarabaeidae)
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-2005 Investigations into mating disruption, delayed mating, and multiple mating in oriental beetle, Anomala orientalis (Waterhouse) (Coleoptera: Scarabaeidae). Erik J. Wenninger University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Wenninger, Erik J., "Investigations into mating disruption, delayed mating, and multiple mating in oriental beetle, Anomala orientalis (Waterhouse) (Coleoptera: Scarabaeidae)." (2005). Doctoral Dissertations 1896 - February 2014. 5748. https://scholarworks.umass.edu/dissertations_1/5748 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. INVESTIGATIONS INTO MATING DISRUPTION, DELAYED MATING, AND MULTIPLE MATING IN ORIENTAL BEETLE, ANOMALA ORIENTALS (WATERHOUSE) (COLEOPTERA: SCARABAEIDAE) A Dissertation Presented by ERIK J. WENNINGER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2005 Plant, Soil & Insect Sciences Entomology Division © Copyright by Erik J. Wenninger 2005 All Rights Reserved INVESTIGATIONS INTO MATING DISRUPTION, DELAYED MATING, AND MULTIPLE MATING IN ORIENTAL BEETLE, ANOMALA ORIENTALIS (WATERHOUSE), COLEOPTERA: SCARABAEIDAE A Dissertation Presented by ERIK J. WENNINGER Approved as to style and content by: Anne Averill, Chair Zii Joseph Elkinton, Member S Buonaccorsi, Member Peter Veneman, Department Head Department of Plant, Soil & Insect Sciences ACKNOWLEDGMENTS I am grateful to Dr. Anne Averill for allowing me the freedom to seek my own path.
    [Show full text]
  • Nomenclatural Studies Toward a World List of Diptera Genus-Group Names
    Nomenclatural studies toward a world list of Diptera genus-group names. Part V Pierre-Justin-Marie Macquart Evenhuis, Neal L.; Pape, Thomas; Pont, Adrian C. DOI: 10.11646/zootaxa.4172.1.1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Evenhuis, N. L., Pape, T., & Pont, A. C. (2016). Nomenclatural studies toward a world list of Diptera genus- group names. Part V: Pierre-Justin-Marie Macquart. Magnolia Press. Zootaxa Vol. 4172 No. 1 https://doi.org/10.11646/zootaxa.4172.1.1 Download date: 02. Oct. 2021 Zootaxa 4172 (1): 001–211 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4172.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:22128906-32FA-4A80-85D6-10F114E81A7B ZOOTAXA 4172 Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part V: Pierre-Justin-Marie Macquart NEAL L. EVENHUIS1, THOMAS PAPE2 & ADRIAN C. PONT3 1 J. Linsley Gressitt Center for Entomological Research, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USA. E-mail: [email protected] 2 Natural History Museum of Denmark, Universitetsparken 15, 2100 Copenhagen, Denmark. E-mail: [email protected] 3Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by D. Whitmore: 15 Aug. 2016; published: 30 Sept. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 NEAL L.
    [Show full text]
  • 1 Appendix 3. Gulf Islands Taxonomy Report
    Appendix 3. Gulf Islands Taxonomy Report Class Order Family Genus Species Arachnida Araneae Agelenidae Agelenopsis Agelenopsis utahana Eratigena Eratigena agrestis Amaurobiidae Callobius Callobius pictus Callobius severus Antrodiaetidae Antrodiaetus Antrodiaetus pacificus Anyphaenidae Anyphaena Anyphaena aperta Anyphaena pacifica Araneidae Araneus Araneus diadematus Clubionidae Clubiona Clubiona lutescens Clubiona pacifica Clubiona pallidula Cybaeidae Cybaeus Cybaeus reticulatus Cybaeus signifer Cybaeus tetricus Dictynidae Emblyna Emblyna peragrata Gnaphosidae Sergiolus Sergiolus columbianus Zelotes Zelotes fratris Linyphiidae Agyneta Agyneta darrelli Agyneta fillmorana Agyneta protrudens Bathyphantes Bathyphantes brevipes Bathyphantes keeni 1 Centromerita Centromerita bicolor Ceratinops Ceratinops latus Entelecara Entelecara acuminata Erigone Erigone aletris Erigone arctica Erigone cristatopalpus Frederickus Frederickus coylei Grammonota Grammonota kincaidi Linyphantes Linyphantes nehalem Linyphantes nigrescens Linyphantes pacificus Linyphantes pualla Linyphantes victoria Mermessus Mermessus trilobatus Microlinyphia Microlinyphia dana Neriene Neriene digna Neriene litigiosa Oedothorax Oedothorax alascensis Pityohyphantes Pityohyphantes alticeps Pocadicnemis Pocadicnemis pumila Poeciloneta Poeciloneta fructuosa Saaristoa Saaristoa sammamish Scotinotylus Scotinotylus sp. 5GAB Semljicola Semljicola sp. 1GAB Sisicottus Spirembolus Spirembolus abnormis Spirembolus mundus Tachygyna Tachygyna ursina Tachygyna vancouverana Tapinocyba Tapinocyba
    [Show full text]
  • SUPPLEMENT Der Limoniidae, Tipulidae Und Zu Faunistisch-Ökologische Cylindrotomidae (Diptera) Im Bereich Mitteilungen Eines Norddeutschen Tieflandbaches
    ©Faunistisch-Ökologische Arbeitsgemeinschaft e.V. (FÖAG);download www.zobodat.at Zur Habitatpräferenz und Phänologie SUPPLEMENT der Limoniidae, Tipulidae und zu Faunistisch-Ökologische Cylindrotomidae (Diptera) im Bereich Mitteilungen eines norddeutschen Tieflandbaches Faunistisch-Ökologische Mitteilungen Supplement 11 Herausgegeben im Aufträge der Faunistisch-Ökologischen Arbeitsgemeinschaft von B. Heydemann, W. Hofmann und U. Irmler Zoologisches Institut und Museum der Universität Kiel Kiel, Dezember 1991 Karl Wachholtz Verlag, Neumünster ©Faunistisch-Ökologische Arbeitsgemeinschaft e.V. (FÖAG);download www.zobodat.at ©Faunistisch-Ökologische Arbeitsgemeinschaft e.V. (FÖAG);download www.zobodat.at Faun.-Ökol. Mitt. Suppl. 1 1 , 1—156 Kiel, Dezember 1991 Zur Habitatpräferenz und Phänologie der Limoniidae, Tipulidae und Cylindrotomidae (Diptera) im Bereich eines norddeutschen Tieflandbaches von Rainer Brinkmann Kiel 1991 Nicht das Wesen einer einzigen Mücke hat das Denken des Menschen zu erspüren vermocht. Thomas von Aquin ©Faunistisch-Ökologische Arbeitsgemeinschaft e.V. (FÖAG);download www.zobodat.at Titelbild: Epiphragma ocellare 2. Körperlänge 12 mm. Herausgegeben im Aufträge der Faunistisch-ökologischen Arbeitsgemeinschaft von B. Heydemann, W. Hofmann und U. Irmler Zoologisches Institut und Museum der Universität Kiel Karl Wachholtz Verlag, Neumünster, 1991 This publication is included in the abstracting and indexing coverage of the Bio Sciences Service of Biological Abstracts. ISSN 0430-1285 ©Faunistisch-Ökologische Arbeitsgemeinschaft
    [Show full text]
  • Diptera), an Emerging Global Problem Arshadali
