African Boxthorn (Lycium Ferocissimum) and Asset Protection from a National Perspective

Total Page:16

File Type:pdf, Size:1020Kb

African Boxthorn (Lycium Ferocissimum) and Asset Protection from a National Perspective Nineteenth Australasian Weeds Conference African boxthorn (Lycium ferocissimum) and asset protection from a national perspective Michael Noble1, Robin Adair2 and Alan Yen3 1 Department of Primary Industries, Parks, Water and Environment, PO Box 303, Devonport, Tasmania 7310, Australia 2 Australis Biological, PO Box 151, Bittern, Victoria 3918, Australia 3 Department of Environment and Primary Industries and School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia ([email protected]) Summary African boxthorn (Lycium ferocissimum fly (Bactrocera tryoni Froggatt), and potentially the Miers), a Weed of National Significance, is widespread tomato potato psyllid (Bactericera cockerelli Sulc) in southern Australia. Development of a national should it enter Australia. African boxthorn has a sig- strategy, biological control feasibility assessment, nificant presence in southern Australia’s agricultural and a national best practice manual for boxthorn led areas. to the identification of key areas to guide investment. In 2012, African boxthorn was declared a Weed of With a weed as widespread as African boxthorn National Significance (WoNS). Following WoNS dec- in Australia, asset protection is the priority for man- laration, an African boxthorn national strategic plan, agement, along with provision of additional tools for feasibility of biological control of African boxthorn management of a widespread weed. initial assessment and African boxthorn national best This paper outlines three key areas where man- practice manual have been produced. The strategic agement investment for African boxthorn in Australia plan outlines national priorities for the strategic man- might be made. These are: biodiversity-rich areas of agement of African boxthorn in Australia. Western Australia where boxthorn has significant Widespread weeds like boxthorn can be difficult invasive potential; horticultural regions susceptible to direct expenditure toward, as priorities are often to pest species hosted by boxthorn; and boxthorn difficult to pinpoint. Using the biosecurity continuum biocontrol research. (AWC 2013), asset protection and building manage- Keywords African boxthorn, Weeds of National ment capability are logical investment approaches Significance, biodiversity, horticulture, biological for African boxthorn in much of southern Australia. control. This paper looks at three specific areas of im- portance for the national management of African INTRODUCTION boxthorn. These are the ongoing expansion and impact African boxthorn has been present in Australia for potential of African boxthorn in ecologically rich more than 150 years and is one of Australia’s most southern Western Australia, the potential of African widespread weeds. It occurs across a diverse range of boxthorn as a host for horticultural pests in areas Australian landscapes from coastal to semi-arid inland with solanaceous crops, and the potential of classical habitats, and is present in many of Australia’s most biological control to provide an additional African important environmental and agricultural asset areas. boxthorn management tool. In Australia, boxthorn impacts World Heritage listed places (e.g. Shark Bay in Western Australia and WESTERN AUSTRALIAN LANDSCAPES the Lord Howe Island Group in New South Wales), In Western Australia, unlike most other suitable parts Ramsar-listed wetlands (e.g. Pitt Water – Orielton La- of Australia, African boxthorn has not fully expanded goon in Tasmania and the Coorong in South Australia), throughout its potential range. This may be linked to internationally and nationally recognised biodiversity the relationship between boxthorn and the starling hotspots, and many of the nation’s most significant (Sturnus vulgaris). Evidence from Bass Strait (Harris offshore island environments. and McKenny 1999) and New Zealand (Taylor 1968) African boxthorn hosts a range of pest animals suggests that starlings boost boxthorn’s capacity to including rabbits (Oryctolagus cuniculus Linnaeus), invade natural environments, and in turn, boxthorn foxes (Vulpes vulpes Linnaeus), feral pigs (Sus scrofa provides quality roosting and feeding habitat for Linnaeus), starlings (Sturnus vulgaris Linnaeus), fruit starlings. The pest species’ appear to have facilitative 231 Nineteenth Australasian Weeds Conference interactions. The starling is so far absent (other than reaching Australia in the near future. In North America, occasional incursions) from Western Australia. its overwintering host plants are several native Lycium The virtual absence of starlings in Western species (Butler and Trumble 2012). The TPP is a major Australia permits greater potential for containment pest of solanaceous crops such as tomatoes, potatoes, of boxthorn, so far preventing it