Borinic Acid-Catalyzed Regioselective Functionalization of Polyols

Total Page:16

File Type:pdf, Size:1020Kb

Borinic Acid-Catalyzed Regioselective Functionalization of Polyols Borinic Acid-Catalyzed Regioselective Functionalization of Polyols by Caitlin Williamson A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Chemistry University of Toronto © Copyright by Caitlin Williamson 2011 Borinic Acid-Catalyzed Regioselective Functionalization of Polyols Caitlin Williamson Master of Science Department of Chemistry University of Toronto 2011 Abstract The selective manipulation of hydroxyl groups in di- and polyols is a frequently encountered problem in organic synthesis. Such processes are often tedious and/or moderate yielding, and often necessitate multistep protection / deprotection sequences. Applying boron–diol interactions previously exploited in molecular recognition and based on methods previously developed in our research group, we have developed two classes of chemical transformations: 1. Regioselective sulfonylations of carbohydrate derivatives catalyzed by a borinic ester, providing access to the corresponding mono-tosylates in high yields; 2. Selective monoalkylations and monosulfonylations of structurally diverse 1,2- and 1,3- diol substrates. ii Acknowledgments First and foremost I would like to thank Professor Mark S. Taylor for accepting me into his research group and constantly giving me guidance. I would like to thank him for his patience whenever I felt the need to ask silly questions and for always displaying a willingness to help but at the same time trying to teach me to be more independent. I would like to thank all of the members of the Taylor group. It has been wonderful working with you and getting to know you all over the past year. None of you ever hesitated to help whenever I asked and even sometimes offering assistance before I even had to ask. You provided an amazing and friendly working environment and made my time as the University of Toronto enjoyable and worthwhile. Specifically I would like to thank Christina, Doris, and Lina for helping whenever I had questions about sugar and functionalization chemistry or experimental set-ups. I would also like to thank Corey for always being there to get supplies down for me that were too high for me to reach. Lastly, I would like to thank the entire staff of University of Toronto’s chemistry department for providing an amazing working environment. If all of you weren’t there to keep things running smoothly, completing my chemistry would have proved a lot more difficult and would not have been nearly as enjoyable. iii Table of Contents Acknowledgments.............................................................................................................................. iii Table of Contents.................................................................................................................................iv List of Abbreviations ..........................................................................................................................vi List of Tables ...................................................................................................................................... viii List of Schemes ...................................................................................................................................... x List of Figures..................................................................................................................................... xiii List of Appendices .............................................................................................................................xiv 1 Boron-Diol Interactions...............................................................................................................1 1.1 Use of Boronic Acids in Chemical Recognition of Carbohydrates ........................................1 1.2 Use of Borinic Acids in Functionalization of cis-Diols..............................................................3 2 Regioselective Sulfonylation of Polyols .................................................................................7 2.1 Introduction ...........................................................................................................................................7 2.1.1 Regioselective Sulfonylation of Polyols..................................................................................................7 2.1.2 Regioselective Sulfonylation of Carbohydrate Derivatives.........................................................13 2.2 Results and Discussion .................................................................................................................... 18 2.2.1 Regioselective Sulfonylation of Carbohydrate Derivatives.........................................................18 2.2.2 Regioselective Sulfonylation of Polyols...............................................................................................22 2.3 Conclusion............................................................................................................................................ 25 2.4 Experimental....................................................................................................................................... 25 2.4.1 General...............................................................................................................................................................25 2.4.2 Procedure and Characterization Data for TBS-Protection of Carbohydrate Derivatives 26 2.4.3 Procedure and Characterization Data for Sulfonylation of Polyols.........................................28 3 SN2 Reactions Using Carbohydrate Sulfonates.................................................................. 