    260 JouRul oF THEArrlpnrclN Mosquno CoNrRor,AssocrarroN Vor..7, No.2 PERSPECTIVESON MANAGEMENT OF PESTIFEROUS CHIRONOMIDAE (DIPTERA), AN EMERGING GLOBAL PROBLEM ARSHADALI Uniuersity of Florida, IFAS, Central Florida Researchand Education Center,2700 East CeleryAuenue. Sanford,FL 32771-9608 ABSTRACT. In recent years, adult Chironomidae emerging from some urban natural or man-made habllats have increasingly posed a variety of nuisance and economic problems, and in some situations medical problems to humans in different parts of the world. Although there are an estimated 4,000 or more speciesof chironomid midgesworldwide, lessthan 100species have been reported to be pesti'ferous. Among midge control methods, numerous laboratory and field studies have been conducted on the use of o^rqanochlorines,organophosphates (OPs), pyrethroids and insect growth regulators (IGRs). Field use of OP insecticides such as chlorpyrifos, temephos and others in the USA ind Japan hai generally resulted in larval control for 2-5 wk or longeiwith application rates below 0.56 kg AI/ha (U=S.q)ani 51-5 ppln (Japan).Frequent use of some OP insecticidesin the USA and Japan has caused.their increasedtolerance in severalmidge species.The IGRs, diflubenzuron and methoprene,provide alternate means for midge control. These IGRs in some situations suppressedadult midge eme.ge.tceby >g\Vo at rates (0.3 t<gll/_hqr A number ofparasites and pathogenshave been reported from mldgesin different parts of the woid'. Bacillus thuringiensis serovar. israelensisis effective igainst some mid-gespecies, but at rates at least 10x or higher established for mosquito larvicidal aciiuity. The flatriorm, Dugesia doro.tocephala,and some fish speciesoffer a goodpotential for midge control in somesituations.
    [Show full text]
  • Age-Related Sperm Production, Transfer, and Storage in The
    Age-related sperm production, transfer, and storage in the sweet potato weevil, cylas formicarius (fabricius) (coleoptera: Curculionidae) Authors: Satoshi Hiroyoshi, Tsuguo Kohama, and Gadi V. P. Reddy The final publication is available at Springer via http://dx.doi.org/10.1007/s10905-016-9590-0. Hiroyoshi, Satoshi, Tsuguo Kohama, and Gadi V P Reddy. "Age-related sperm production, transfer, and storage in the sweet potato weevil, cylas formicarius (fabricius) (coleoptera: Curculionidae)." Journal of Insect Behavior (November 2016). DOI:https://dx.doi.org/10.1007/ s10905-016-9590-0. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Age-Related Sperm Production, Transfer, and Storage in the Sweet Potato Weevil, Cylas formicarius (Fabricius) (Coleoptera: Curculionidae) Satoshi Hiroyoshi1,2 & Tsuguo Kohama 1,3 & Gadi V. P. Reddy4 1 Okinawa Prefectural Fruit-fly Eradication Program Office, 123 Maji, Naha, Okinawa 902-0072, Japan 2 7-12-203 Kotobukiso, Nishikawacho, Itoman, Okinawa 901-0304, Japan 3 Okinawa Prefectural Agricultural Research Center, 820 Makabe, Itoman, Okinawa 901-0336, Japan 4 Western Triangle Ag Research Center, Montana State University, 9546 Old Shelby Rd., P. O. Box 656, Conrad, MT 59425, USA Abstract The relationship between sperm production, insemination rate, and sperm transfer were studied in the sweet potato weevil, Cylas formicarius. Older adult males retained more sperm in the testes-seminal vesicle complex (TSC) and thus more was ejaculated into females at first mating. Number of matings per day for males was relatively constant across different ages, and frequent mating resulted in a reduced amount of sperm transferred to females, especially in young males.