from establishing a capsicum, egg plants and tamarillos because it is the foothold throughout important natural assets, despite vector of the plant bacteria, Candidatus Liberibacter being present around them. solanacearum Jagoueix et al., the causative agent of The establishment of starlings in Western Australia the so-called zebra chip disease. would almost certainly result in increased invasive The TPP is reputed to have over 40 host plant spe- capacity of boxthorn in natural ecosystems. cies, primarily in the Solanaceae family (Biosecurity Western Australia has substantial environmental Australia 2009). It was recently found to use African assets of national and global significance. In the south- boxthorn as an overwintering host plant (Fowler 2013), ern half of the state, boxthorn poses a direct threat to and is able to breed on that host species (J. Dohmen, some of these. For example, on the South Coast the Fitz- pers. comm. 2013). TPP populations build up on their gerald River Ravensthorpe region provides habitat for over wintering hosts, and they colonise commercial an extraordinary number of nationally listed threatened crops in spring. The sizes of TPP populations can be species (more than 40 species of fauna and over 100 reduced if access to overwintering host plant species flora species) (Gilfillan et al. 2009). The area holds a is reduced; hence the importance of controlling Af- United Nations designation of ‘Fitzgerald Biosphere’, rican boxthorn near susceptible horticultural crops. containing two internationally listed wetlands, and Another danger is the possible transfer of Candidatus having immense overall species richness – making it Liberibacter solanacearum to native Australian plant a biodiversity hotspot. species by any native Australian psyllids that may feed The presence of African boxthorn on off-shore on plants with this disease. Acizzia solanicola Kent & islands in Western Australia appears to be increasing. Taylor is a native Australian psyllid that has switched African boxthorn continues to threaten, for example, from its native solanaceous plant species to egg plants Australian sea lion (Neophoca cinerea Peron) and (Taylor and Kent 2013). Australian fur seal (Arctocephalus pusillus Schreber) breeding habitats through displacing the native nitre BIOLOGICAL CONTROL bush (Nitraria billardieri DC.) that shelter sea lion and African boxthorn is difficult to suppress using seal pups. Boxthorn does not provide the equivalent mechanical and chemical control methods due to a quality of nursery habitat to that provided by nitre persistent seed bank, strong re-colonisation capacity bush, leaving pups more vulnerable to predation and expense. Although African boxthorn has been sug- (Moritz and Kikkawa 1994). gested as a target for biological control (Julien 2006), In 2013 Western Australia’s South Coast NRM Australia is the only region where this approach is completed a substantial African boxthorn management being considered. In 2013, the potential for biological program. Other Western Australian initiatives have control was formally evaluated and considered to be included the state’s Department of Parks and Wildlife feasible (Adair 2013). recent undertaking of African boxthorn management In Australia, a low diversity and abundance of on the Beagle Islands south of Geraldton. These islands natural enemies from African boxthorn are known. provide some of the most important sea lion breeding In a recent survey, only 12 species of arthropod and habitat on the Western Australian coastline. pathogen were recorded from south-eastern Australia, Follow-up of initial boxthorn control measures is but it is likely additional taxa could be recorded with essential to successful management. It is very impor- more extensive searches. tant that ongoing investment be made to continue and Similarly, in southern Africa, only five arthropods extend this strategically important work in Western and one pathogen are recorded from L. ferocissimum, Australia. but a richer assemblage is known from other Lycium species elsewhere indicating that the low diversity is IMPLICATIONS FOR HORTICULTURE perhaps an artefact of limited survey and collection Boxthorn hosts a range of agricultural pests including effort in the region of origin. Biological surveys on the fruit fly (Bactrocera tryoni) and the tomato potato other large, woody African shrubs (e.g. boneseed psyllid (TPP) (Bactericera cockerelli). The latter is Chrysanthemoides monilifera subsp. monilifera (L.) a North America species that has spread to Central Norlindh and myrtle-leaf milkwort Polygala myrti- America (Davidson et al. 2008). It has not been found foilia L.), show a richer assemblage of phytophagous in
Recommended publications
  • NON-REGULATED PESTS (Non-Actionable)
