Superoxide Radical and Uv Irradiation in Ultrasound Assisted

Total Page:16

File Type:pdf, Size:1020Kb

Superoxide Radical and Uv Irradiation in Ultrasound Assisted SUPEROXIDE RADICAL AND UV IRRADIATION IN ULTRASOUND ASSISTED OXIDATIVE DESULFURIZATION (UAOD): A POTENTIAL ALTERNATIVE FOR GREENER FUELS by Ngo Yeung Chan A Dissertation Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY (ENVIRONMENTAL ENGINEERING) May 2010 Copyright 2010 Ngo Yeung Chan i ACKNOWLEDGMENTS I would like to dedicate my heartfelt gratitude to my advisor (former committee chairperson) Prof. T. F. Yen (1927 – 2010), for his selfless support, guidance and edification. I would like to thank also my committee chairperson, Prof. M. Pirbazari, and the committee members Prof. J. S. Devinny, Prof. J. J. Lee and Prof. K. S. Shing for their helpful advice and encouragement. I sincerely express my special thanks to Dr. M. Quinlan for his valuable suggestions and help. I definitely appreciate all the friendships and helps from my colleagues including Dr. M. W. Wan, Dr. O. Etemadi, Dr. S. S. Cheng, Dr. C. Y. Yang, and Dr. W. Fan. I would also thank T. Y. Lin, Y. Tung, and S. Angkadjaja for their excellent assistance. I would like to acknowledge Eco Energy Solutions Inc., Reno, Nevada and Intelligent Energy Inc., Long Beach, California for their financial support in this study; the U.S. Navy for the instrumental support of the ultrasonic device; and the U.S. Army for the instrumental support of the Horiba Sulfur in Oil Analyser. ii Last by not least, I express my special thanks to my parents Yin Man Wong and Ho Yee Chan, and my brother Ngo Fung Chan for their endless love and support. iii TABLE OF CONTENTS ACKNOWLEDGMENTS ii LIST OF TABLES ix LIST OF FIGURES xiii LIST OF ABBREVIATIONS xviii ABSTRACT xxii CHAPTER 1: INTRODUCTION 1 1.1 General Overview 1 1.2 Diesel Fuel 2 1.2.1 Diesel Fuel and Organic Sulfur Compounds (OSCs) 2 1.2.2 Diesel Fuel and Sulfur Regulations 6 1.3 Residual Oil 8 1.3.1 Residual Oil and OSCs 8 1.3.2 Residual Oil and Sulfur Regulations 14 1.4 Current Desulfurization Technologies 18 1.4.1 Hydrodesulfurization (HDS) 19 1.4.2 Adsorptive Desulfurization (ADS) 24 1.4.3 Biodesulfurization (BDS) 28 1.4.4 Oxidative Desulfurization (ODS) 31 1.5 Research Objectives 35 CHAPTER 2: THEORETICAL BACKGROUND 36 2.1 Introduction 36 iv 2.2 Ultrasound 37 2.2.1 Fundamentals of Ultrasound 37 2.2.2 Theory on Sonochemistry 38 2.2.3 Sonochemistry in Aqueous Phase 42 2.2.4 History of UAOD and Its Modifications 46 2.3 Oxidant Selection 52 2.3.1 Hydrogen Peroxide 53 2.3.2 Superoxide Anions 55 2.4 Acid Catalysis 57 2.5 Phase Transfer Catalysis 59 2.5.1 Overview of Phase Transfer Catalysis 59 2.5.2 Mechanism of Phase Transfer Catalysis 60 2.5.3 PTC Selection in UAOD Process 65 2.6 Ionic Liquids (ILs) 68 2.6.1 Overview of ILs and RTILs 68 2.6.2 Applications of ILs in Hydrocarbon Separation 74 2.6.3 Applications of ILs in Desulfurizaton 76 2.7 Ultraviolet Irradiation 79 2.7.1 Fundamentals of Photochemistry and UV Radiation 79 2.7.2 UV and Photochemical Reactions in Aqueous System 84 2.7.3 Photocatalysis and Titanium (IV) Oxide 86 2.7.4 Photolysis and Photo-Oxidation Desulfurization 88 CHAPTER 3: MODIFIED OXIDATIVE DESULFURIZATION USING SUPEROXIDE ON MODEL SULFUR COMPOUND STUDY 90 3.1 Introduction 90 3.2 Materials and Experimental Procedures 93 3.2.1 Chemical Preparation 93 3.2.2 Ultrasonic Reactor 94 3.2.3 Ultraviolet Lamp 95 3.2.4 Analytical Method 96 3.3 Experimental Design, Procedure, Results and Discussion 97 3.3.1 Use of Solid Oxidants in Oxidative Desulfurization 97 v 3.3.1.1 Solid Oxidants Selection 97 3.3.1.2 Experimental Procedure 98 3.3.1.3 Results and Discussion 99 3.3.2 Effect of Different Phase Transfer Catalysts 104 3.3.2.1 Phase Transfer Catalyst Selection 104 3.3.2.2 Experimental Procedure 106 3.3.2.3 Results and Discussion 107 3.3.3 Effect of Acid Catalysts 110 3.3.3.1 Acid Catalyst Combination 110 3.3.3.2 Experimental Procedure 111 3.3.3.3 Results and Discussion 112 3.3.4 Effect of Ionic Liquid 114 3.3.4.1 Ionic Liquid Dosage 114 3.3.4.2 Experimental Procedure 115 3.3.4.3 Results and Discussion 116 3.3.4.4 Ionic Liquid Selection 118 3.3.4.5 Experimental Procedure 119 3.3.4.6 Results and Discussion 120 3.3.5 Effect of Treatment Methods 121 3.3.5.1 Time of Ultrasonication 121 3.3.5.2 Experimental Procedure 122 3.3.5.3 Results and Discussion 123 3.4 Desulfurization Efficiency on Various Model Sulfur Compounds 125 3.4.1 Identification of Experimental Optimum Conditions 125 3.4.2 Experimental Procedure 127 3.4.3 Results and Discussion 128 3.5 Kinetic Studies of Desulfurization on Model Sulfur Compounds 129 3.5.1 Experimental Procedure 133 3.5.2 Results and Discussion 134 3.6 Preliminary Study on UV Assisted Desulfurization Process 142 3.6.1 Challenge in UAOD Processes 142 3.6.2 Experimental Procedure 143 3.6.3 Results and Discussion 144 3.7 Summary and Conclusion 145 vi CHAPTER 4: MODIFIED OXIDATIVE DESULFURIZATION USING KO2 AND H2O2 ON PETROLEUM FUEL 148 4.1 Introduction 148 4.2 Materials 150 4.3 Experimental Procedure and Analytical Method 151 4.4 Results and Discussion 152 4.4.1 Desulfurization of JP-8 152 4.4.2 Desulfurization of MGO 155 4.4.3 Desulfurization of Sour Diesel 157 4.4.4 Kinetic Studies of Desulfurization on Various Diesel Samples 159 4.4.5 Desulfurization of Heavy-Distillates 163 4.5 Summary and Conclusion 164 CHAPTER 5: QUALITATIVE ANALYSIS USING GC-SCD 166 5.1 Introduction 166 5.2 Materials 171 5.3 Experimental Procedure 172 5.3.1 Preparation of Model Sulfur Compound Solutions 172 5.3.2 Desulfurization of Feedstock 173 5.3.3 Analytical Method 174 5.3.4 Estimation of Retention Time of Different OSCs 176 5.4 Results and Discussion 179 5.4.1 Model Sulfur Compounds Identification 179 5.4.2 Characterization of Untreated Diesel Samples 184 5.4.3 Characterization of Desulfurized Diesel Samples 187 5.4.4 Characterization of Heavy-Distillates 197 5.5 Mechanism of Inorganic Sulfate Formation 203 5.6 Summary and Conclusion 205 CHAPTER 6: CONCEPTUAL MODEL FOR THE MODIFIED UAOD DESULFURIZATION PROCESS 208 6.1 Introduction 208 vii 6.2 Model Overview 209 6.3 Summary 212 CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 213 7.1 Summary and Conclusion 213 7.2 Recommendations for Future Work 221 REFERENCES 224 viii LIST OF TABLES Table 1.1 Major types of OSCs in petroleum 5 Table 1.2 Sulfur content standards for diesel 7 Table 1.3 Classification of residual oil’s components 11 Table 1.4 Standard properties of residual oil 14 Table 1.5 Sulfur content standards for all marine-use fuel oils 17 Table 1.6 Chemical reactions for the Claus process and the contact process 20 Table 2.1 Sonochemistry in a cavitation bubble formed in water 43 Table 2.2 Chemical reactions initiated by ultrasound in water 44 Table 2.3 Comparison of the UAOD process and its modifications 50 Table 2.4 Oxygen-donor Oxidants 54 Table 2.5 Hydration of anion in chlorobenzene-aqueous system 64 Table 2.6 Standard electrode potentials for selected half-reactions 66 Table 2.7 Specific conductivities 69 Table 2.8 General properties of modern ionic liquids 70 Table 2.9 Toxicity of ionic liquids, expressed as EC50 in µM 71 ix Table 2.10 Ultraviolet Classification 82 Table 2.11 Energy per mole of photons 83 Table 3.1 Specifications of Ultrasonic Reactor VCX-750 listed in product catalogue 94 Table 3.2 Specifications of UV lamp UVLMS-38 listed in product catalogue 95 Table 3.3 Desulfurization efficiency with 30% wt. H2O2 as oxidant 99 Table 3.4 Desulfurization efficiency with KMnO4 as oxidant 100 Table 3.5 Desulfurization efficiency with NaO2 as oxidant 100 Table 3.6 Desulfurization efficiency with KO2 as oxidant 101 Table 3.7 Effect of surfactants on the UAOD process 105 Table 3.8 Desulfurization of DBT solution with TOAF as PTC 108 Table 3.9 Desulfurization of DBT solution with 18-crown-6 as PTC 109 Table 3.10 Desulfurization of DBT solution with respect to acid dosage 112 Table 3.11 Desulfurization of DBT solution with respect to acid catalyst applied 113 Table 3.12 Desulfurization of DBT solution with respect to IL dosage 116 Table 3.13 Desulfurization of DBT solution with respect to type of IL 120 Table 3.14 Desulfurization of DBT solution under magnetic stirring and ultrasound 124 x Table 3.15 Selected conditions for desulfurization in model compound studies with 10 minutes ultrasonication 126 Table 3.16 Desulfurization of various model sulfur compounds 128 Table 3.17 Selected conditions for desulfurization in model compound studies without ultrasonication 132 Table 3.18 Desulfurization efficiencies with respect to reaction time 134 Table 3.19 Rate constants for various model sulfur compounds using KO2 138 Table 3.20 Rate constants for various model sulfur compounds using H2O2 138 Table 3.21 Apparent activation energies for oxidation of BT and DBT 140 Table 3.22 Desulfurization of model sulfur compounds with UV 144 Table 4.1 Desulfurization of JP-8 using KO2 as oxidant 152 Table 4.2 Desulfurization of JP-8 using 30% wt.
