An Introduction

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction Index G(n; m) model, 107 behavior analysis methodology, G(n; p) model, 106 320 k-clan, 183 betweenness centrality, 78 k-clique, 182 BFS, see breadth-first search k-club, 183 big data, 13 k-means, 156 big data paradox, 13 k-plex, 180 bipartite graph, 44 botnet, 171 actor, see node breadth-first search, 47 bridge, 45 Adamic and Adar measure, 324 bridge detection, 60 adjacency list, 32 adjacency matrix, 31 cascade maximization, 225 adopter types, 229 causality testing, 321 adoption of hybrid seed corn, 229 centrality, 70 affiliation network, 44 betweenness centrality, 78 Anderson, Lisa R., 218 computing, 78 Asch conformity experiment, 216 closeness centrality, 80 Asch, Solomon, 216 degree centrality, 70 assortativity, 255 gregariousness, 70 measuring, 257 normalized, 71 nominal attributes, 258 prestige, 70 ordinal attributes, 261 eigenvector centrality, 71 significance, 258 group centrality, 81 attribute, see feature betweenness, 82 average path length, 102, 105 closeness, 82 373 degree, 81 evolution, 193 Katz centrality, 74 explicit, 173 divergence in computation, implicit, 174 75 community detection, 175 PageRank, 76 group-based, 175, 184 Christakis, Nicholas A., 245 member-based, 175, 177 citizen journalist, 11 node degree, 178 class, see class attribute node reachability, 181 class attribute, 133 node similarity, 183 clique identification, 178 community evaluation, 200 clique percolation method, 180 community membership behav- closeness centrality, 80 ior, 317 cluster centroid, 156 commute time, 327 clustering, 155, 156 confounding, 255 k-means, 156 contact network, 237 hierarchical, 191 content data, 316 agglomerative, 191 content-based recommendation, divisive, 191 288 partitional, 156 cosine similarity, 92, 183, 291 spectral, 187 covariance, 94, 261 clustering coefficient, 84, 102 global, 85 data point, see instance local, 86 data preprocessing, 138 cohesive subgroup, see commu- aggregation, 138 nity discretization, 138 cold start problem, 286 feature extraction, 138 collaborative filtering, 289, 323 feature selection, 138 memory-based, 289 sampling, 138 item-based, 292 random, 139 user-based, 290 stratified, 139 model-based, 289, 293 with/without replacement, collective behavior, 328 139 collective behavior modeling, 333 data quality, 137 common neighbors, 324 duplicate data, 137 community, 171 missing values, 137 detection, 175 noise, 137 emit, see explicit outliers, 137 etic, see implicit data scientist, 12 374 data sparsity, 287 undirected, 27 decision tree learning, 141 visit, 36 degree, 25, 28 edge list, 32 distribution, 29 edge-reversal test, 277 degree centrality, 70, 264 eigenvector centrality, 71 gregariousness, 70 entropy, 143 prestige, 70 epidemics, 214, 236 degree distribution, 29, 102 infected, 238 dendrogram, 191 recovered, 238 densification, 194 removed, 238 depth-first search, 46 SI model, 239 DFS, see depth-first search SIR model, 241 diameter, 40 SIRS model, 244 shrinkage, 196 SIS model, 242 diffusion of innovation, 214 susceptible, 238 diffusion of innovations, 228 Erdos,˝ Paul, 107 Dijkstra, Edsger, 49 Euclidean distance, 155 Dijskra’s algorithm, 49 evaluation dilemma, 13 diminishing returns, 318 evolutionary clustering, 198 directed graph, 28, 33 external-influence model, 232 distinguishing influence and ho- mophily, 276 F-measure, 202, 307 edge-reversal test, 277 false negative, 201 randomization test, 278 false positive, 201 shuffle test, 276 feature, 133 categorical, see nominal early adopters, 229 continuous, 133 early majority, 229 discrete, 133 Eckart-Young-Mirsky theorem, interval, 134 294 nominal, 134 edge, 27 ordinal, 134 betweenness, 191 ratio, 134 directed, 27 feature selection, 319 incident, 35 Ford-Fulkerson algorithm, 55 loop, 28, 32 Frobenius norm, 293 self-link, 32 fully-mixed technique, 237 signed, 34 traverse, see visit giant component, 108, 194 375 Gilbert, Edgar, 106 adjacency list, 32 Girvan-Newman algorithm, 191 adjacency matrix, 31 global clustering coefficient, 85 edge list, 32 Granger causality, 321 shortest path, 39 Granger, Clive W. J., 321 Dijskra’s algorithm, 49 