    Import Health Standard Commodity Sub-class: Fresh Fruit/Vegetables Grape, Vitis vinifera from Australia ISSUED Issued pursuant to Section 22 of the Biosecurity Act 1993 Date Issued: 20 December 2000 1 NEW ZEALAND NATIONAL PLANT PROTECTION ORGANISATION The official contact point in New Zealand for overseas NPPOs is the Ministry for Primary Industries (MPI). All communication pertaining to this import health standard should be addressed to: Manager, Import and Export Plants Ministry for Primary Industries PO Box 2526 Wellington NEW ZEALAND Fax: 64-4-894 0662 E-mail: [email protected] http://www.mpi.govt.nz 2 GENERAL CONDITIONS FOR ALL PLANT PRODUCTS All plants and plant products are PROHIBITED entry into New Zealand, unless an import health standard has been issued in accordance with Section 22 of the Biosecurity Act 1993. Should prohibited plants or plant products be intercepted by MPI, the importer will be offered the option of reshipment or destruction of the consignment. The national plant protection organisation of the exporting country is requested to inform MPI of any change in its address. The national plant protection organisation of the exporting country is required to inform MPI of any newly recorded organisms which may infest/infect any commodity approved for export to New Zealand. Pursuant to the Hazardous Substances and New Organisms Act 1996, proposals for the deliberate introduction of new organisms (including genetically modified organisms) as defined by the Act should be referred to: IHS Fresh Fruit/Vegetables. Grape, Vitis vinifera from Australia. (Biosecurity Act 1993) ISSUED: 20 December 2000 Page 1 of 16 Environmental Protection Authority Private Bag 63002 Wellington 6140 NEW ZEALAND Or [email protected],nz Note: In order to meet the Environmental Protection Authority requirements the scientific name (i.e.
    [Show full text]
  • African Boxthorn (Lycium Ferocissimum)
    Managing weeds for biodiversity ● Recorded distribution African boxthorn (Lycium ferocissimum) The problem the original native vegetation cover has The leaves are generally 10–40 mm been removed, boxthorn’s dense foliage long, 4–10 mm wide, bright green, African boxthorn (commonly known may be used as habitat by native fauna smooth and rather fleshy. They are oval as boxthorn) is a widespread weed in such as fairy wrens and the fruit may in shape with a rounded tip and occur African boxthorn regional Australia. It is considered a be a food source for native animals. in clusters along branchlets and at the major problem because it invades native base of thorns. Many agencies, community groups and vegetation, alters habitat and overruns individuals expend considerable resources Boxthorn mainly flowers in spring and pastures and other areas. It forms dense, each year on planning and undertaking summer but flowers may be present any impenetrable thickets that exclude other boxthorn control. While not among time of year. Flowers hang on stalks, plants, can provide shelter and food the 20 Weeds of National Significance, singly or in pairs. They are white to for feral animals such as foxes, rabbits, ferocissimum – Lycium boxthorn was ranked a close 24th in the mauve with a tubular base, usually five- starlings and sparrows and reduce assessment of Australia’s worst weeds. lobed and about 12 mm in diameter. access for stock, native animals, people However, very little research has been Fruit is a smooth round berry, 5–12 mm and vehicles. Its large thorns can also done on its ecology.
    [Show full text]
  • Boxthorn Lycium Ferocissimum
    Boxthorn Lycium ferocissimum Family Solanaceae (nightshade) Also known as African boxthorn Where is it originally from? South Africa What does it look like? Densely branched, erect, evergreen shrub (<6 m tall) with tough, woody stems alternately branched at square angles, forming a box- like pattern, and with rigid spines (13 mm). Hairless, fleshy, bright green leaves (40 x 12 mm) are narrow, oblong and clustered along the stems. White to pale mauve flowers (10-13 mm) produced from July to March are followed by tear shaped orange red berries (5-12 mm) in autumn. Photo: Carolyn Lewis Are there any similar species? Hawthorn and barberry are similar. Lycium barbarum (L. chinense) is similar but is deciduous. Why is it weedy? Forms dense, tall, long-lived stands, excluding most other vegetation. Tolerates a wide variety of soil types (sand to rocky cliffs), drought, salt, wind, and hot to cold temperatures. Poisonous (usually not grazed). How does it spread? Birds and possibly possums. Common seed sources are farm hedges, roadsides, waste places. Photo: Carolyn Lewis What damage does it do? Overtops native plants and can become only woody plant species on site. Petrels and other seabirds can become entangled and die. Berries may poison birds. Which habitats is it likely to invade? Sand dunes, shrublands, cliffs, islands and other coastal areas, gravel, and roadsides. What can I do to get rid of it? 1. Hand pull seedlings, winch out larger plants (all year round): Plant material can be left on site. 2. Stump swab (all year round): glyphosate (200ml/L) or a product containing 100g picloram+300g triclopyr/L (200ml/L).