Recommended publications
  • Sulfuric Acid from Sulfur Updates on Contact Process PEP Review 2018-12 February 2018
    ` Sulfuric Acid from Sulfur Updates on Contact Process PEP Review 2018-12 February 2018 Rajiv Narang Director Process Economics Program IHS Markit | PEP Review 2018-12 Sulfuric Acid from Sulfur/Updates on Contact Process PEP Review 2018-12 Sulfuric Acid from Sulfur/Updates on Contact Process Rajiv Narang, Director Abstract Sulfuric acid (H2SO4) is the world’s largest consumed chemical, with consumption of around 260 MMT (million metric tons) on a 100% acid basis and a growth rate of around 2%. Traditionally, consumption of this chemical is considered as a barometer of a nation’s GDP. The majority of sulfuric acid production (59%) is from burning of elemental sulfur, in a contact process. The sulfur is sourced mostly from oil and gas processing facilities, in which the sulfur is removed from various petroleum or natural gas products. IHS Markit’s Process Economics Program (PEP) last addressed this production technology in PEP Report 84A, Sulfuric Acid (June 1985), which covered the manufacture of sulfuric acid from sulfur in new versus old, retrofitted plants, as well as from metallurgical offgases. This review specifically updates the contact process for the production of sulfuric acid by burning of elemental sulfur. The review examines the developments in this production technology, including advances in catalyst, material of construction, and heat recovery. The process is simulated using Aspen Plus™ software. It focuses on technology basis, raw material and utility consumptions, equipment list, capital cost, along with capacity exponents, and production costs for a 2,000 STPD (short ton per day) of (100% basis) sulfuric acid product. This review provides insight into sulfuric acid plant process economics, and can be used as a tool for cost estimation for different plant capacities.
    [Show full text]
  • Catalyst Precursors for Hydrodesulfurization Synthesized in Supercritical Fluids Manuel Théodet
    New generation of ”bulk” catalyst precursors for hydrodesulfurization synthesized in supercritical fluids Manuel Théodet To cite this version: Manuel Théodet. New generation of ”bulk” catalyst precursors for hydrodesulfurization synthesized in supercritical fluids. Material chemistry. Université Sciences et Technologies - Bordeaux I,2010. English. NNT : 2010BOR14092. tel-00559113 HAL Id: tel-00559113 https://tel.archives-ouvertes.fr/tel-00559113 Submitted on 24 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License N° d’ordre : 4092 THÈSE présentée à L’UNIVERSITÉ BORDEAUX I ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Par Manuel THEODET Ingénieur ENSCPB POUR OBTENIR LE GRADE DE DOCTEUR SPÉCIALITÉ : Physico-Chimie de la Matière Condensée ___________________ NOUVELLE GENERATION DE PRECURSEURS « BULK » DE CATALYSEUR D’HYDRODESULFURATION SYNTHETISES EN MILIEU FLUIDE SUPERCRITIQUE ___________________ NEW GENERATION OF « BULK » CATALYST PRECURSORS FOR HYDRODESULFURIZATION SYNTHESIZED IN SUPERCRITICAL FLUIDS ___________________ Co-superviseurs de recherche : Cristina Martínez & Cyril Aymonier Soutenue le 03 Novembre 2010 Après avis favorable de : M. E. PALOMARES, Professor, UPV, Valencia, Spain Rapporteurs M. M. TÜRK, Professor, KIT, Karlsruhe, Germany Devant la commission d’examen formée de : M.
    [Show full text]
  • PROCESS MODELING and ANALYSIS of CO2 PURIFICATION for OXY-COAL COMBUSTION MASSACHUSETTS INS E by of TECHNOLOGY
    PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION MASSACHUSETTS INS E By OF TECHNOLOGY Chukwunwike Ogbonnia Iloeje MAY 18 2011 B.Eng. Mechanical Engineering LIBRRIES University of Nigeria, Nsukka, 2004 SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN AR(MES PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JANUARY 2011 0 2011 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author........... ............................... Department of Mechanical Engineering January 14, 2011 Certified by.............. Ahmed F. Ghoniem Ronald C. Crane Professor Thacic Cunanwicnr Accepted by.................................. .... ................. Dave E.Hardt Chairman, Department Committee on Graduate Students *r PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION By Chukwunwike Ogbonnia Iloeje Submitted to the Department of Mechanical Engineering on January 14, 2011 in Partial Fulfillment of the Requirements for the degree of Master of Science in Mechanical Engineering ABSTRACT Oxy-coal combustion technology has great potential as one of the major CO2 capture technologies for power generation from coal. The distinguishing feature of oxy-coal combustion is that the oxygen source is a high concentration oxygen stream and the product flue gas consists primarily of CO2 and H20 with contaminants like NOx, SOx, and non-condensable gases like argon, oxygen and nitrogen. For carbon sequestration and Enhanced Oil Recovery (EOR) applications, pipeline transport standards as well as storage specifications impose concentration limits on these contaminants.