graph signed graph, 34 k-connected, 188 simple graph, 34 bipartite graph, 44 strongly connected, 38 bridge, 45 subgraph, 30 detection, 60 minimum spanning tree, 41 complete graph, 42 spanning tree, 41 component, 38 Steiner tree, 42 connected, 38 traversal, 45 connectivity, 35 breadth-first search, 47 circuit, see tour depth-first search, 46 cycle, 36 tree, 40 path, 36 undirected graph, 33 tour, 36 weakly connected, 38 trail, 36 weighted graph, 34 walk, 36 graph Laplacian, 187 cut, 185 graph traversal, 45 densification, 194 breadth-first search, 47 density, 190 depth-first search, 46 diameter, 40 group, see community directed, 28 group centrality, 81 directed graph, 33 betweenness, 82 edge, 25, 27 closeness, 82 empty graph, 33 degree, 81 forest, 40 minimum cut, 185 herd behavior, 214 mixed graph, 33 hitting time, 327 multigraph, 34 Holt, Charles A., 218 node, 25, 26 homophily, 255, 274 null graph, 33 measuring, 274 partition, 44 modeling, 274 planar graph, 43 regular graph, 44 ICM, see independent cascade representation model 376 in-degree, 28 Kendall’s tau, 308 independent cascade model, 222 knowledge discovery in individual behavior, 315 databases, 131 user-community behavior, Kronecker delta function, 258 316 user-entity behavior, 316 labeled data, 140 user-user behavior, 316 laggards, 229 individual behavior modeling, Laplacian, 187 322 largest connected component, 108 influence, 255, 264 late majority, 229 measuring, 264 levels of measurement, 133 observation-based, 264 LIM, see linear influence model prediction-based, 264 linear influence model, 269, 334 modeling, 269 linear threshold model, 269, 322 influence flow, 266 link data, 316 influence modeling, 269 link prediction, 299, 323 explicit networks, 269 node neighborhood-based implicit networks, 271 methods, 324 information cascade, 214, 221, 323 path-based methods, 326 information pathways, 78 local clustering coefficient, 86 information provenance, 249 logistic function, 276 innovation characteristics, 228 logistic growth function, 240 innovators, 229 logistic regression, 333 instance, 133 logit function, 152 labeled, 133 loop, 28, 32 unlabeled, 133 low-rank matrix approximation, internal-influence model, 232 293 intervention, 214, 220, 227, 235, LTM, see linear threshold model 245 MAE, see mean absolute error Jaccard similarity, 92, 183, 324 Mahalanobis distance, 155 matrix factorization, 301 Katz centrality, 74 maximum bipartite matching, 57 divergence in computation, 75 mean absolute error, 305 Katz model, 230 measurement, see feature Katz, Elihu, 230 measuring homophily, 274 KDD process, see knowledge dis- Milgram, Stanley, 105 covery in databases minimum spanning tree, 41 377 Prim’s algorithm, 52 normalized mean absolute error, mixed graph, 33 305 mixed-influence model, 232 normalized mutual information, modeling homophily, 274 203 modularity, 189, 259 nuke attack, 287 multi-step flow model, 230 observation, see instance mutual information, 203 obtaining sufficient samples, 13 out-degree, 28 naive bayes classifier, 144 overfitting, 301 nearest neighbor classifier, 146 neighborhood, 28 PageRank, 76, 264 network flow, 53 parametric estimation, 273 augmenting path, 56 Pearson correlation coefficient, 94, capacity, 54 263, 290 capacity constraint, 54 Perron-Frobenius theorem, 72 flow, 54 Poisson distribution, 112 flow conservation constraint, Power Iteration Method, 98 54 power-law distribution, 30 flow network, 54 powerlaw distribution, 103, 272, Ford-Fulkerson algorithm, 55 276, 333 residual capacity, 56 precision, 201, 307 residual network, 56 preferential attachment measure, source and sink, 54 325 network measure, 69 preferential attachment model, network segmentation, 194 333 NMI, see normalized mutual in- prestige, 70 formation prominence, see prestige node, 26 purity, 203 adjacent, 35 push attack, 287 connected, 38 quasi-clique, 191 degree, 25, 28 in-degree, 28 random graph, 106 neighborhood, 28 average path length, 114 out-degree, 28 clustering coefficient, 112 reachable, 38 degree distribution, 111 noise removal fallacy, 13 evolution, 108 normalized cut, 185 phase transition, 109 378 random walk, 36 similarity, 91 