    [Show full text]
  • Eyre Peninsula NRM Board PEST SPECIES REGIONAL MANAGEMENT PLAN Lycium Ferocissimum African Boxthorn
    Eyre Peninsula NRM Board PEST SPECIES REGIONAL MANAGEMENT PLAN Lycium ferocissimum African Boxthorn INTRODUCTION Synonym(s) Origin Lycium macrocalyx Domin., Lycium europaeum L. Lycium ferocissimum is native to the western and eastern (misapplied by Bailey, F.M. 1901, The Queensland Flora. 4: Cape Provinces of South Africa and the adjoining country of 1094.), Lycium chinense auct. non Mill.:Benth., partly. Lesotho [3]. Worldwide the introduced range includes Boksdorn, boxthorn. Morocco and Tunisia, south west Spain and Cyprus, Massachusetts, North Carolina and Florida in the USA, and Biology New Zealand [4]. In 1858 African boxthorn was established at the Adelaide African boxthorn Lycium ferocissimum Miers (Family Botanic Gardens, and was planted extensively as a Solanaceae) is an erect, intricately branched, semi- windbreak [5]. deciduous, perennial shrub up to five metres high, with rigid branches [1, 2]. Spines up to 15 cm long occur on the main stems, with smaller spines on the branchlets, which Distribution terminate in a spine [2]. African boxthorn has an extensive, In Australia, Lycium ferocissimum is a widespread introduced deep, root system [2]. Established plants produce suckers or weed in all but the driest and tropical regions, being found shoots from roots, including root fragments. African in all states and mainland territories [6] (Figure 1). It can boxthorn reproduces from seed. One or two flowers grow occur where the average annual rainfall is greater than 200 from leaf axils [2]. Flowering and fruiting occur mainly in mm and can be particularly abundant in wetter areas [7]. spring and summer (Table 1) [2], but are sporadic throughout the year [1].
    [Show full text]
  • Implementation of Access and Benefit-Sharing Measures Has
    BioControl https://doi.org/10.1007/s10526-019-09988-4 (0123456789().,-volV)( 0123456789().,-volV) FORUM PAPER Implementation of access and benefit-sharing measures has consequences for classical biological control of weeds Luciana Silvestri . Alejandro Sosa . Fernando Mc Kay . Marcelo Diniz Vitorino . Martin Hill . Costas Zachariades . Stephen Hight . Philip Weyl . David Smith . Djamila Djeddour . Peter G. Mason Received: 12 August 2019 / Accepted: 5 December 2019 Ó The Author(s) 2019 Abstract The Convention on Biological Diversity control of weeds. This paper reviews the experiences and the Nagoya Protocol establish that genetic of Argentina, Brazil, South Africa, the USA, Canada resources shall be accessed only upon the existence and CABI in implementing access and benefit-sharing of prior informed consent of the country that provides regulations and the implications these measures have those resources and that benefits arising from their on the effective and efficient access, exchange and utilization shall be shared. Pursuant to both agree- utilization of biological control agents. We conclude ments several countries have adopted regulations on that policy makers should be made aware of the key access and benefit-sharing. These regulations have role biological control plays for agriculture and the created a challenging obstacle to classical biological environment and they are encouraged to develop tailored access and benefit-sharing legal frameworks that facilitate biological control research and Handling Editor: S. Raghu implementation. Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10526-019-09988-4) con- Keywords Nagoya protocol Á Classical biological tains supplementary material, which is available to authorized control of weeds Á Biodiversity Á Access and benefit- users.
