Middle Telychian (Llandovery, Silurian) Graptolites and Biostratigraphy of the Howgill Fells, England, Based Upon the Collections of D.W.R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Back Matter (PDF)
PROCEEDINGS OF THE YORKSHIRE GEOLOGICAL SOCIETY 309 INDEX TO VOLUME 55 General index unusual crinoid-coral association 301^ Lake District Boreholes Craven inliers, Yorkshire 241-61 Caradoc volcanoes 73-105 Chronostratigraphy Cretoxyrhinidae 111, 117 stratigraphical revision, Windermere Lithostratigraphy crinoid stems, N Devon 161-73 Supergroup 263-85 Localities crinoid-coral association 301-4 Lake District Batholith 16,73,99 Minerals crinoids, Derbiocrinus diversus Wright 205-7 Lake District Boundary Fault 16,100 New Taxa Cristatisporitis matthewsii 140-42 Lancashire Crummock Fault 15 faunal bands in Lower Coal Measures 26, Curvirimula spp. 28-9 GENERAL 27 Dale Barn Syncline 250 unusual crinoid-coral association 3Q1-A Acanthotriletes sp. 140 Dent Fault 257,263,268,279 Legburthwaite graben 91-2 acritarchs 243,305-6 Derbiocrinus diversus Wright 205-7 Leiosphaeridia spp. 157 algae Derbyshire, limestones 62 limestones late Triassic, near York 305-6 Diplichnites 102 foraminifera, algae and corals 287-300 in limestones 43-65,287-300 Diplopodichnus 102 micropalaeontology 43-65 origins of non-haptotypic palynomorphs Dumfries Basin 1,4,15,17 unusual crinoid-coral association 301-4 145,149,155-7 Dumfries Fault 16,17 Lingula 22,24 Alston Block 43-65 Dunbar-Oldhamstock Basin 131,133,139, magmatism, Lake District 73-105 Amphoracrinus gilbertsoni (Phillips 1836) 145,149 Manchester Museum, supplement to 301^1 dykes, Lake District 99 catalogue of fossils in Geology Dept. Anacoracidae 111-12 East Irish Sea Basin 1,4-7,8,10,12,13,14,15, 173-82 apatite -
References Geological Society, London, Memoirs
Geological Society, London, Memoirs References Geological Society, London, Memoirs 2002; v. 25; p. 297-319 doi:10.1144/GSL.MEM.2002.025.01.23 Email alerting click here to receive free email alerts when new articles cite this article service Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Memoirs or the Lyell Collection Notes Downloaded by on 3 November 2010 © 2002 Geological Society of London References ABBATE, E., BORTOLOTTI, V. & PASSERINI, P. 1970. Olistostromes and olis- ARCHER, J. B, 1980. Patrick Ganly: geologist. Irish Naturalists' Journal, 20, toliths. Sedimentary Geology, 4, 521-557. 142-148. ADAMS, J. 1995. Mines of the Lake District Fells. Dalesman, Skipton (lst ARTER. G. & FAGIN, S. W. 1993. The Fieetwood Dyke and the Tynwald edn, 1988). fault zone, Block 113/27, East Irish Sea Basin. In: PARKER, J. R. (ed.), AGASSIZ, L. 1840. Etudes sur les Glaciers. Jent & Gassmann, Neuch~tel. Petroleum Geology of Northwest Europe: Proceedings of the 4th Con- AGASSIZ, L. 1840-1841. On glaciers, and the evidence of their once having ference held at the Barbican Centre, London 29 March-1 April 1992. existed in Scotland, Ireland and England. Proceedings of the Geo- Geological Society, London, 2, 835--843. logical Society, 3(2), 327-332. ARTHURTON, R. S. & WADGE A. J. 1981. Geology of the Country Around AKHURST, M. C., BARNES, R. P., CHADWICK, R. A., MILLWARD, D., Penrith: Memoir for 1:50 000 Geological Sheet 24. Institute of Geo- NORTON, M. G., MADDOCK, R. -
Redox Changes in the Deep Shelf of the East Baltic Basin in the Aeronian and Early Telychian (Early Silurian)
Proc. Estonian Acad. Sci. Geol., 2004, 53, 2, 94–124 Redox changes in the deep shelf of the East Baltic Basin in the Aeronian and early Telychian (early Silurian) Enli Kiipli Institute of Geology at Tallinn University of Technology, Estonia pst. 7, 10143 Tallinn, Estonia; [email protected] Received 27 March 2003, in revised form 11 February 2004 Abstract. Aeronian black shales and overlying Telychian greenish-grey and red claystones of the deep shelf of the East Baltic Basin indicate different synsedimentary redox conditions of the bottom water of the sea. In the Aeronian, the primary bioproductivity