    [Show full text]
  • Chemical Reactions
    INTRODUCTION:- Sulfuric acid (alternative spelling sulphuric acid) is a highly corrosive strong mineral acid with the molecular formula H2SO4. It is a pungent-ethereal, colorless to slightly yellow viscous liquid which is soluble in water at all concentrations.Sometimes, it is dyed dark brown during production to alert people to its hazards.The historical name of this acid is oil of vitriol. Pure sulfuric acid is not encountered naturally on Earth in anhydrous form, due to its great affinity for water. Dilute sulfuric acid is a constituent of acid rain, which is formed by atmospheric oxidation of sulfur dioxide in the presence of water – i.e., oxidation of sulfurous acid. Sulfur dioxide is the main byproduct produced when sulfur-containing fuels such as coal or oil are burned. Sulfuric acid is formed naturally by the oxidation of sulfide minerals, such as iron sulfide. The resulting water can be highly acidic and is called acid mine drainage (AMD) or acid rock drainage (ARD). This acidic water is capable of dissolving metals present in sulfide ores, which results in brightly colored, toxic streams. Alternative Names:- 1. Oil of vitriol 2. Sulfuric acid 3. Vitriol 4. Battery acid 5. Electrolyte acid PHYSICAL PROPERTIES:- Appearance colourless, oily, corrosive liquid Melting point 10 deg C Molecular Formula H2O4S 337 deg C Boiling point 1mm of Hg at 145.8 deg C Vapor pressure 1.840 g/mL Density <0.3 (25 °C, vs air) vapor density 1.01 pH of 10 % of solution Non flammable Flammability limits 98.07848 g/mol Molar weight CHEMICAL PROPERTIES :- Attacks most metals.
    [Show full text]
  • Synthetic Turf Scientific Advisory Panel Meeting Materials
    California Environmental Protection Agency Office of Environmental Health Hazard Assessment Synthetic Turf Study Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019 MEETING MATERIALS THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency Agenda Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019, 9:30 a.m. – 4:00 p.m. 1001 I Street, CalEPA Headquarters Building, Sacramento Byron Sher Auditorium The agenda for this meeting is given below. The order of items on the agenda is provided for general reference only. The order in which items are taken up by the Panel is subject to change. 1. Welcome and Opening Remarks 2. Synthetic Turf and Playground Studies Overview 4. Synthetic Turf Field Exposure Model Exposure Equations Exposure Parameters 3. Non-Targeted Chemical Analysis Volatile Organics on Synthetic Turf Fields Non-Polar Organics Constituents in Crumb Rubber Polar Organic Constituents in Crumb Rubber 5. Public Comments: For members of the public attending in-person: Comments will be limited to three minutes per commenter. For members of the public attending via the internet: Comments may be sent via email to [email protected]. Email comments will be read aloud, up to three minutes each, by staff of OEHHA during the public comment period, as time allows. 6. Further Panel Discussion and Closing Remarks 7. Wrap Up and Adjournment Agenda Synthetic Turf Advisory Panel Meeting May 31, 2019 THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency DRAFT for Discussion at May 2019 SAP Meeting. Table of Contents Synthetic Turf and Playground Studies Overview May 2019 Update .....
