Catalyst Precursors for Hydrodesulfurization Synthesized in Supercritical Fluids Manuel Théodet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sulfuric Acid from Sulfur Updates on Contact Process PEP Review 2018-12 February 2018
` Sulfuric Acid from Sulfur Updates on Contact Process PEP Review 2018-12 February 2018 Rajiv Narang Director Process Economics Program IHS Markit | PEP Review 2018-12 Sulfuric Acid from Sulfur/Updates on Contact Process PEP Review 2018-12 Sulfuric Acid from Sulfur/Updates on Contact Process Rajiv Narang, Director Abstract Sulfuric acid (H2SO4) is the world’s largest consumed chemical, with consumption of around 260 MMT (million metric tons) on a 100% acid basis and a growth rate of around 2%. Traditionally, consumption of this chemical is considered as a barometer of a nation’s GDP. The majority of sulfuric acid production (59%) is from burning of elemental sulfur, in a contact process. The sulfur is sourced mostly from oil and gas processing facilities, in which the sulfur is removed from various petroleum or natural gas products. IHS Markit’s Process Economics Program (PEP) last addressed this production technology in PEP Report 84A, Sulfuric Acid (June 1985), which covered the manufacture of sulfuric acid from sulfur in new versus old, retrofitted plants, as well as from metallurgical offgases. This review specifically updates the contact process for the production of sulfuric acid by burning of elemental sulfur. The review examines the developments in this production technology, including advances in catalyst, material of construction, and heat recovery. The process is simulated using Aspen Plus™ software. It focuses on technology basis, raw material and utility consumptions, equipment list, capital cost, along with capacity exponents, and production costs for a 2,000 STPD (short ton per day) of (100% basis) sulfuric acid product. This review provides insight into sulfuric acid plant process economics, and can be used as a tool for cost estimation for different plant capacities. -
PROCESS MODELING and ANALYSIS of CO2 PURIFICATION for OXY-COAL COMBUSTION MASSACHUSETTS INS E by of TECHNOLOGY
PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION MASSACHUSETTS INS E By OF TECHNOLOGY Chukwunwike Ogbonnia Iloeje MAY 18 2011 B.Eng. Mechanical Engineering LIBRRIES University of Nigeria, Nsukka, 2004 SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN AR(MES PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JANUARY 2011 0 2011 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author........... ............................... Department of Mechanical Engineering January 14, 2011 Certified by.............. Ahmed F. Ghoniem Ronald C. Crane Professor Thacic Cunanwicnr Accepted by.................................. .... ................. Dave E.Hardt Chairman, Department Committee on Graduate Students *r PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION By Chukwunwike Ogbonnia Iloeje Submitted to the Department of Mechanical Engineering on January 14, 2011 in Partial Fulfillment of the Requirements for the degree of Master of Science in Mechanical Engineering ABSTRACT Oxy-coal combustion technology has great potential as one of the major CO2 capture technologies for power generation from coal. The distinguishing feature of oxy-coal combustion is that the oxygen source is a high concentration oxygen stream and the product flue gas consists primarily of CO2 and H20 with contaminants like NOx, SOx, and non-condensable gases like argon, oxygen and nitrogen. For carbon sequestration and Enhanced Oil Recovery (EOR) applications, pipeline transport standards as well as storage specifications impose concentration limits on these contaminants. -
Chemical Reactions
INTRODUCTION:- Sulfuric acid (alternative spelling sulphuric acid) is a highly corrosive strong mineral acid with the molecular formula H2SO4. It is a pungent-ethereal, colorless to slightly yellow viscous liquid which is soluble in water at all concentrations.Sometimes, it is dyed dark brown during production to alert people to its hazards.The historical name of this acid is oil of vitriol. Pure sulfuric acid is not encountered naturally on Earth in anhydrous form, due to its great affinity for water. Dilute sulfuric acid is a constituent of acid rain, which is formed by atmospheric oxidation of sulfur dioxide in the presence of water – i.e., oxidation of sulfurous acid. Sulfur dioxide is the main byproduct produced when sulfur-containing fuels such as coal or oil are burned. Sulfuric acid is formed naturally by the oxidation of sulfide minerals, such as iron sulfide. The resulting water can be highly acidic and is called acid mine drainage (AMD) or acid rock drainage (ARD). This acidic water is capable of dissolving metals present in sulfide ores, which results in brightly colored, toxic streams. Alternative Names:- 1. Oil of vitriol 2. Sulfuric acid 3. Vitriol 4. Battery acid 5. Electrolyte acid PHYSICAL PROPERTIES:- Appearance colourless, oily, corrosive liquid Melting point 10 deg C Molecular Formula H2O4S 337 deg C Boiling point 1mm of Hg at 145.8 deg C Vapor pressure 1.840 g/mL Density <0.3 (25 °C, vs air) vapor density 1.01 pH of 10 % of solution Non flammable Flammability limits 98.07848 g/mol Molar weight CHEMICAL PROPERTIES :- Attacks most metals. -
THE H-OIL PROCESS: a Worldwxide LEADER in VACUUM RESIDUE HYDROPROCESSING” \ ^
—t&CR I'd, D 3 YJj TT-097 CONEXPO ARPEL '96 . i ' 1 "THE H-OIL PROCESS: A WORLDWXiDE LEADER IN VACUUM RESIDUE HYDROPROCESSING” \ ^ J.J. Colyar1 L.I. Wisdom2 A. Koskas3 SUMMARY With the uncertainty of market trends, refiners will need to hedge their investment strategies in the future by adding processing units that provide them with flexibility to meet the changing market. The various process configurations involving the H-Oil® Process described in this paper have been tested commercially and provide the refiner with the latest state of the art technology. ABSTRACT The H-Oil® Process is a catalytic hydrocracking process, invented by HRI, Inc., a division of IFP Enterprises, Inc. which is used to convert and upgrade petroleum residua and heavy oils. Today the H-Oil Process accounts for more than 50 percent of the worldwide vacuum residue hydroprocessing market due to its unique flexibility to handle a wide variety of heavy crudes 'while producing clean transportation fuels. The process is also flexible in terms of changes in yield selectivity and product quality. The unconverted vacuum residue from the process can be utilized for fuel oil production, blended into asphalt, routed to resid catalytic cracking, directly combusted or gasified to produce hydrogen. This paper will discuss additional background information on the H-Oil Process, some of the key advances made to the process and applications for the Latin America market. The paper will also discuss the status of recent commercial plants which are in operation or which are under design or construction and which utilize these new advances. -
Thermal Stability Analysis of Hydroprocessing Unit A
THERMAL STABILITY ANALYSIS OF HYDROPROCESSING UNIT A Thesis by YONGCHUL CHO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, M. Sam Mannan Committee Members, Mahmoud M. El-Halwagi Maria A. Barrufet Head of Department, M. Nazmul Karim May 2018 Major Subject: Chemical Engineering Copyright 2018 Yongchul Cho ABSTRACT Thermal stability is one of the most critical safety issues in the hydroprocessing units. Runaway reactions in the units can lead to catastrophic consequences as the reactors are being operated at high temperature and pressure, and the reactor effluent is a highly explosive mixture which contains hydrogen and hydrocarbons. For example, a fire and explosion due to a runaway reaction in a hydrocracking unit caused one death and forty-six injuries in 1997, in California. While the temperature runaway is the topic which has been studied extensively, most of the studies worked on simple reactions and little focused on the complex reactions such as hydroprocessing reactions. Also, in the studies on the hydroprocessing reactions, a lumping kinetic model was used which is less accurate and requires experiments for each application. In this research, the thermal stability of a naphtha hydrotreater will be analyzed by using a commercial process simulator ProMax where a novel mechanistic kinetic model, Single Event Kinetics has been integrated. Also, a simplified model will be established by using the data provided by ProMax for further analysis. The continuity and energy equations and parametric sensitivity equations will be solved by Matlab based on the methodology presented by Morbidelli and Varma. -
Hydrogen Sulfide Capture: from Absorption in Polar Liquids to Oxide
Review pubs.acs.org/CR Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal−Organic Framework Adsorbents and Membranes Mansi S. Shah,† Michael Tsapatsis,† and J. Ilja Siepmann*,†,‡ † Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States ‡ Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States ABSTRACT: Hydrogen sulfide removal is a long-standing economic and environ- mental challenge faced by the oil and gas industries. H2S separation processes using reactive and non-reactive absorption and adsorption, membranes, and cryogenic distillation are reviewed. A detailed discussion is presented on new developments in adsorbents, such as ionic liquids, metal oxides, metals, metal−organic frameworks, zeolites, carbon-based materials, and composite materials; and membrane technologies for H2S removal. This Review attempts to exhaustively compile the existing literature on sour gas sweetening and to identify promising areas for future developments in the field. CONTENTS 4.1. Polymeric Membranes 9785 4.2. Membranes for Gas−Liquid Contact 9786 1. Introduction 9755 4.3. Ceramic Membranes 9789 2. Absorption 9758 4.4. Carbon-Based Membranes 9789 2.1. Alkanolamines 9758 4.5. Composite Membranes 9790 2.2. Methanol 9758 N 5. Cryogenic Distillation 9790 2.3. -Methyl-2-pyrrolidone 9758 6. Outlook and Perspectives 9791 2.4. Poly(ethylene glycol) Dimethyl Ether 9759 Author Information 9792 2.5. Sulfolane and Diisopropanolamine 9759 Corresponding Author 9792 2.6. Ionic Liquids 9759 ORCID 9792 3. Adsorption 9762 Notes 9792 3.1. -
5.1 Petroleum Refining1
5.1 Petroleum Refining1 5.1.1 General Description The petroleum refining industry converts crude oil into more than 2500 refined products, including liquefied petroleum gas, gasoline, kerosene, aviation fuel, diesel fuel, fuel oils, lubricating oils, and feedstocks for the petrochemical industry. Petroleum refinery activities start with receipt of crude for storage at the refinery, include all petroleum handling and refining operations and terminate with storage preparatory to shipping the refined products from the refinery. The petroleum refining industry employs a wide variety of processes. A refinery's processing flow scheme is largely determined by the composition of the crude oil feedstock and the chosen slate of petroleum products. The example refinery flow scheme presented in Figure 5.1-1 shows the general processing arrangement used by refineries in the United States for major refinery processes. The arrangement of these processes will vary among refineries, and few, if any, employ all of these processes. Petroleum refining processes having direct emission sources are presented on the figure in bold-line boxes. Listed below are 5 categories of general refinery processes and associated operations: 1. Separation processes a. Atmospheric distillation b. Vacuum distillation c. Light ends recovery (gas processing) 2. Petroleum conversion processes a. Cracking (thermal and catalytic) b. Reforming c. Alkylation d. Polymerization e. Isomerization f. Coking g. Visbreaking 3.Petroleum treating processes a. Hydrodesulfurization b. Hydrotreating c. Chemical sweetening d. Acid gas removal e. Deasphalting 4.Feedstock and product handling a. Storage b. Blending c. Loading d. Unloading 5.Auxiliary facilities a. Boilers b. Waste water treatment c. Hydrogen production d. -
Hydrodesulfurization of Thiophene and Benzothiophene to Butane and Ethylbenzene by a Homogeneous Iridium Complex
1912 Organometallics 1997, 16, 1912-1919 Hydrodesulfurization of Thiophene and Benzothiophene to Butane and Ethylbenzene by a Homogeneous Iridium Complex David A. Vicic and William D. Jones* Department of Chemistry, University of Rochester, Rochester, New York 14627 Received December 3, 1996X 5 Reaction of the dimer [Cp*IrHCl]2 (Cp* ) η -C5Me5) in benzene solution with either thiophene or benzothiophene at 90 °C in the presence of H2 gives the hydrogenolysis products [Cp*IrCl]2(µ-H)(µ-SC4H9)(1) and [Cp*IrCl]2(µ-H)[µ-S(C6H4)CH2CH3](2), respectively, in high yields. Upon further thermolysis under H2, the completely desulfurized products, butane and ethylbenzene, can be made. Complexes 1 and 2 were characterized by single-crystal X-ray diffraction. In the absence of H2, reaction of [Cp*Ir HCl]2 with thiophene gives an additional trinuclear product [Cp*IrCl]3(H)(SC4H6)(3), which was also structurally character- ized. Introduction Previously in our lab the dimeric species [Cp*IrH3]2 was observed to cleave both C-S bonds of thiophene in The hydroprocessing of crude oil is one of the largest the presence of a hydrogen acceptor (eq 1).4a Reaction scale chemical processes carried out in industry today. In this process, heteroatom impurities such as thio- phenes, mercaptans, and quinolines are removed, mak- ing the oil amenable to further refining. Removal of the sulfur compounds, in particular, decreases the contribu- tions to acid rain production upon fuel combustion and is also valuable in preventing catalyst poisoning both in the refinement process and in automobiles.1 Because of both the environmental and economic rewards that can be achieved through the hydrodesulfurization (HDS) of this butadiene complex with hydrogen yielded the process, recent research has focused on trying to better desulfurized product n-butane. -
Hydrodesulfurization and Hydrodenitrogenation of Diesel Distillate from Fushun Shale Oil
Oil Shale, 2010, Vol. 27, No. 2, pp. 126–134 ISSN 0208-189X doi: 10.3176/oil.2010.2.03 © 2010 Estonian Academy Publishers HYDRODESULFURIZATION AND HYDRODENITROGENATION OF DIESEL DISTILLATE FROM FUSHUN SHALE OIL HANG YU(a)*, SHUYUAN LI(a), GUANGZHOU JIN(b) (a) State Key Laboratory of Heavy Oil Processing China University of Petroleum, Beijing 102249, China (b) Beijing Institute of Petrochemical Technology, Beijing 102617, China Relatively high content of nitrogen and sulfur in shale oil can have an adverse influence on its potential utilization as a substitute fuel. In this paper, the results of preliminary investigation into catalytic hydrotreating of diesel fraction (200–360 °C) of Fushun shale oil are presented. Hydrogenation was carried out in a fixed-bed reactor using sulfided catalysts Ni-W/Al2O3 and Co-Mo/Al2O3. The influence of temperature, pressure, liquid hourly space velocity (LHSV) and hydrogen/feedstock ratio on hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) was investigated. Catalytic activities of two catalysts were compared. The results showed that increasing temperature, high pressure and long residence time (reciprocal of LHSV) promoted the removal of sulfur and nitrogen, while the impact of hydrogen/feedstock ratio was smaller. The degree of nitrogen removal was substantially higher than that of sulfur. HDS efficiencies of two catalysts were comparable in severe conditions. The catalyst Ni-W/Al2O3 was much more active at HDN than Co- Mo/Al2O3 catalyst in all conditions selected. The oil cleaned in optimum conditions is characterized by low content of sulfur, nitrogen and alkenes. It can be used as a more valuable fuel. Introduction Dependence on non-conventional resources for energy and petrochemical industry feedstock will likely increase in the coming future because of the shortage of petroleum resource. -
Economical Sulfur Removal for Fuel Processing Plants Challenge Sulfur Is Naturally Present As an Impurity in Fossil Fuels
SBIR Advances More Economical Sulfur Removal for Fuel Processing Plants Challenge Sulfur is naturally present as an impurity in fossil fuels. When the fuels are burned, the sulfur is released as sulfur dioxide—an air pollutant responsible for respiratory problems and acid rain. Environmental regulations have increasingly restricted sulfur dioxide emissions, forcing fuel processors to remove the sulfur from both fuels and exhaust gases. The cost of removing sulfur from natural gas and petroleum in the United States was about DOE Small Business Innovation $1.25 billion in 2008*. In natural gas, sulfur is present mainly as hydrogen sulfide gas (H2S), Research (SBIR) support while in crude oil it is present in sulfur-containing organic compounds which are converted enabled TDA to develop and into hydrocarbons and H2S during the removal process (hydrodesulfurization). In both cases, commercialize its direct oxidation corrosive, highly-toxic H2S gas must be converted into elemental sulfur and removed for sale or process—a simple, catalyst-based safe disposal. system for removing sulfur from At large scales, the most economical technology for converting hydrogen sulfide into sulfur is natural gas and petroleum—that the Claus process. This well-established process uses partial combustion and catalytic oxidation was convenient and economical enough for smaller fuel processing to convert about 97% of the H2S to elemental sulfur. In a typical application, an amine treatment plants to use. unit concentrates the H2S before it enters the Claus unit, and a tail gas treatment unit removes the remaining 3% of the H2S after it exits the Claus unit. This multi-step process has low operating costs but high capital costs—too expensive for TDA Research, Inc. -
Thiophene Hydrodesulfurization Catalysis on Supported Ru Clusters: Mechanism and Site Requirements for Hydrogenation and Desulfurization Pathways
Journal of Catalysis 273 (2010) 245–256 Contents lists available at ScienceDirect Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat Thiophene hydrodesulfurization catalysis on supported Ru clusters: Mechanism and site requirements for hydrogenation and desulfurization pathways Huamin Wang, Enrique Iglesia * Department of Chemical Engineering, University of California and Chemical Sciences Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA article info abstract Article history: Kinetic and isotopic methods were used to probe elementary steps and site requirements for thiophene Received 9 April 2010 hydrogenation and desulfurization on Ru metal clusters. Turnover rates for these reactions were unaf- Revised 27 May 2010 fected by whether samples were treated in H2 or H2S to form metal and sulfide clusters, respectively, Accepted 28 May 2010 before reaction. These data, taken together with the rate and extent of sulfur removal from used samples Available online 1 July 2010 during contact with H2, indicate that active structures consist of Ru metal clusters saturated with chem- isorbed sulfur at temperatures, pressures, and H2S levels relevant to hydrodesulfurization catalysis. Turn- Keywords: over rates and isotopic data over a wide range of H ,HS, and thiophene pressures are consistent with Hydrodesulfurization 2 2 elementary steps that include quasi-equilibrated H and H S heterolytic dissociation and thiophene bind- Thiophene 2 2 1 4 Ruthenium ing with g (S) or g coordination onto sulfur vacancies. We conclude that hydrogenation proceeds via d+ d+ 4 Kinetic addition of protons (H , as –S–H from H2 or H2S dissociation) to g thiophene species, while desulfur- 1 dÀ Kinetic isotope effects ization involves C–S activation in g (S) species aided by H species formed via H2 dissociation. -
5.1 Petroleum Refining1
5.1 Petroleum Refining1 5.1.1 General Description The petroleum refining industry converts crude oil into more than 2500 refined products, including liquefied petroleum gas, gasoline, kerosene, aviation fuel, diesel fuel, fuel oils, lubricating oils, and feedstocks for the petrochemical industry. Petroleum refinery activities start with receipt of crude for storage at the refinery, include all petroleum handling and refining operations, and they terminate with storage preparatory to shipping the refined products from the refinery. The petroleum refining industry employs a wide variety of processes. A refinery’s processing flow scheme is largely determined by the composition of the crude oil feedstock and the chosen slate of petroleum products. The example refinery flow scheme presented in Figure 5.1-1 shows the general processing arrangement used by refineries in the United States for major refinery processes. The arrangement of these processes will vary among refineries, and few, if any, employ all of these processes. Petroleum refining processes having direct emission sources are presented on the figure in bold-line boxes. Listed below are 5 categories of general refinery processes and associated operations: 1. Separation processes a. Atmospheric distillation b. Vacuum distillation c. Light ends recovery (gas processing) 2. Petroleum conversion processes a. Cracking (thermal and catalytic) b. Reforming c. Alkylation d. Polymerization e. Isomerization f. Coking g. Visbreaking 3. Petroleum treating processes a. Hydrodesulfurization b. Hydrotreating c. Chemical sweetening d. Acid gas removal e. Deasphalting 4. Feedstock and product handling a. Storage b. Blending c. Loading d. Unloading 5. Auxiliary facilities a. Boilers b. Waste water treatment c. Hydrogen production d.