rise caused accumulation of organic- rich black shale in deep shelf and formation of microcrystalline limestone with chertification, chert nodules, and barite in shoreward areas. In the early Telychian, the bioproductivity decreased, as concluded from the absence of indicators of high primary bioproductivity in the Aeronian. The suggested mechanism regulating primary bioproductivity and oxygen content of bottom waters of deep shelf was a change from wind-induced upwelling in the Aeronian to downwelling in the Telychian. The sedimentation rate did not influence the change in the redox regime of the deep shelf sediment, as it was low for both the Aeronian and Telychian. Key words: Aeronian, Telychian, East Baltic deep shelf, redox conditions, up- and downwellings. INTRODUCTION Differences in lithology, mineralogy, and rock chemistry evidence changes at the Aeronian–Telychian boundary. The changes concern sea water chemistry and early diagenesis of sediments with implication on hydrodynamic and atmospheric circulation, and palaeogeography. The area of investigation is southwest Estonia and west Latvia, which form a central, deeper part of the Palaeozoic East Baltic basin, treated here as the deep shelf. -
RR 01 07 Lake District Report.Qxp
A stratigraphical framework for the upper Ordovician and Lower Devonian volcanic and intrusive rocks in the English Lake District and adjacent areas Integrated Geoscience Surveys (North) Programme Research Report RR/01/07 NAVIGATION HOW TO NAVIGATE THIS DOCUMENT Bookmarks The main elements of the table of contents are bookmarked enabling direct links to be followed to the principal section headings and sub-headings, figures, plates and tables irrespective of which part of the document the user is viewing. In addition, the report contains links: from the principal section and subsection headings back to the contents page, from each reference to a figure, plate or table directly to the corresponding figure, plate or table, from each figure, plate or table caption to the first place that figure, plate or table is mentioned in the text and from each page number back to the contents page. RETURN TO CONTENTS PAGE BRITISH GEOLOGICAL SURVEY RESEARCH REPORT RR/01/07 A stratigraphical framework for the upper Ordovician and Lower Devonian volcanic and intrusive rocks in the English Lake The National Grid and other Ordnance Survey data are used with the permission of the District and adjacent areas Controller of Her Majesty’s Stationery Office. Licence No: 100017897/2004. D Millward Keywords Lake District, Lower Palaeozoic, Ordovician, Devonian, volcanic geology, intrusive rocks Front cover View over the Scafell Caldera. BGS Photo D4011. Bibliographical reference MILLWARD, D. 2004. A stratigraphical framework for the upper Ordovician and Lower Devonian volcanic and intrusive rocks in the English Lake District and adjacent areas. British Geological Survey Research Report RR/01/07 54pp. -
GEOLOGIC TIME SCALE V
GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE -
The Early Ludfordian Leintwardinensis Graptolite Event and the Gorstian–Ludfordian Boundary in Bohemia (Silurian, Czech Republic)
This is the peer reviewed version of the following article: Štorch, P., Manda, Š., Loydell, D. K. (2014), The early Ludfordian leintwardinensis graptolite Event and the Gorstian–Ludfordian boundary in Bohemia (Silurian, Czech Republic). Palaeontology, 57: 1003–1043. doi: 10.1111/pala.12099, which has been published in final form at 10.1111/pala.12099. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. The early Ludfordian leintwardinensis graptolite Event and the Gorstian– Ludfordian boundary in Bohemia (Silurian, Czech Republic) Petr Štorch, Štěpán Manda, David K. Loydell Abstract The late Gorstian to early Ludfordian hemipelagic succession of the south-eastern part of the Prague Synform preserves a rich fossil record dominated by 28 species of planktic graptoloids associated with pelagic myodocopid ostracods, pelagic and nektobenthic orthocerid cephalopods, epibyssate bivalves, nektonic phyllocarids, rare dendroid graptolites, brachiopods, crinoids, trilobites, sponges and macroalgae. Faunal dynamics have been studied with particular reference to graptolites. The early Ludfordian leintwardinensis graptolite extinction Event manifests itself as a stepwise turnover of a moderate diversity graptolite fauna rather than an abrupt destruction of a flourishing biota. The simultaneous extinction of the spinose saetograptids Saetograptus clavulus, Saetograptus leintwardinensis and the rare S. sp. B. at the top of the S. leintwardinensisZone was preceded by a short- term acme of S. clavulus. Cucullograptus cf. aversus and C. rostratusvanished from the fossil record in the lower part of the Bohemograptus tenuis Biozone. No mass proliferation of Bohemograptus has been observed in the postextinction interval. Limited indigenous speciation gave rise to Pseudomonoclimacis kosoviensis and Pseudomonoclimacis cf.dalejensis. -
Geologic Map of Alaska
Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey Front cover. Color shaded relief map of Alaska and surroundings. Sources: 100-meter-resolution natural image of Alaska, http://nationalmap.gov/small_scale/mld/nate100.html; rivers and lakes dataset, http://www.asgdc.state.ak.us/; bathymetry and topography of Russia and Canada, https://www.ngdc.noaa.gov/mgg/global/global.html. Back cover. Previous geologic maps of Alaska: 1906—Brooks, A.H., Abbe, Cleveland, Jr., and Goode, R.U., 1906, The geography and geology of Alaska; a summary of existing knowledge, with a section on climate, and a topographic map and description thereof: U.S. Geological Survey Professional Paper 45, 327 p., 1 sheet. 1939—Smith, P.S., 1939, Areal geology of Alaska: U.S. Geological Survey Professional Paper 192, 100 p., 18 plates. 1957—Dutro, J.T., Jr., and Payne, T.G., 1957, Geologic map of Alaska: U.S. Geological Survey, scale 1:2,500,000. 1980—Beikman, H.M., 1980, Geologic map of Alaska: U.S. Geological Survey Special Map, scale 1:2,500,000, 2 sheets. Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. -
MODE of LIFE of GRAPTOLITES Much of the Substance of This Paper
ACT A PALAEON.TOLOGICA POLONICA Vol. 23 1978 No.4 / .. NANCY HARTSHORNE KIRK MODE OF LIFE OF GRAPTOLITES Abstract. - The probable mode of life of the graptol,ites (crustoids, dendroids and graptoloids) is reconstructed from a, logical interpretation of their rhabdosomal structures. The readaptation of sessile colonial organisms to meet the requirements of a freely-moving existence in the plankton is regarded as the controlling factor in the evolution of the graptoloids. It is suggested that the gradual reduction in the size of the colony in the dicho graptids, biserial and uniserial graptoloids may have been a consequence of the undesirability of coloniality in the new environment, and that the graptoloids might have attained individuality, disappea):'ing into the plankton at t e time of their sup- posed extinction. .. Much of the substance of this paper was read to the Symposium on Coloniality at Durham (Systematics Association) in 1976 and should be published shortly. This version contains some new ideas, however, and also many digressions to discuss points of outstanding disagreement. Since the broad outline of my theme will be familiar to graptolitologists, as was not the case for the Systemahcs Association, I trust that the digres sions will be of use and interest in themselves, and, placed in parentheses, will not obscure too much my main argument. !tis generally believed that crustoids were encrusting, and the dend roids attached benthonic colonies. Their coloniality may have been an adaptation to the benthonic.habit, which could have arisen by failure of asexually budded zooids to separate from the' parent. By forming en crusting or tree-like' colonies small, zooids of comparatively simple orga nisation would have, been able to establish !hemselves upon the crowded sea floor and avoid being overtropped by competitors. -