36 3.1 Introduction ........................................................................................................................................ 36 3.2 Results and Discussion .................................................................................................................... 37 3.3 Conclusion............................................................................................................................................ 40 4 Regioselective Deoxygenation of Carbohydrate Derivatives....................................... 41 iv 4.1 Introduction ........................................................................................................................................ 41 4.2 Results and Discussion .................................................................................................................... 43 4.3 Conclusion............................................................................................................................................ 46 4.4 Experimental....................................................................................................................................... 46 5 Regioselective Alkylation of Polyols .................................................................................... 49 5.1 Introduction ........................................................................................................................................ 49 5.2 Results and Discussion .................................................................................................................... 53 5.3 Conclusion............................................................................................................................................ 60 5.4 Experimental....................................................................................................................................... 60 6 Competition Experiments to Study Selectivity of Functionalization......................... 66 6.1 Functionalization of 1,2- and 1,3-Diols ...................................................................................... 66 6.2 Functionalization of syn and anti 1,3-Diols .............................................................................. 68 6.3 Conclusions.......................................................................................................................................... 71 6.4 Experimental....................................................................................................................................... 72 6.4.1 Procedure and Characterization Data for the Preparation of 1,3-Diols................................72 6.4.2 Procedure and Characterization Data for Competition Experiments ....................................77 7 Regioselective Benzoylation of Diols................................................................................... 81 7.1 Conclusions.......................................................................................................................................... 82 7.2 Experimental....................................................................................................................................... 82 8 Functionalization Using Epoxide Electrophiles................................................................ 84 8.1 Conclusions.......................................................................................................................................... 85 9 Conclusions................................................................................................................................... 86 Appendix A NMR Spectra ................................................................................................................ 87 v List of Abbreviations Acac Acetylacetonate AIBN Azobisisobutyronitrile
Recommended publications
  • The Total Synthesis of Hexavalent Glycodendrimers
    THE TOTAL SYNTHESIS OF HEXAVALENT GLYCODENDRIMERS USING A DIVERGENT PATHWAY FOR ANTI-HIV THERAPY A Thesis Presented to the faCulty of the Department of Chemistry California State University, SaCramento Submitted in partial satisfaCtion of the requirements for the degree of MASTER OF SCIENCE in Chemistry by Dustin Andres Dimas SUMMER 2018 © 2018 Dustin Andres Dimas ALL RIGHTS RESERVED ii THE TOTAL SYNTHESIS OF HEXAVALENT GLYCODENDRIMERS USING A DIVERGENT PATHWAY FOR ANTI-HIV THERAPY A Thesis by Dustin Andres Dimas Approved by: __________________________________, Committee Chair Dr. Katherine MCReynolds __________________________________, SeCond Reader Dr. Roy Dixon __________________________________, Third Reader Dr. Cynthia Kellen-Yuen ____________________________ Date iii Student: Dustin Andres Dimas I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the thesis. __________________________, Graduate Coordinator ___________________ Dr. Susan Crawford Date Department of Chemistry iv AbstraCt of THE TOTAL SYNTHESIS OF HEXAVALENT GLYCODENDRIMERS USING A DIVERGENT PATHWAY FOR ANTI-HIV THERAPY by Dustin Andres Dimas The Human ImmunodefiCiency Virus (HIV) has caused a worldwide epidemiC. Currently, an estimated 36.9 million people are infeCted with HIV. The current treatment for HIV is antiretroviral therapy (ART). Around 20.9 million people living with HIV have aCCess to ART therapy. Right now, only 57% of the people infeCted are currently using ART. As of now, ART can only slow the progression of the virus but doesn’t cure the disease. Additionally, ART can have toxiC side effeCts or beCome ineffeCtive over time through viral resistance.
    [Show full text]
  • Group in Amine Protection and Activation Patrice Ribière, Valérie Declerck, Jean Martinez, Frédéric Lamaty
    2-(Trimethylsilyl)ethanesulfonyl (or SES) Group in Amine Protection and activation Patrice Ribière, Valérie Declerck, Jean Martinez, Frédéric Lamaty To cite this version: Patrice Ribière, Valérie Declerck, Jean Martinez, Frédéric Lamaty. 2-(Trimethylsilyl)ethanesulfonyl (or SES) Group in Amine Protection and activation. Chemical Reviews, American Chemical Society, 2006, 106, pp.2249-2269. hal-00116881 HAL Id: hal-00116881 https://hal.archives-ouvertes.fr/hal-00116881 Submitted on 18 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chem. Rev. 2006, 106, 2249−2269 2249 2-(Trimethylsilyl)ethanesulfonyl (or SES) Group in Amine Protection and Activation Patrice Ribie`re, Vale´rie Declerck, Jean Martinez, and Fre´de´ric Lamaty* Laboratoire des Aminoacides, Peptides et Prote´ines (LAPP), CNRS-Universite´s Montpellier 1 et 2, Place Euge`ne Bataillon, 34095 Montpellier Cedex 5, France Received July 25, 2005 Contents 7. SES Protection on Polymeric Support 2266 8. Conclusion 2268 1. Introduction 2249 9. Abbreviations 2268 2. SES−Cl in Synthesis 2250 10. References 2268 2.1. Synthesis of Sulfonyl Chloride 2250 2.2. Protection of Amines 2250 3. Direct Introduction of 2251 2-(Trimethylsilyl)ethanesulfonamide in Synthesis 1.
    [Show full text]
  • Approach and Synthesis of Strychnos Alkaloids
    N° d'ordre : 4155 THÈSE Présentée à L'UNIVERSITÉ BORDEAUX I ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES par Dawood Hosni DAWOOD POUR OBTENIR LE GRADE DE DOCTEUR SPÉCIALITÉ : CHIMIE ORGANIQUE ********************* TOWARDS THE SYNTHESIS OF MONOTERPENOIDS INDOLE ALKALOIDS OF THE ASPIDOSPERMATAN AND STRYCHNAN TYPE ********************* Soutenue le: 17 décembre 2010 Après avis de: MM. PIVA Olivier Professeur, Claude Bernard Lyon 1 Rapporteur PALE Patrick Professeur, Louis Pasteur Strasbourg 1 Rapporteur Devant la commission d'examen formée de : MM. PIVA Olivier Professeur, Claude Bernard Lyon 1 Rapporteur PALE Patrick Professeur, Louis Pasteur Strasbourg 1 Rapporteur POISSON Jean-François Chargé de recherche, CNRS Examinateur VINCENT Jean-Marc Directeur de recherche, CNRS Examinateur LANDAIS Yannick Professeur, Bordeaux 1 Directeur de thèse ROBERT Frédéric Chargé de recherche, CNRS Codirecteur de thèse - 2010 - Abbreviations ∆: reflux °C: celsius degrees Ac: acetyle ALB Aluminium Lithium bis(binaphthoxide) complex AIBN : azobis(isobutyronitrile) aq.: aqueous Ar : aromatic BINAP : 2,2'-bis(diphenylphosphino)-1,1'-binaphthyle BINAPO : 2-diphenylphosphino-2'-diphenylphosphinyl-1,1'-binaphthalene BINOL: 1,1’-bi-2-naphthol Boc: tert-butyloxycarbonyle BOX: Bisoxazoline Bz : benzoyle Bn: benzyle cat. : catalytic DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene DCM: dichloromethane DCC: dicyclohexacarbodiimide dr.: diastereomeric ratio DIBAL-H: diisobutylaluminium hydride DIPEA: diisopropyléthylamine (Hünig Base) DMAP: dimethylaminopyridine DME: dimethoxyethane
    [Show full text]
  • Rhodium-Catalyzed Decomposition of Carbohydrate Diazo Esters By
    Rhodium-Catalyzed Decomposition of Carbohydrate Diazo Esters by Matthew LaLama Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Chemistry Program YOUNGSTOWN STATE UNIVERSITY August 2018 Rhodium-Catalyzed Decomposition of Carbohydrate Diazo Esters Matthew LaLama I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Matthew J. LaLama, Student Date Approvals: Dr. Peter Norris, Thesis Advisor Date Dr. Douglas Genna, Committee Member Date Dr. John Jackson, Committee Member Date Dr. Salvatore A. Sanders, Dean of Graduate Studies Date iii ABSTRACT This thesis herein reports the synthesis of two diazo ester sugars and their decomposition in the presence of catalytic rhodium acetate dimer. Reactions were designed for the isolation of products formed through intramolecular C-H insertion reactions. However, no C-H insertion occurred, and instead this research led to the formation of a head-to-head- imine linked dimer not presently reported by previous lab members. iv Acknowledgements Firstly, I would like to thank Dr. Peter Norris, my advisor, for providing me with the opportunity to be a member of his research group. From providing me with my sophomore organic education, to his advice and tutelage while working as an undergraduate and graduate student in his lab, he has helped every step of the way. Thank you for all of your help, and thank you for playing a part in convincing me to become a chemistry major.