    [Show full text]
  • Lycium Barbarum L.) Et Son Utilisation Dans La Santé Humaine
    Université de Lille Faculté de pharmacie de Lille Année Universitaire 2018/2019 THESE POUR LE DIPLOME D'ETAT DE DOCTEUR EN PHARMACIE Soutenue publiquement le 10/01/2019 Par M. LEBEAU Pierre-Antoine _____________________________ La baie de Goji (Lycium barbarum L.) et son utilisation dans la santé humaine _____________________________ Membres du jury : Président : DUPONT Fréderic ; Professeur des Universités Assesseur(s) : RIVIERE Cécile ; Maitre de Conférences Membre(s) extérieur(s) : VERMES Philippe ; Docteur en Pharmacie LANGRENE Olivia ; Docteur en Pharmacie 1 Faculté de Pharmacie de Lille 3, rue du Professeur Laguesse - B.P. 83 - 59006 LILLE CEDEX 03.20.96.40.40 - : 03.20.96.43.64 http://pharmacie.univ-lille2.fr Université de Lille Président : Jean-Christophe CAMART Premier Vice-président : Damien CUNY Vice-présidente Formation : Lynne FRANJIÉ Vice-président Recherche : Lionel MONTAGNE Vice-président Relations Internationales : François-Olivier SEYS Directeur Général des Services : Pierre-Marie ROBERT Directrice Générale des Services Adjointe : Marie-Dominique SAVINA Faculté de Pharmacie Doyen : Bertrand DÉCAUDIN Vice-Doyen et Assesseur à la Recherche : Patricia MELNYK Assesseur aux Relations Internationales : : Philippe CHAVATTE Assesseur à la Vie de la Faculté et aux Relations avec le Monde Professionnel : Thomas MORGENROTH Assesseur à la Pédagogie : Benjamin BERTIN Assesseur à la Scolarité : Christophe BOCHU Responsable des Services : Cyrille PORTA Liste des Professeurs des Universités - Praticiens Hospitaliers Civ. NOM Prénom Laboratoire Mme ALLORGE Delphine Toxicologie M. BROUSSEAU Thierry Biochimie M. DÉCAUDIN Bertrand Pharmacie Galénique M. DEPREUX Patrick ICPAL M. DINE Thierry Pharmacie clinique Mme DUPONT-PRADO Annabelle Hématologie M. GRESSIER Bernard Pharmacologie M. LUYCKX Michel Pharmacie clinique M. ODOU Pascal Pharmacie Galénique M.
    [Show full text]
  • African Boxthorn National Best Practice Manual
    Weeds of National Significance African boxthorn National best practice manual Return to contents page 1 2 Return to contents page Weeds of National Significance African boxthorn National best practice manual Managing African boxthorn (Lycium ferocissimum) in Australia Produced and published by the Tasmanian Department of Primary Industries, Parks, Water and Environment with funding from the Australian Government Caring for Our Country program. This manual is sponsored by the Department of For copies of this manual contact: Agriculture, Fisheries and Forestry. Invasive Species Branch Department of Primary Industries, Parks, This manual is intended to provide information only Water and Environment on the subject matter under review. It is not intended PO Box 44 Hobart TAS 7001 to be, nor does it constitute, expert advice. Readers Phone: 1300 368 550 are warned against relying solely on the information contained in this manual. Further professional Manual compiled by the Weeds of National Significance advice should be sought before acting on any of the African Boxthorn National Coordinator in partnership information supplied in this manual. with the Australian Government, funded by Caring for Our Country. The Coordinator is hosted by Department While all care has been taken in the preparation of of Primary Industries, Parks, Water and Environment, this manual, neither the authors or the Crown in right Tasmania. Literature review performed using library of Tasmania, the Department of Primary Industries, catalogues, academic databases and internet searches. Parks, Water and Environment, nor their officers or This manual represents a rigorous review of African staff (collectively “the State”) accept any responsibility boxthorn biology and management in Australia.