International Chronostratigraphic Chart
INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2014/02 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic Pleistocene 0.781 372.2 ±1.6 850 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.62 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian -
Northern England Regional Geology RWM | Northern England Regional Geology
Northern England regional geology RWM | Northern England Regional Geology Contents 1 Introduction Subregions Northern England: summary of the regional geology Available information for this region 2 Rock type Younger sedimentary rocks 3 Older sedimentary rocks Basement rocks 4 Rock structure 5 Groundwater 6 Resources 7 Natural processes Further information 8 - 21 Figures 22 - 24 Glossary Clicking on words in green, such as sedimentary or lava will take the reader to a brief non-technical explanation of that word in the Glossary section. By clicking on the highlighted word in the Glossary, the reader will be taken back to the page they were on. Clicking on words in blue, such as Higher Strength Rock or groundwater will take the reader to a brief talking head video or animation providing a non-technical explanation. For the purposes of this work the BGS only used data which was publicly available at the end of February 2016. The one exception to this was the extent of Oil and Gas Authority licensing which was updated to include data to the end of June 2018. 1 RWM | Northern England Regional Geology Introduction This region comprises Cumbria, Northumberland, Durham and Tyne and Wear and parts of Lancashire and Yorkshire. The region includes the adjacent inshore areas which extend to 20km from the coast in the east and west and the Scottish border defines the northern boundary. Subregions To present the conclusions of our work in a concise and accessible way, we have divided the region into 5 subregions (see Figure 1 below). We have selected subregions with broadly similar geological attributes relevant to the safety of a GDF, although there is still considerable variability in each subregion. -
Lab 8: Graptolites and Trace Fossils
Geos 223 Introductory Paleontology Spring 2006 Lab 8: Graptolites and Trace Fossils Name: Section: AIMS: This lab will introduce you to graptolites (Part A), and to a branch of paleontology known as ichnology (the study of trace fossils; Part B). By the end of Part A this lab you should be familiar with the basic anatomy of graptolites, and have an appreciation for how graptolites are used in the biostratigraphic zonation of the Lower Paleozoic. By the end of Part B of this lab you should be familiar with the basic ethological groups of trace fossils, and have an appreciation for how trace fossils can provide important paleoecological and paleoenvironmental information. PART A: GRAPTOLITES. Graptolites (Class Graptolithina) are an extinct group of colonial hemichordate deuterostomes, similar in morphology and life habit to the modern colonial pterobranch hemichordate Rhabdopleura. The graptolite colony consisted of many clonal zooids, each occupying a theca in the communal skeleton (the rhabdosome). The thecae formed in rows along branches of the rhabdosome called stipes. The rhabdosome was made of a non-mineralized, organic, non-chitinous protein called periderm. Graptolite colonies were either erect fan-like structures growing from the seafloor (most dendroid graptolites, ranging from the Middle Cambrian to the Late Carboniferous) or free-floating in the plankton (the commoner graptoloid graptolites, probably descended from dendroid ancestors and ranging from the Early Ordovician to the Early Devonian). Graptoloid graptolites are very important biostratigraphic zone fossils in Lower Paleozoic strata. 1 DENDROID GRAPTOLITES: A1: Dictyonema. Dendroid graptolite colonies formed fan-like structures with thecae-bearing stipes held apart by horizontal struts (dissepiments). -
2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN