Some Derivatives of Dibenzofuran and Dibenzothiophene Robert Kelly Ingham Iowa State College

Total Page:16

File Type:pdf, Size:1020Kb

Some Derivatives of Dibenzofuran and Dibenzothiophene Robert Kelly Ingham Iowa State College Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1952 Some derivatives of dibenzofuran and dibenzothiophene Robert Kelly Ingham Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Ingham, Robert Kelly, "Some derivatives of dibenzofuran and dibenzothiophene " (1952). Retrospective Theses and Dissertations. 13987. https://lib.dr.iastate.edu/rtd/13987 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. SOME DERIVATIVES OP DIBENZOPURAN AND DIBENZOTHIOPHENE by Robert Kelly Ingham A Dissertation Submitted to the Graduate Faculty in Partial Pulfillment of The Requirements for the Degree of DOCTOR OP PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Departil^nt Signature was redacted for privacy. Dean of Graduate College Iowa State College 1952 UMI Number: DP12780 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform DP12780 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ACKNOWIEDOMENT The author wishes to express his sincere appreciation to Dr. Henry Gilman for helpful advice, criticism and encouragement given throughout the course of this investigation. TI04'H) -lli- TABLE OP CONTENTS Page INTRODUCTION . 1 HISTORICAL ..... 5 Chemotherapy of Tuberculosis 5 Dialkylaminoalkylamines of Fused Heterocyclic Systems . 3k- Derivatives of Dibenzofuran and Dibenzothiophene. 43 EXPERIMENTAL 122 Dibenzofuran Derivatives 122 Preparation of 3-nitrodibenaofuran .... 122 Preparation of 3-®u»inodibenzofuran .... 123 Bromination of 2-bromo-3-acetaraino- dibenzofuran ............... 12$ Preparation of 2«-br(»nodibenzof\u:>an .... 126 Reductive debromination of 2-brcHttO- dibenzofuran ....... 127 Reductive debromination of 2,8-dibromodibenzofuran. ........ 128 Rim X 126 Run II 128 Run III 128 Run IV 128 Nitration of 2,8-dibromodibenzofuran . 129 Preparation of 2-bromo-7-nitro- dibenzofuran I30 Preparation of 2-bromo-7-amino~ dibenzofuran I3I Preparation of 2-brorao-7-acetamino- dibenzofuran I32 Bromination of 2-brorao-7-acetamino- dibenzofuran ...... 4, . 132 Preparation of 2,8-dibrorao-3-anilno- dibenzofuran 133 Deamination of 2,8-dibr<»no-3-amino- dibenzofuran 133 -Iv- Page Preparation of 2-nitrodibenzoftiran .... 13ii. Preparation of 2-bromo-8-nitro- dibensofiiran 135 Preparation of 3-cyanodibenzofuran .... 136 Preparation of 3-dil5«nzofuran- carboxylic acid 137 Metalation of 3-aminodibenzofuran. .... 138 Preparation of l^-aminodibenzofuran .... 139 Preparation of 3-nitrodibenzof\aran from 3-<uninodibenzofuran II4.0 Preparation of i|.-nitrodibenzof\xran frcan l4.-aminodlbenzofuran li|2 Preparation of 2-chloromethyl- dibenzofuran ll|J2 Run I IkZ Run II Ili3 Rtin III liiif Run IV liil^. Dibenzothiophene Derivatives IkS Preparation of 2-bromodibenzo- thiophene li\$ Preparation of 2-broraodibenzo- thiophene oxide. li).6 Preparation of 2-bromo-7-nitro- dibenzothiophene-5-dioxide lij.? Preparation of 2-brcaBO-7-aiaino- dibenzothiophene-S-dioxide ....... Riui I.... 1)4.3 Run II lJi9 Preparation of 2-nitrodibenzo- thiophene. 11|.9 Preparation of 2-acetaininodibenzo> thiophene I51 Nitration of 2-acetaminodibenzo- thiophene 152 Attempted hydrolysis of nitro-2- acetaminodibenzothiophene 153 Run I........ 153 Run II 153 R\in III 153 -V- Preparation of 2-bromo-8-nitro- dibenzothiophene . 15^4- Preparation of 2-bromo-8-araino- dibenzothiophene ..... .. 155 Preparation of dibenzothiophene-5-oxlde. 156 Reaction of dibenzothiopheno-5"0*l<i® with bromine 157 Reaction of dibenzothiophene-5-oxide with hydrogen bromide. 158 Reaction of dibenzothiophene-5-oxide with N-bromosuccinimide . 159 Preparation of 3'-Aminodibenzothlophene . 160 Preparation of 3-hromodibenzothlophene . 161 From 3--^inodibenzothiophene 161 Prom 3-bromodibenzothiophene-5- dioxide 163 Preparation of I|.-aminodibenzothlophene . • I6i|. Preparation of 4-(P-dimethylamino- ethylamino)-dibenzothiophene 1614. Preparation of I4.-(p-dimethylamino- isopropylaralno)-dibenzothiophene .... 165 Nitrogen Heterocyclic Derivatives 166 Reaction of phenothiazine with lithiixm . 166 Run I 166 Run II 168 Run III . 168 Reaction of 10-ethylphenothiazine with lithium 169 Run I 169 Run II. ....... 170 Reaction of carbazole with lithium .... 160 Preparation of some heterocyclic sulfides ...... 170 Preparation of 2-(benzyl- meroapto)-<luinoline I7I Preparation of 2-(n-dodecyl- mercapto)-quinolTne 172 Preparation of 2-(n-hexadecyl- mercapto)-quinolTne 172 -vl- Page Preparation of 2-(n-octadecyl- mercapto)oquinolTne 172 Preparation of 2-benzothiazolyl 2-quinolyl sulfide 173 Preparation of 2-{l|.-phenyl- thiazolyl) 2-quinolyl sulfide . • 173 Preparation of 2-benzlinidazolyl 2-quinolyl sulfide 173 Preparation of i|.-(7-chloro- quinolyl) 2-benzothiazolyl sulfide 1714- DISCUSSION 175 Dibenzofuran Derivatives. 175 Dibenzothiophene Derivatives. ... 186 Nitrogen Heterocyclic Derivatives ....... 195 Suggestions for Further Research 199 SUMMARY 202 INTRODUCTION The llteratvire of dibenzofxiran (I) and dlbenzothlo- phene (la) is somewhat confusing because of the different systems of niarabering employed. The system used In this work and In all recent publications in this coxmtry is that adopted in 1937 by Chemical Abstracts. I la The numbering system employed by Chemical Abstracts prior to 1937 and that still employed in most coimtries other than the United States is II Ila Usually, when the former system (I,la) is involved the com­ pound is listed as a derivative of dibenzofuran or dibenzo- thiophene, while with the latter system (II,Ila) it is described as a derivative of diphenylene oxide or diphenylene sulfide; this generalization is not infallible, however, especially with the older literature. A third system of numbering recommended by Professor A. M. Patterson in this country and by Professor M, Richter abroad^ was prevalent in the literatxire of the early 1930»s (III,Ilia). This system was discarded before it had become common. Ill Ilia Due to these divergent systems considerable care must be taken when consulting the literature to ascertain the method of numbering* A brief review of the chemistry of dibenzofuran may be found among Elderfield's heterocyclic volumes.2 Perhaps for a more complete accoxmt of the chemistry of dibenzofuran, and especially for accounts of the problems of orientation and structure proof of derivatives of dibenzofuran and the solutions to these problems one should consult, preferably * ^ H. Oatfield, Unpublished Master's Thesis, Iowa State College, 1933• 2 R. C. Elderfleld, "Heterocyclic Compounds", John Wiley and Sons, Inc., New York, N. Y., 1951 * Vol. 2. -3- consecutively, dissertations from this laboratory concerning this toplc.l'3A.5.6.7,8,9,10 A brief review of the chemistry of dibenzothiophene likewise may be found in Elderfield'a Volume II.2 An addi­ tional review can be obtained by consulting works of Jacoby,^^ Avakian,^^ Nobis and Esmay.^^ A bibliography ^ D. M. Hayes, Unpublished Master's Thesis, Iowa State College, 19311-. ^ M. W. Van Ess, Doctoral Dissertation, Iowa State College, 1936. ^ P. R. Van Ess, Doctoral Dissertation, Iowa State College, 1936. ^ L. C. Cheney, Doctoral Dissertation, Iowa State College, 1938. 7 j« Swislowsky, Doctoral Dissertation, Iowa State College, 1939* ® H. B. Willis, Doctoral Dissertation, Iowa State College, 1943• ^ J. R. Thirtle, Doctoral Dissertation, Iowa State College, 19i4-3 • J. A. Hogg, Doctoral Dissertation, Iowa State College, 191^1.. A. L. Jacoby, Doctoral Dissertation, Iowa State College, 1938• S. Avakian, Doctoral Dissertation, Iowa State College, 19iji|.« J, P. Nobis, Doctoral Dissertation, Iowa State College, 19i|.8 • D. L. Esiaay, Doctoral Dissertation, Iowa State College, 1951• of dibenzothiophene and its derivatives through 1950 may be found in the dissertation of Esmay.^ The increased interest in dibenzofuran and dibenzothio­ phene is evidenced by the increased volume of literature concerning these compounds and their derivatives. It is also noteworthy that a considerable number of patents con­ cerning derivatives of dibenzofwan and dibenzothiophene have been granted in recent years, the chief interests being toward possible pharmaceuticals or dyes. HISTORICAL The purpose of the literature survey to be discussed In the following pages Is to furnish a general backgrotmd of information pertinent to the experimental work carried out during the course of this study. The
Recommended publications
  • R Graphics Output
    Dexamethasone sodium phosphate ( 0.339 ) Melengestrol acetate ( 0.282 ) 17beta−Trenbolone ( 0.252 ) 17alpha−Estradiol ( 0.24 ) 17alpha−Hydroxyprogesterone ( 0.238 ) Triamcinolone ( 0.233 ) Zearalenone ( 0.216 ) CP−634384 ( 0.21 ) 17alpha−Ethinylestradiol ( 0.203 ) Raloxifene hydrochloride ( 0.203 ) Volinanserin ( 0.2 ) Tiratricol ( 0.197 ) trans−Retinoic acid ( 0.192 ) Chlorpromazine hydrochloride ( 0.191 ) PharmaGSID_47315 ( 0.185 ) Apigenin ( 0.183 ) Diethylstilbestrol ( 0.178 ) 4−Dodecylphenol ( 0.161 ) 2,2',6,6'−Tetrachlorobisphenol A ( 0.156 ) o,p'−DDD ( 0.155 ) Progesterone ( 0.152 ) 4−Hydroxytamoxifen ( 0.151 ) SSR150106 ( 0.149 ) Equilin ( 0.3 ) 3,5,3'−Triiodothyronine ( 0.256 ) 17−Methyltestosterone ( 0.242 ) 17beta−Estradiol ( 0.24 ) 5alpha−Dihydrotestosterone ( 0.235 ) Mifepristone ( 0.218 ) Norethindrone ( 0.214 ) Spironolactone ( 0.204 ) Farglitazar ( 0.203 ) Testosterone propionate ( 0.202 ) meso−Hexestrol ( 0.199 ) Mestranol ( 0.196 ) Estriol ( 0.191 ) 2,2',4,4'−Tetrahydroxybenzophenone ( 0.185 ) 3,3,5,5−Tetraiodothyroacetic acid ( 0.183 ) Norgestrel ( 0.181 ) Cyproterone acetate ( 0.164 ) GSK232420A ( 0.161 ) N−Dodecanoyl−N−methylglycine ( 0.155 ) Pentachloroanisole ( 0.154 ) HPTE ( 0.151 ) Biochanin A ( 0.15 ) Dehydroepiandrosterone ( 0.149 ) PharmaCode_333941 ( 0.148 ) Prednisone ( 0.146 ) Nordihydroguaiaretic acid ( 0.145 ) p,p'−DDD ( 0.144 ) Diphenhydramine hydrochloride ( 0.142 ) Forskolin ( 0.141 ) Perfluorooctanoic acid ( 0.14 ) Oleyl sarcosine ( 0.139 ) Cyclohexylphenylketone ( 0.138 ) Pirinixic acid ( 0.137 )
    [Show full text]
  • Chlorinated and Polycyclic Aromatic Hydrocarbons in Riverine and Estuarine Sediments from Pearl River Delta, China
    Environmental Pollution 117 (2002) 457–474 www.elsevier.com/locate/envpol Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China Bi-Xian Maia,*, Jia-Mo Fua, Guo-Ying Shenga, Yue-Hui Kanga, Zheng Lina, Gan Zhanga, Yu-Shuan Mina, Eddy Y. Zengb aState Key Lab Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, PO Box 1130, Guangzhou, Guangdong 510640, People’s Republic of China bSouthern California Coastal Water Research Project, 7171 Fenwick Lane, Westminster, CA 92683, USA Received 5 January 2001; accepted 3 July 2001 ‘‘Capsule’’: Sediments of the Zhujiang River and Macao Harbor have the potential to be detrimental to biological systems. Abstract Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and poly- cyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6–1658 ng/g, while concentrations of PCBs are in the range 10–339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic con- dition, and land erosion due to urbanization processes.
    [Show full text]
  • Dibenzofuran, 4-Chromanone, Acetophenone, and Dithiecine Derivatives: Cytotoxic Constituents from Eupatorium Fortunei
    International Journal of Molecular Sciences Article Dibenzofuran, 4-Chromanone, Acetophenone, and Dithiecine Derivatives: Cytotoxic Constituents from Eupatorium fortunei Chun-Hao Chang 1, Semon Wu 2, Kai-Cheng Hsu 3,4, Wei-Jan Huang 5,6 and Jih-Jung Chen 7,8,9,* 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] 2 Department of Life Science, Chinese Culture University, Taipei 110, Taiwan; [email protected] 3 Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; [email protected] 4 Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan 5 Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; [email protected] 6 Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan 7 Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan 8 Faculty of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan 9 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2826-7195; Fax: +886-2-2823-2940 Abstract: Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8- methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6-16).
    [Show full text]
  • Synthetic Turf Scientific Advisory Panel Meeting Materials
    California Environmental Protection Agency Office of Environmental Health Hazard Assessment Synthetic Turf Study Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019 MEETING MATERIALS THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency Agenda Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019, 9:30 a.m. – 4:00 p.m. 1001 I Street, CalEPA Headquarters Building, Sacramento Byron Sher Auditorium The agenda for this meeting is given below. The order of items on the agenda is provided for general reference only. The order in which items are taken up by the Panel is subject to change. 1. Welcome and Opening Remarks 2. Synthetic Turf and Playground Studies Overview 4. Synthetic Turf Field Exposure Model Exposure Equations Exposure Parameters 3. Non-Targeted Chemical Analysis Volatile Organics on Synthetic Turf Fields Non-Polar Organics Constituents in Crumb Rubber Polar Organic Constituents in Crumb Rubber 5. Public Comments: For members of the public attending in-person: Comments will be limited to three minutes per commenter. For members of the public attending via the internet: Comments may be sent via email to [email protected]. Email comments will be read aloud, up to three minutes each, by staff of OEHHA during the public comment period, as time allows. 6. Further Panel Discussion and Closing Remarks 7. Wrap Up and Adjournment Agenda Synthetic Turf Advisory Panel Meeting May 31, 2019 THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency DRAFT for Discussion at May 2019 SAP Meeting. Table of Contents Synthetic Turf and Playground Studies Overview May 2019 Update .....
    [Show full text]
  • Homogeneous Models of Thiophene Hds Reactions
    HOMOGENEOUS MODELS OF THIOPHENE HDS REACTIONS. SELECTIVITY IN THIOPHENE C-S CLEAVAGE AND THIOPHENE REACTIONS WITH DINUCLEAR METAL COMPLEXES. William D. Jones,* David A. Vicic, R. Martin Chin, James H. Roache, and Andy W. Myers. Department of Chemistry, University of Rochester, Rochester, NY 14627 Received August 1, 1996 - Abstract: The reactive 16 e metal fragment [(C5Me5)Rh(PMe3)] inserts into a wide variety of thiophene C-S bonds. The structures of the thiophene, benzothiophene, and dibenzothiophene insertion complexes have been determined. While the thiophene complex adopts a planar 6- membered ring structure the other metallacycles are bent, and all molecules possess localized diene structures. The mechanism of C-S cleavage was found to proceed by way of initial sulfur coordination. 2-Methylbenzothiophene gives a kinetic product resulting from cleavage of the sulfur-vinyl bond, but then rearranges to cleave the sulfur-aryl bond. A number of substituted dibenzothiophenes were examined, showing little electronic effect of substituents, but showing a large steric effect of substituents at the 4 and 6 positions. 4,6-Dimethyldibenzothiophene does not undergo cleavage, but instead forms an S-bound complex. Reactions of a cobalt analog, (C5Me5)Co(C2H4)2 with thiophenes also lead to C-S cleaved products, and the use of a dinuclear iridium system produces a butadiene complex in which both C-S bonds have been cleaved. Introduction of these sulfur containing compounds prior to The hydrodesulfurization of petroleum is one treatment. Figure 2 shows how this original mixture of several steps in the hydrotreating of oil in which of compounds is changed upon HDS treatment at sulfur is removed from thiols and thiophenes as temperatures of 350 - 390 °C.
    [Show full text]
  • Kinetic Study of Decomposition of Azo Dyes and Phenol in Advanced Oxidation Processes: Reaction Mechanisms, Pathways and Intermediates
    Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Guidance on Information Requirements and Chemical Safety Assessment Chapter R.6: Qsars and Grouping of Chemicals
    Guidance on information requirements and chemical safety assessment Chapter R.6: QSARs and grouping of chemicals May 2008 Guidance for the implementation of REACH LEGAL NOTICE This document contains guidance on REACH explaining the REACH obligations and how to fulfil them. However, users are reminded that the text of the REACH regulation is the only authentic legal reference and that the information in this document does not constitute legal advice. The European Chemicals Agency does not accept any liability with regard to the contents of this document. © European Chemicals Agency, 2008 Reproduction is authorised provided the source is acknowledged. 2 CHAPTER R.6 – QSARS AND GROUPING OF CHEMICALS PREFACE This document describes the information requirements under REACH with regard to substance properties, exposure, use and risk management measures, and the chemical safety assessment. It is part of a series of guidance documents that are aimed to help all stakeholders with their preparation for fulfilling their obligations under the REACH regulation. These documents cover detailed guidance for a range of essential REACH processes as well as for some specific scientific and/or technical methods that industry or authorities need to make use of under REACH. The guidance documents were drafted and discussed within the REACH Implementation Projects (RIPs) led by the European Commission services, involving stakeholders from Member States, industry and non-governmental organisations. These guidance documents can be obtained via the website of
    [Show full text]
  • Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical
    International Journal of Molecular Sciences Article The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical 1, 1, 1,2 1 1,2, 3 Xuan Li y, Yixiang Gao y, Chenpeng Zuo , Siyuan Zheng , Fei Xu *, Yanhui Sun and Qingzhu Zhang 1 1 Environment Research Institute, Shandong University, Qingdao 266237, China; [email protected] (X.L.); [email protected] (Y.G.); [email protected] (C.Z.); [email protected] (S.Z.); [email protected] (Q.Z.) 2 Shenzhen Research Institute, Shandong University, Shenzhen 518057, China 3 College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; [email protected] * Correspondence: [email protected]; Tel.: +86-532-58631992 These authors contributed equally to this article. y Received: 11 August 2019; Accepted: 28 October 2019; Published: 31 October 2019 Abstract: Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600 1200 K, using canonical − variational transition state theory with a small-curvature tunneling contribution (CVT/SCT).
    [Show full text]
  • Hydrogenation of 2-Methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Fall 12-2020 Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts Matthew J. Kline University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Catalysis and Reaction Engineering Commons, and the Petroleum Engineering Commons Recommended Citation Kline, Matthew J., "Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts" (2020). Electronic Theses and Dissertations. 3284. https://digitalcommons.library.umaine.edu/etd/3284 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. HYDROGENATION OF 2-METHYLNAPHTHALENE IN A TRICKLE BED REACTOR OVER BIFUNCTIONAL NICKEL CATALYSTS By Matthew J. Kline B.S. Seton Hill University, 2018 A THESIS Submitted in Partial Fulfillment of the Requirements For the Degree of Master oF Science (in Chemical Engineering) The Graduate School The University of Maine December 2020 Advisory Committee: M. Clayton Wheeler, Professor of Chemical Engineering, Advisor Thomas J. Schwartz, Assistant ProFessor oF Chemical Engineering William J. DeSisto, ProFessor oF Chemical Engineering Brian G. Frederick, ProFessor oF Chemistry
    [Show full text]
  • Questions for the Record Public Meeting on the Petition Regarding Additive Organohalogen Flame Retardants U.S
    Questions for the Record Public Meeting on the Petition Regarding Additive Organohalogen Flame Retardants U.S. Consumer Product Safety Commission Bethesda, MD Part 3 of 4: This file contains the questions and responses for presenters 25 through 27. Panel Presenter Affiliation Notes Panel 1 1 Linda Birnbaum, Ph.D. NIEHS/National Toxicology Program Panel 2 2 William Wallace Consumers Union 3 Eve Gartner Earthjustice Northeast Office 4 Simona Balan, Ph.D. Green Science Policy Institute Joint response 5 Arlene Blum, Ph.D. 6 Miriam Diamond, Ph.D. University of Toronto Panel 3 7 Jennifer Lowery, MD, FAAP American Academy of Pediatrics 8 Patrick Morrison International Association of Fire Fighters 9 Luis Torres League of United Latin American Citizens 10 Maureen Swanson, MPA Learning Disabilities Association of America 11 Daniel Penchina The Raben Group/Breast Cancer Fund American Chemistry Council/North American Panel 4 12 Robert Simon Flame Retardant Alliance 13 Michael Walls American Chemistry Council No response 14 Matthew S. Blais, Ph.D. Southwest Research Institute 15 Thomas Osimitz, Ph.D. Science Strategies Information Technology Industry Council and the 16 Chris Cleet, QEP Consumer Technology Association 17 Timothy Reilly Clariant Corporation Panel 5 18 Rachel Weintraub Consumer Federation of America 19 Katie Huffling, RN, MS, CNM Alliance of Nurses for Family Environments 20 Kathleen A. Curtis, LPN Clean and Healthy New York Ecology Center/American Sustainable Business 21 Jeff Gearhart Council 22 Bryan McGannon American Sustainable Business Council Panel 6 23 Vytenis Babrauskas, Ph.D. Fire Science and Technology, Inc. 24 Donald Lucas, Ph.D. Lawrence Berkeley National Laboratory 25 Jennifer Sass, Ph.D.
    [Show full text]
  • Dibenzofuran-Induced Mitochondrial Dysfunction: Interaction with ANT Carrier ⇑ F.V
    Toxicology in Vitro 27 (2013) 2160–2168 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Dibenzofuran-induced mitochondrial dysfunction: Interaction with ANT carrier ⇑ F.V. Duarte a,b, , A.P. Gomes a,b, J.S. Teodoro a,b, A.T. Varela a,b, A.J.M. Moreno b, A.P. Rolo a,c, C.M. Palmeira a,b a CNC – Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal b Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal c Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal article info abstract Article history: Exposure to environmental pollutants such as dibenzofurans and furans is linked to the pathophysiology Received 6 April 2013 of several diseases. Dibenzofuran (DBF) is listed as a pollutant of concern due to its persistence in the Accepted 26 August 2013 environment, bioaccumulation and toxicity to humans, being associated with the development of lung Available online 3 September 2013 diseases and cancers, due to its extremely toxic properties such as carcinogenic and teratogenic. Mitochondria play a key role in cellular homeostasis and keeping a proper energy supply for eukaryotic Keywords: cells is essential in the fulfillment of the tissues energy-demand. Therefore, interference with mitochon- Adenine nucleotide translocator (ANT) drial function leads to cell death and organ failure. In this work, the effects of DBF on isolated rat liver Cyclophilin D (CypD) mitochondria were analyzed. Dibenzofuran (DBF) Mitochondria DBF exposure caused a markedly increase in the lag phase that follows depolarization induced by ADP, Mitochondrial permeability transition (MPT) indicating an effect in the phosphorylative system.
    [Show full text]
  • Synthesis and Electropolymerization of Furan End−Capped Dibenzothiophene/Dibenzofuran and Electrochromic Properties of Their Polymers
    Int. J. Electrochem. Sci., 12 (2017) 5000 – 5011, doi: 10.20964/2017.06.29 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Synthesis and Electropolymerization of Furan End−capped Dibenzothiophene/Dibenzofuran and Electrochromic Properties of Their Polymers Hua Gu1‡, Kaiwen Lin2‡, Hongtao Liu3, Nannan Jian3, Kai Qu3, Huimin Yu3, Jun Wei3, Shuai Chen1,4,* and Jingkun Xu1,4,* 1School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China 2School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China 3School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; 4Jiangxi Engineering Laboratory of Waterborne Coatings, Nanchang 330013, PR China *E−mail: [email protected], [email protected] ‡ These authors contributed equally to this work. Received: 20 January 2017 / Accepted: 18 April 2017 / Published: 12 May 2017 Two furan end−capped dibenzo five−membered ring monomers, 2,8−bis−(furan−2−yl)−dibenzothiophene (DBT−Fu) and 2,8−bis−(furan−2−yl)−dibenzofuran (DBF−Fu) were successfully synthesized via Stille couple reaction. Corresponding polymers, P(DBT−Fu) and P(DBF−Fu), were obtained by employed the electropolymerization. The surface morphology, electrochemical and optical properties of monomers and polymers were researched by cyclic voltammetry (CV), scanning electron microscopy (SEM), and UV−via spectra method. Both polymers exhibited obvious color changes from neutral state
    [Show full text]