    [Show full text]
  • Key Native Ecosystem Plan for Cape Palliser – Te Mātakitaki a Kupe 2017-2020
    Key Native Ecosystem Plan for Cape Palliser – Te Mātakitaki a Kupe 2017-2020 Contents 1. The Key Native Ecosystem Programme 1 2. Cape Palliser - Te Mātakitaki a Kupe Key Native Ecosystem 2 3. Landowners, management partners and stakeholders 3 4. Ecological values 5 5. Threats to ecological values at the KNE site 10 6. Management objectives 13 7. Management activities 13 8. Operational plan 14 9. Funding contributions 15 Appendix 1: Site maps 16 Appendix 2: Nationally threatened species list 21 Appendix 3: Regionally threatened plant species list 24 References 26 Cape Palliser - Te Mātakitaki a Kupe 1. The Key Native Ecosystem Programme The Wellington region’s native biodiversity has declined since people arrived and the ecosystems that support it face ongoing threats and pressures. Regional councils have responsibility for maintaining indigenous biodiversity, as well as protecting significant vegetation and habitats of threatened species, under the Resource Management Act 1991 (RMA). Greater Wellington Regional Council’s (Greater Wellington) Biodiversity Strategy1 sets a framework that guides how Greater Wellington protects and manages biodiversity in the Wellington region to work towards the vision below. Greater Wellington’s vision for biodiversity Healthy ecosystems thrive in the Wellington region and provide habitat for native biodiversity The Strategy provides a common focus across the council’s departments and guides activities relating to biodiversity. The vision is underpinned by four operating principles and three strategic goals. Of these, goal one drives the delivery of the Key Native Ecosystem (KNE) Programme. Goal One Areas of high biodiversity value are protected or restored The KNE Programme is a non-regulatory voluntary programme that seeks to protect some of the best examples of original (pre-human) ecosystem types in the Wellington region by managing, reducing, or removing threats to their ecological values.
    [Show full text]
  • T.R.N.C Near East University Health Science Institutute
    T.R.N.C NEAR EAST UNIVERSITY HEALTH SCIENCE INSTITUTUTE ANTICANCER AND ANTIOXIDANT EFFECTS OF Lycium barbarum ERIC KIAMA BIOCHEMISTRY PROGRAM MASTERS THESIS ADVISOR Associate Professor Dr. Eda Becer NICOSIA 2018 i T.R.N.C NEAR EAST UNIVERSITY HEALTH SCIENCE INSTITUTUTE ANTICANCER AND ANTIOXIDANT EFFECTS OF Lycium barbarum ERIC KIAMA BIOCHEMISTRY PROGRAM MASTERS THESIS ADVISOR Associate Professor Dr. Eda Becer NICOSIA 2018 ii APPROVAL i ACKNOWLEDGEMENT I would like to first give thanks to God Almighty for strength, wisdom and the zeal to keep at it and finally finish my postgraduate studies. I would want to thank my supervisor Associate Professor Eda Becer for guiding me through. Her supervision, guidance and support were essential in my completion of this thesis. I would also like to appreciate Professor Filiz Mericli for her guidance on the topic. Her input and constant advice helped me achieve this goal of completion. Finally, to my family back home. Thank for believing in me and constant praying for me. I would never have done this without you guys. ii ABSTRACT Eric Kiama. Anticancer and Antioxidant effects of Lycium barbarum. Near East University, Graduate School of Health Sciences, Graduation Thesis in Biochemistry Program, Nicosia, 2018 Cancer is one of the topreasons of demise in the world today.It is caused by uncontrolled growth and multiplication of cells. Reactive oxygen species are chemicals that can cause oxidation in an organism leading to damage of the cells. In this research, we study and report on the effect of phytochemical Lycium barbarum. L polysaccharide against both cancer and oxidation.