    [Show full text]
  • FULL PAPER Enantiodivergent Synthesis of (+)- and (-)-Pyrrolidine
    FULL PAPER Enantiodivergent Synthesis of (+)- and (-)-Pyrrolidine 197B. Synthesis of trans-2,5-Disubstituted Pyrrolidines via Intramolecular Hydroamination. Sixto J. Pérez,[a] Martín A. Purino,[a] Daniel A. Cruz,[a] Juan M. López-Soria, [a],[d] Rubén M. Carballo,[c] Miguel A. Ramírez, [a] Israel Fernández,*[b] Víctor S. Martín,*[a] and Juan I. Padrón*[a],[d] Abstract: A highly efficient diastereoselective iron(III)-catalyzed tandem cyclization, and applied to the synthesis of the male- intramolecular hydroamination/cyclization reaction involving - attracting pheromones from the poison glands of ants substituted amino alkenes is described. Thus, enantiopure trans-2,5- Leptothoracini.[6] More recently, Cao et al. have used this aza- disubstituted pyrrolidines and trans-5-substituted proline derivatives Cope Mannich procedure as the key reaction in the formal are synthesized by means of the combination of enantiopure starting synthesis of cycloclavine and the construction of the ACDE ring materials, easily available from L--amino acids, with sustainable system of Daphenylline (Scheme 1).[7] metal catalysts such as iron(III) salts. The scope of this methodology is highlighted in an enantiodivergent approach to the synthesis of both (+)- and (-)-pyrrolidine 197B alkaloids from L-glutamic acid. In addition, a computational study was also carried out to gain insight into the complete diastereoselectivity of the transformation. Introduction Five-membered azacycles are common structural units present and widespread in the fields of organic and medicinal chemistry. Thus, they can be found in a good number of natural products containing the parent pyrrolidine ring, organocatalysts having optically active prolines or derivatives, and drugs.[1-3] Over the last decade, our research group has been involved Scheme 1.
    [Show full text]
  • THESE DE DOCTORAT Nicolo Michele Tonali
    NNT : 2016SACLS544 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A “UNIVERSITE PARIS-SUD FACULTE DE PHARMACIE” ECOLE DOCTORALE N° 569 Innovation thérapeutique : du fondamental à l'appliqué Spécialité de doctorat : Chimie thérapeutique Par Nicolo Michele Tonali Mimes synthétiques de feuillets bêta: conception, synthèse et évaluation de leur capacité à moduler l'agrégation du peptide bêta-amyloïde 1-42. Thèse présentée et soutenue à Châtenay-Malabry, le 24 Novembre 2016 : Composition du Jury : M. Aitken, David Professeur, Université Paris-sud Président M. Maillard, Ludovic Maître de Conférences, Université de Montpellier Rapporteur M. Guichard, Gilles Directeur de recherche, Université de Bordeaux Rapporteur M. Lequin, Olivier Professeur, Université Pierre et Marie Curie Examinateur Mme Ongeri, Sandrine Professeur, Université Paris-sud Directrice de thèse Mme Kaffy, Julia Maître de Conférences , Université Paris-sud Co-encadrante Synthetic mimics of β-sheets: design, synthesis and evaluation of their ability to modulate the aggregation of the β-amyloid 1-42 peptide Nicolo Tonali 2 Contents 1 Introduction 13 1.1 Three-dimensional structure of polypeptides and proteins . 13 1.1.1 Secondary structure . 15 1.1.2 Tertiary structure . 22 1.1.3 Quaternary structure . 23 1.2 Alzheimer’s disease . 23 1.2.1 Amyloidosis and neurodegenerative disease . 23 1.2.2 Physiopathology of Alzheimer’s disease . 28 1.2.3 The hypotheses of the cause of the disease . 30 1.3 Therapeutical strategies in development to target Aβ 1-42 peptide . 44 1.3.1 Enzyme inhibitors . 45 1.3.2 Immunotherapy . 48 1.3.3 Aβ homeostasis . 49 1.3.4 Modulators of Aβ aggregation .
    [Show full text]
  • University of London Thesis
    REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree /Vo Year'psO-* Name of Author 6 0 COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOANS Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied. This thesis comes within category D.
    [Show full text]
  • AB5 Derivatives of Cyclotriphosphazene for the Synthesis of Dendrons and Their Applications
    molecules Review AB5 Derivatives of Cyclotriphosphazene for the Synthesis of Dendrons and Their Applications Artem Zibarov 1,2 , Abdelouahd Oukhrib 1,2, Julien Aujard Catot 1,2,Cédric-Olivier Turrin 1,2 and Anne-Marie Caminade 1,2,* 1 Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France; [email protected] (A.Z.); [email protected] (A.O.); [email protected] (J.A.C.); [email protected] (C.-O.T.) 2 LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, CEDEX 4, France * Correspondence: [email protected] Abstract: AB5 compounds issued from the reactivity of hexachlorocyclotriphosphazene are relatively easy to obtain using two ways: either first the reaction of one chloride with one reagent, followed by the reaction of the five remaining Cl with another reagent, or first the reaction of five chlorides with one reagent, followed by the reaction of the single remaining Cl with another reagent. This particular property led to the use of such compounds as core for the synthesis of dendrons (dendritic wedges), using the five functions for growing the dendritic branches. The single function can be used for the synthesis of diverse types of dendrimers (onion peel, dumbbell-shape, Janus), for covalent or non- covalent grafting to solid surfaces, providing nanomaterials, for grafting a fluorophore, especially Citation: Zibarov, A.; Oukhrib, A.; Aujard Catot, J.; Turrin, C.-O.; for studying biological mechanisms, or for self-associations to get micelles. All these properties are reviewed in this paper. Caminade, A.-M.
    [Show full text]
  • Detosylation of 3-Amino-1-Tosylindole-2-Carbonitriles Using DBU and Thiophenol
    Tetrahedron 66 (2010) 3016–3023 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet Detosylation of 3-amino-1-tosylindole-2-carbonitriles using DBU and thiophenol Sophia S. Michaelidou, Panayiotis A. Koutentis * Department of Chemistry, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus article info abstract Article history: Attempted detosylation of the 3-amino-1-(p-tosylamino)indole-2-carbonitriles 4a–c using either K2CO3 Received 30 November 2009 in EtOH or DBU in PhH at reflux gives unexpectedly the 3-(N-p-tosylamino)indole-2-carbonitriles 5a–c, Received in revised form 23 January 2010 respectively in high yields. Nevertheless, treatment of 1-(p-tosylamino)indoles 4a–c with thiophenol and Accepted 15 February 2010 DBU in PhH at reflux gives the detosylated 3-aminoindole-2-carbonitriles 5a–c. Reaction mechanisms Available online 18 February 2010 supporting the tosyl migration (4/5) and the reductive detosylation (4/2) are proposed. All new compounds are fully characterised. Ó 2010 Elsevier Ltd. All rights reserved. 1. Introduction a synthesis of 3-aminoindole-2-carbonitriles 2 from the known 3- amino-1-tosylindole-2-carbonitrile 4, however, detosylation proved Indoles are important in both the biologicaland material sciences.1 difficult. Surprisinglyour efforts to detosylate 3-amino-1-tosylindole- More specifically, several substituted 2-cyanoindoles are important 2-carbonitriles 4 in the presence of ethoxide at reflux in ethanol failed, intermediates in the synthesis of heteroaromatic molecules and bi- while at higher temperatures (sealed tube) the unexpected 3-(N- ologically active compounds.2,3 We recently developed two new tosyamino)indole-2-carbonitriles 5 were obtained in high yield routes to 3-aminoindole-2-carbonitriles 2: The first a non classical (Scheme 1).
    [Show full text]
  • Organic & Biomolecular Chemistry
    Organic & Biomolecular Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/obc Page 1 of 16 OrganicPlease do not & Biomolecularadjust margins Chemistry Organic & Biomolecular Chemistry REVIEW Alkaloid Synthesis using Chiral Secondary Amine Organocatalysts Received 00th January 20xx, Hayato Ishikawa,* and Shinya Shiomi Accepted 00th January 20xx Manuscript DOI: 10.1039/x0xx00000x Over the last decade, several excellent enantioselective total syntheses of important alkaloids using asymmetric reactions mediated by chiral secondary amine organocatalysts as a key step have been accomplished. This perspective article www.rsc.org/ examines the full strategies of these alkaloid syntheses, especially the application of the organocatalytic reaction to construct the alkaloid scaffolds. catalyst),4 have been used to catalyze several important Introduction enantioselective reactions, such as asymmetric aldol, Michael, Mannich, Diels–Alder and ene-reactions, as well as α- Alkaloids containing a basic amine portion in the molecule are oxidations, and epoxidations (Fig.
    [Show full text]
  • Multivalently Presented Carbohydrates Can Be
    MULTIVALENTLY PRESENTED CARBOHYDRATES CAN BE USED AS DRUG DELIVERY VEHICLES AND TO STUDY PROTEIN CARBOHYDRATE INTERACTIONS by Harrison Wesley VanKoten A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry MONTANA STATE UNIVERSTIY Bozeman, Montana July 2018 COPYRIGHT by Harrison Wesley VanKoten 2018 All Rights Reserved ii This was for me, in honor of my parents and family. iii ACKNOWLEDGEMENTS Most of all I would like to thank my father. I would not be here without your encouragement and commitment to my success. You inspired my work ethic, you supported me though the lows of life, and you are a constant source of support. Mercedes, I appreciate the fact that we can have extremely honest conversations. I know we always joke about how mom and dad were less strict on me, but really, I learned from your mistakes. Thanks for making them so I didn’t have to. To the rest of my family, thank you for putting up with my shenanigans. You were always there for me. I have a wonderful family and that I am eternally grateful for. Aaron and Kayla, you were always there at the right time to help me, probably more than you are aware of. I would also like to thank my advisor Mary. Thanks for believing in me and showing me how having a passion for science, a never-ending quest to learn, and a relentless drive for excellence can be so rewarding. I would also like to thank my spiritual advisor, T. N. Jones.
    [Show full text]
  • Chapter 9 Alcohols, Ethers, and Epoxides
    Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai’i Chapter 9 Alcohols, Ethers, and Epoxides Prepared by Rabi Ann Musah State University of New York at Albany Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 9.1 Introduction—Structure and Bonding • Alcohols contain a hydroxy group (OH) bonded to an sp3 hybridized carbon. 2 1 • Compounds having a hydroxy group on a sp2 hybridized carbon—enols and phenols—undergo different reactions than alcohols. • Ethers have two alkyl groups bonded to an oxygen atom. 3 • Epoxides are ethers having the oxygen atom in a three-membered ring. Epoxides are also called oxiranes. • The C—O—C bond angle for an epoxide must be 60°, a considerable deviation from the tetrahedral bond angle of 109.5°. Thus, epoxides have angle strain, making them more reactive than other ethers. 4 2 9.2 Structure and Bonding • The oxygen atom in alcohols, ethers and epoxides is sp3 hybridized. Alcohols and ethers have a bent shape like that in H2O. • The bond angle around the O atom in an alcohol or ether is similar to the tetrahedral bond angle of 109.5°. • Because the O atom is much more electronegative than carbon or hydrogen, the C—O and O—H bonds are all polar. 5 9.3 Nomenclature of Alcohols 6 3 • When an OH group is bonded to a ring, the ring is numbered beginning with the OH group. • Because the functional group is at C1, the 1 is usually omitted from the name. • The ring is then numbered in a clockwise or counterclockwise fashion to give the next substituent the lowest number.
    [Show full text]