    [Show full text]
  • Homogeneous Models of Thiophene Hds Reactions
    HOMOGENEOUS MODELS OF THIOPHENE HDS REACTIONS. SELECTIVITY IN THIOPHENE C-S CLEAVAGE AND THIOPHENE REACTIONS WITH DINUCLEAR METAL COMPLEXES. William D. Jones,* David A. Vicic, R. Martin Chin, James H. Roache, and Andy W. Myers. Department of Chemistry, University of Rochester, Rochester, NY 14627 Received August 1, 1996 - Abstract: The reactive 16 e metal fragment [(C5Me5)Rh(PMe3)] inserts into a wide variety of thiophene C-S bonds. The structures of the thiophene, benzothiophene, and dibenzothiophene insertion complexes have been determined. While the thiophene complex adopts a planar 6- membered ring structure the other metallacycles are bent, and all molecules possess localized diene structures. The mechanism of C-S cleavage was found to proceed by way of initial sulfur coordination. 2-Methylbenzothiophene gives a kinetic product resulting from cleavage of the sulfur-vinyl bond, but then rearranges to cleave the sulfur-aryl bond. A number of substituted dibenzothiophenes were examined, showing little electronic effect of substituents, but showing a large steric effect of substituents at the 4 and 6 positions. 4,6-Dimethyldibenzothiophene does not undergo cleavage, but instead forms an S-bound complex. Reactions of a cobalt analog, (C5Me5)Co(C2H4)2 with thiophenes also lead to C-S cleaved products, and the use of a dinuclear iridium system produces a butadiene complex in which both C-S bonds have been cleaved. Introduction of these sulfur containing compounds prior to The hydrodesulfurization of petroleum is one treatment. Figure 2 shows how this original mixture of several steps in the hydrotreating of oil in which of compounds is changed upon HDS treatment at sulfur is removed from thiols and thiophenes as temperatures of 350 - 390 °C.
    [Show full text]
  • Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical
    International Journal of Molecular Sciences Article The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical 1, 1, 1,2 1 1,2, 3 Xuan Li y, Yixiang Gao y, Chenpeng Zuo , Siyuan Zheng , Fei Xu *, Yanhui Sun and Qingzhu Zhang 1 1 Environment Research Institute, Shandong University, Qingdao 266237, China; [email protected] (X.L.); [email protected] (Y.G.); [email protected] (C.Z.); [email protected] (S.Z.); [email protected] (Q.Z.) 2 Shenzhen Research Institute, Shandong University, Shenzhen 518057, China 3 College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; [email protected] * Correspondence: [email protected]; Tel.: +86-532-58631992 These authors contributed equally to this article. y Received: 11 August 2019; Accepted: 28 October 2019; Published: 31 October 2019 Abstract: Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600 1200 K, using canonical − variational transition state theory with a small-curvature tunneling contribution (CVT/SCT).
    [Show full text]
  • Hydrogenation of 2-Methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Fall 12-2020 Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts Matthew J. Kline University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Catalysis and Reaction Engineering Commons, and the Petroleum Engineering Commons Recommended Citation Kline, Matthew J., "Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts" (2020). Electronic Theses and Dissertations. 