    [Show full text]
  • B32-W6-Lecture Copy.Pptx
    Genetic drift (or random sampling error) can change allele frequencies! consider ENTIRE (ideal) population! = 50 = 0.5! = 50 = 0.5! SAMPLES from population! TRUE allele frequencies in the population! = 3 = 0.3! = 6 = 0.6! = 7 = 0.7! = 4 = 0.4! Equivalent to the theoretical expectation! in an infinite population! = 8 = 0.8! = 4 = 0.4! = 2 = 0.2! = 6 = 0.6! Small samples are LESS likely to = 7 = 0.7! = 5 = 0.5! match with theoretical expectation! = 3 = 0.3! = 5 = 0.5! Random walks... describe fluctuations in the frequencies of alleles that are neutral with respect to fitness! demes ! Over generations, random sampling error occurs...! During each generation, the large number of zygotes produced is reduced (via mortality that is random with respect to fitness) to some number of breeding individuals! – allele frequencies change (drift) –! What happens to the frequencies of p and q over the long term...?! Alleles drift to fixation in each deme. ! Which allele gets fixed...?! The theory of genetic drift laid out by Sewell Wright during the 1930s and 1940s. Taken up by Motoo Kimura in the 1950s.! Natural selection & genetic drift are the 2 most important causes of evolutionary change in populations. ! The relative importance of each remains controversial.! Genetic drift as a null hypothesis... All alleles @ all loci are subject to genetic drift. The same cannot be said for natural selection.! Evolution by genetic drift...! (1)! Allele frequencies fluctuate at random within a population & eventually one (or another) allele will be fixed.! (2)! The magnitude of change is inversely related to the size of the sample; drift is stronger in smaller samples.! (3)! Drift is NOT repeatable.
    [Show full text]
  • Flora of Australia, Volume 29, Solanaceae
    FLORA OF AUSTRALIA Volume 29 Solanaceae This volume was published before the Commonwealth Government moved to Creative Commons Licensing. © Commonwealth of Australia 1982. This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced or distributed by any process or stored in any retrieval system or data base without prior written permission from the copyright holder. Requests and inquiries concerning reproduction and rights should be addressed to: [email protected] FLORA OF AUSTRALIA In this volume all 206 species of the family Solanaceae known to be indigenous or naturalised in Australia are described. The family includes important toxic plants, weeds and drug plants. The family Solanaceae in Australia contains 140 indigenous species such as boxthorn, wild tobacco, wild tomato, Pituri and tailflower. The 66 naturalised members include nightshade, tomato, thornapple, petunia, henbane, capsicum and Cape Gooseberry. There are keys for the identification of all genera and species. References are given for accepted names and synonyms. Maps are provided showing the distribution of nearly all species. Many are illustrated by line drawings or colour plates. Notes on habitat, variation and relationships are included. The volume is based on the most recent taxonomic research on the Solanaceae in Australia. Cover: Solanum semiarmatum F . Muell. Painting by Margaret Stones. Reproduced by courtesy of David Symon. Contents of volumes in the Flora of Australia, the faiimilies arranged according to the system of A.J.
    [Show full text]
  • Biology of Invasive Plants 2. Lycium Ferocissimum Miers
    Invasive Plant Science and Biology of Invasive Plants 2. Lycium Management ferocissimum Miers www.cambridge.org/inp Michael R. Noble1, Robin J. Adair2 and Kylie B. Ireland3 1Program Coordinator (Invasive Species), Biosecurity Operations Branch, Department of Primary Industries, Parks, Water and Environment, Devonport, Tasmania, Australia; 2Director, Australis Biological, Bittern, Victoria, Australia Biology of Invasive Plants and 3Postdoctoral Fellow, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Black Mountain Science & Innovation Park, Acton, Australian Capital Territory, Australia; current: Cite this article: Noble MR, Adair RJ, and Adjunct research fellow, Centre for Crop and Disease Management (CCDM), Curtin University, Bentley, Western Ireland KB (2021) Biology of Invasive Plants 2. Lycium ferocissimum Miers. Invasive Plant Sci. Australia, Australia; Plant pathologist, Department of Primary Industries and Development, South Perth, Manag 14:41–56. doi: 10.1017/inp.2021.13 Western Australia Received: 31 January 2021 Accepted: 4 March 2021 Scientific Classification Series Editors: Domain: Eukaryota Darren J. Kriticos, CSIRO Ecosystem Sciences & Kingdom: Plantae David R. Clements, Trinity Western University Phylum: Spermatophyta Keywords: Subphylum: Angiospermae African boxthorn; invasive plant Class: Dicotyledonae Order: Solanales Author for correspondence: Family: Solanaceae Michael R. Noble, Program Coordinator Subfamily: Solanoideae (Invasive Species), Biosecurity Operations Branch,
    [Show full text]