    [Show full text]
  • CHIRONOMUS NEWSLETTER on CHIRONOMIDAE RESEARCH Co-Editors: Ruth CONTRERAS-LICHTENBERG Naturhistorisches Museum Wien, Burgring 7, A-1014 WIEN, Austria Peter H
    CHIRONOMUS NEWSLETTER ON CHIRONOMIDAE RESEARCH Co-Editors: Ruth CONTRERAS-LICHTENBERG Naturhistorisches Museum Wien, Burgring 7, A-1014 WIEN, Austria Peter H. LANGTON 5 Kylebeg Avenue, Mountsandel, Coleraine, Co. Londonderry, Northern Ireland, BT52 1JN - Northern Ireland Bibliography: Odwin HOFFRICHTER Institut f. Biologie I, Albert-Ludwigs-Universität Freiburg, Hauptstrasse 1 D-79104 , Germany Treasurer: Trond ANDERSEN: Museum of Zoology, University of Bergen, Museplass 3, N-5007 Bergen - Norway ISSN 0172-1941 No. 13 September 2000 CONTENTS Chironomid Work in Munich to Continue ............................................................................................................... 1 New curator at the Zoologische Staatssammlung Munich ...................................................................................... 2 Contributions in SPIXIANA in Memory of Dr. Reiss.............................................................................................. 4 To Iya Kiknadze at 70................................................................................................................................................ 5 Current Research ....................................................................................................................................................... 7 Short – Communications ......................................................................................................................................... 19 Notice Board ...................................................................................................................................
    [Show full text]
  • Evolution of Colony Characteristics in the Harvester Ant Genus
    Evolution of Colony Characteristics in The Harvester Ant Genus Pogonomyrmex Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Christoph Strehl Nürnberg Würzburg 2005 - 2 - - 3 - Eingereicht am: ......................................................................................................... Mitglieder der Prüfungskommission: Vorsitzender: ............................................................................................................. Gutachter : ................................................................................................................. Gutachter : ................................................................................................................. Tag des Promotionskolloquiums: .............................................................................. Doktorurkunde ausgehändigt am: ............................................................................. - 4 - - 5 - 1. Index 1. Index................................................................................................................. 5 2. General Introduction and Thesis Outline....................................................... 7 1.1 The characteristics of an ant colony...................................................... 8 1.2 Relatedness as a major component driving the evolution of colony characteristics.................................................................................................10 1.3 The evolution
    [Show full text]
  • Onetouch 4.0 Sanned Documents
    Anna. Rev. Ecol. Swf. 1991. 22:565-92 SYSTEMATICS AND EVOLUTION OF SPIDERS (ARANEAE)* • Jonathan A. Coddington Department of Entomology, National Museum of Natural History. Smithsonian Institution, Washington, DC 20560 Herbert W. Levi Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 KEY WORDS: taxonomy, phytogeny, cladistics, biology, diversity INTRODUCTION In the last 15 years understanding of the higher systematics of Araneae has changed greatly. Large classical superfamilies and families have turned out to be poly- or paraphyletic; posited relationships were often based on sym- plesiomorphies. In this brief review we summarize current taxonomic and phylogenetic knowledge and suggest where future efforts might profitably be concentrated. We lack space to discuss fully all the clades mentioned, and the cited numbers of described taxa are only approximate. Other aspects of spider biology have been summarized by Barth (7), Eberhard (47), Jackson & Parks (72), Nentwig (105), Nyffeler & Benz (106), Riechert & Lockley (134), Shear (149) and Turnbull (160). Diversity, Paleontology, Descriptive Work, Importance The order Araneae ranks seventh in global diversity after the five largest insect orders (Coleoptera, Hymenoptera, Lepidoptera, Diptera, Hemiptera) and Acari among the arachnids (111) in terms of species described or an- *The US government has the right to retain a nonexclusive, royalty free license in and to any copyright covering this paper. 565 566 CODDINGTON & LEVI ticipated. Spiders are among the most diverse groups on earth. Among these taxa, spiders are exceptional for their complete dependence on predation as a trophic strategy. In contrast, the diversity of insects and mites may result from their diversity in dietary strategies•notably phytophagy and parasitism (104).
    [Show full text]