3284. https://digitalcommons.library.umaine.edu/etd/3284 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. HYDROGENATION OF 2-METHYLNAPHTHALENE IN A TRICKLE BED REACTOR OVER BIFUNCTIONAL NICKEL CATALYSTS By Matthew J. Kline B.S. Seton Hill University, 2018 A THESIS Submitted in Partial Fulfillment of the Requirements For the Degree of Master oF Science (in Chemical Engineering) The Graduate School The University of Maine December 2020 Advisory Committee: M. Clayton Wheeler, Professor of Chemical Engineering, Advisor Thomas J. Schwartz, Assistant ProFessor oF Chemical Engineering William J. DeSisto, ProFessor oF Chemical Engineering Brian G. Frederick, ProFessor oF Chemistry
    [Show full text]
  • Synthesis and Electropolymerization of Furan End−Capped Dibenzothiophene/Dibenzofuran and Electrochromic Properties of Their Polymers
    Int. J. Electrochem. Sci., 12 (2017) 5000 – 5011, doi: 10.20964/2017.06.29 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Synthesis and Electropolymerization of Furan End−capped Dibenzothiophene/Dibenzofuran and Electrochromic Properties of Their Polymers Hua Gu1‡, Kaiwen Lin2‡, Hongtao Liu3, Nannan Jian3, Kai Qu3, Huimin Yu3, Jun Wei3, Shuai Chen1,4,* and Jingkun Xu1,4,* 1School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China 2School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China 3School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; 4Jiangxi Engineering Laboratory of Waterborne Coatings, Nanchang 330013, PR China *E−mail: [email protected], [email protected] ‡ These authors contributed equally to this work. Received: 20 January 2017 / Accepted: 18 April 2017 / Published: 12 May 2017 Two furan end−capped dibenzo five−membered ring monomers, 2,8−bis−(furan−2−yl)−dibenzothiophene (DBT−Fu) and 2,8−bis−(furan−2−yl)−dibenzofuran (DBF−Fu) were successfully synthesized via Stille couple reaction. Corresponding polymers, P(DBT−Fu) and P(DBF−Fu), were obtained by employed the electropolymerization. The surface morphology, electrochemical and optical properties of monomers and polymers were researched by cyclic voltammetry (CV), scanning electron microscopy (SEM), and UV−via spectra method. Both polymers exhibited obvious color changes from neutral state
    [Show full text]
  • Kinetics of Hydrodesulfurization of Dibenzothiophene on Sulfided Commercial Co-Mo/Γ-Al2o3catalyst IOةŸ ل
    The Journal of Engineering Research Vol. 3, No. 1 (2006) 38-42 Kinetics of Hydrodesulfurization of Dibenzothiophene on Sulfided Commercial Co-Mo/γ-Al2O3 Catalyst Y.S. Al-Zeghayer1 and B.Y. Jibril*2 1Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia 2Petroleum and Chemical Engineering Department, Sultan Qaboos University, P.O. Box 33, Al-Khoud, PC 123, Muscat, Oman Received 27 April 2005; accepted 17 September 2005 …QÉŒ »àjÈc …õØM πeÉY ≈∏Y dibenzothiophene IOÉŸ á«æ«Lh~«¡dG âjȵdG ádGPG äÓYÉØJ á«côM 2@πjÈL .….Ü h 1ÒgõdG .¢S.… á≤∏£e áLQO 683 ¤G 633 ÚH Ée ájQGôM äÉLQO ~æY …QÉŒ »àjÈc …õØM πeÉY ≈∏Y É«∏ª©e â°SQhO dibenzothiophene IOÉŸ á«æ«LhQ~«¡dG âjȵdG ádGPEG äÓYÉØJ áÑ«côJ :á°UÓÿG á«∏ª©ŸG èFÉàædG §Ñæà°ùj ¿G øµÁ áHPɵdG ¤h’G áLQ~dG øe »°VÉjQ êPƒ‰ ¿G âÑKG .âe~îà°SG á«æ«LhQ~«¡dG âjȵdG ádGPGC á«∏ªY øe É¡«∏Y π°UÉ◊G DBT IOÉŸ áØ«©°V äGõ«côJ .…ƒL §¨°V 10 ~æY h (CHB) ɢª˘g ɢ¡˘«˘∏˘Y ∫ƒ˘°üÙG ᢫˘˘°ù«˘˘Fô˘˘dG äɢ˘é˘˘à˘˘æŸG ¿G ~L,, 51.7 kcal/mol …hɢ°ùJ ɢ¡˘fG ~˘˘Lh DBT IOÉe π˘jƒ˘ë˘à˘d á˘£˘°ûæŸG á˘bɢ£˘dG .ᢵ˘∏˘¡˘à˘°ùŸG DBT IOɢ˘Ÿ »£©J á©HÉààŸG ájRGƒàŸG äÓYÉØàdG ¿G ~Lhh .âHôL á©HÉààŸG ájRGƒàŸGh …RGƒàŸG äÓYÉØàdG ɪgh äÓYÉØàdG áµÑ°T øe ÚæKG ¿Gh . Biphenyl (BP) and cyclohexylbenzene (EBP) BP IOÉe ¤G DBT IOÉe πjƒëàd ᣰûæŸG ábÉ£dG º«b ¿G .IQGô◊G áLQO ≈∏Y ~ªà©J CHBIOÉe ¤G BP IOÉe áÑ°ùf ¿Gh .
    [Show full text]
  • ABSTRACT MOLECULAR MODELING of IONIC LIQUIDS for POTENTIAL APPLICATIONS in the DESULFURIZATION of DIESEL FUEL by Miranda R. Caud
    ABSTRACT MOLECULAR MODELING OF IONIC LIQUIDS FOR POTENTIAL APPLICATIONS IN THE DESULFURIZATION OF DIESEL FUEL by Miranda R. Caudle The sulfur compounds in diesel fuel produce harmful environmental pollutants during combustion. Hydrodesulfurization (HDS) is the most common technique to reduce the sulfur content of diesel fuel but cannot effectively remove the aromatic sulfur compounds to produce ultra-low-sulfur diesel. Ionic liquids (ILs) show potential as alternative solvents for extractive desulfurization to be implemented after a conventional HDS process, but the mechanism is not well understood. This work focuses on using a combination of free energy calculations and detailed structural analysis to better understand the molecular-level interactions between dibenzothiophene and seven common imidazolium-based ILs. The free energy calculations suggest that the ILs interact differently with thiophene and dibenzothiophene. No specific interactions were observed between the anion and dibenzothiophene; varying the anion showed no remarkable differences in the observed interactions. It was determined that interactions between dibenzothiophene and the cation were more significant; π-π stacking between the imidazole ring and thiophene ring plus electrostatic interactions between the alkyl chain and benzene rings were observed. The primary goal of this work was to use molecular dynamic simulations to complement current experimental research to find a suitable IL for potential desulfurization applications. A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science by Miranda R. Caudle Miami University Oxford, Ohio 2018 Advisor: Dr. Andrew Paluch Reader: Dr. Catherine Almquist Reader: Dr. Justin Saul ©2018 Miranda R. Caudle This Thesis titled MOLECULAR MODELING OF IONIC LIQUIDS FOR POTENTIAL APPLICATIONS IN THE DESULFURIZATION OF DIESEL FUEL by Miranda R.
    [Show full text]
  • ABSTRACT RUDD, HAYDEN. Assessing the Vulnerability Of
    ABSTRACT RUDD, HAYDEN. Assessing the Vulnerability of Coastal Plain Groundwater to Flood Water Intrusion using High Resolution Mass Spectrometry. (Under the direction of Dr. Elizabeth Guthrie Nichols). Communities in the North Carolina Coastal Plain (NCCP) depend on safe and reliable groundwater for private well use, agriculture, industry, and livelihoods. Although storm intensity and frequency are predicted to increase in coastal areas, the risk of surficial and confined aquifer contamination from extreme storms is not understood. In September 2018, Hurricane Florence caused extensive flooding across the NCCP for several weeks. The North Carolina Department of Environmental Quality (NCDEQ) Groundwater Management Branch had just completed sampling of some wells in their monitoring network when Hurricane Florence made landfall. NCDEQ returned to these wells, particularly those flooded by Hurricane Florence, for post-flood sampling. These groundwater samples were analyzed by NCDEQ for regulated semi-volatile organics with few to any detections of regulated organic contaminants. NCDEQ provided NC State the same sample extracts for analysis by high resolution mass spectrometry (HRMS). This research reports on the non-targeted and suspect-screening HRMS analyses of groundwater from nested monitoring wells. Some monitoring well sites experienced flooding during the study period, and some did not. The goal of this research was to advance our understanding of coastal aquifer susceptibility to flooding by producing the first comprehensive organic chemical profiles of coastal aquifers and by determining if aquifers have distinct organic chemical profiles that change after flooding events. This study used HRMS analyses to produce the first comprehensive organic chemical profiles of 11 aquifers in the coastal plain.
    [Show full text]