randomization test, 278, 321 cosine similarity, 92 rank correlation, 268 Jaccard similarity, 92, 94 Rapoport, Anatol, 106 regular equivalence, 94 ratio cut, 185 structural equivalence, 92 raw data, 131 SimRank, 328 recall, 201, 307 singleton, 194 reciprocity, 87 singular value decomposition, recommendation to groups, 297 152, 293 least misery, 297 SIR model, 241 maximizing average satisfac- SIRS model, 244 tion, 297 SIS model, 242 most pleasure, 298 six degrees of separation, 105 recommender systems, 285 small world model, 333 regression, 322 small-world, 105 regular equivalence, 94, 184 small-world model, 115 regular graph, 44 average path length, 118 ring lattice, 115 clustering coefficient, 118 regular ring lattice, 115 degree distribution, 117 regularization term, 302 Social Atom, 12 relationships, see edge social balance, 89 relaxing cliques, 180 social correlation, 276 k-plex, 180 social media, 11 RMSE, see root mean squared er- social media mining, 12 ror Social Molecule, 12 Rogers, Everett M., 228 social network, 25 root mean squared error, 305 social similarity, 255 rooted PageRank, 327 social status, 35, 90 Renyi,´ Alfred, 107 social tie, see edge sociomatrix, see adjacency matrix scale-free network, 105 Solomonoff, Ray, 106 self-link, see loop, 32 sparse matrix, 32 sender-centric model, 222 Spearman’s rank correlation coef- sentiment analysis, 164 ficient, 268, 308 shortest
Recommended publications
  • 7. NETWORK FLOW II ‣ Bipartite Matching ‣ Disjoint Paths
    Soviet rail network (1950s) "Free world" goal. Cut supplies (if cold war turns into real war). 7. NETWORK FLOW II ‣ bipartite matching ‣ disjoint paths ‣ extensions to max flow ‣ survey design ‣ airline scheduling ‣ image segmentation ‣ project selection Lecture slides by Kevin Wayne ‣ baseball elimination Copyright © 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002. Last updated on Mar 31, 2013 3:25 PM Figure 2 2 From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So- viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’. Max-flow and min-cut applications Max-flow and min-cut are widely applicable problem-solving model. ・Data mining. 7. NETWORK FLOW II ・Open-pit mining. ・Bipartite matching. ‣ bipartite matching ・Network reliability. ‣ disjoint paths ・Baseball elimination. ‣ extensions to max flow ・Image segmentation. ・Network connectivity. ‣ survey design liver and hepatic vascularization segmentation ・Distributed computing. ‣ airline scheduling ・Security of statistical data. ‣ image segmentation ・Egalitarian stable matching. ・Network intrusion detection. ‣ project selection ・Multi-camera scene reconstruction. ‣ baseball elimination ・Sensor placement for homeland security. ・Many, many, more. 3 Matching Bipartite matching Def. Given an undirected graph G = (V, E) a subset of edges M ⊆ E is Def. A graph G is bipartite if the nodes can be partitioned into two subsets a matching if each node appears in at most one edge in M.
    [Show full text]
  • Models for Networks with Consumable Resources: Applications to Smart Cities Hayato Montezuma Ushijima-Mwesigwa Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2018 Models for Networks with Consumable Resources: Applications to Smart Cities Hayato Montezuma Ushijima-Mwesigwa Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Ushijima-Mwesigwa, Hayato Montezuma, "Models for Networks with Consumable Resources: Applications to Smart Cities" (2018). All Dissertations. 2284. https://tigerprints.clemson.edu/all_dissertations/2284 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Models for Networks with Consumable Resources: Applications to Smart Cities A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Computer Science by Hayato Ushijima-Mwesigwa December 2018 Accepted by: Dr. Ilya Safro, Committee Chair Dr. Mashrur Chowdhury Dr. Brian Dean Dr. Feng Luo Abstract In this dissertation, we introduce different models for understanding and controlling the spreading dynamics of a network with a consumable resource. In particular, we consider a spreading process where a resource necessary for transit is partially consumed along the way while being refilled at special nodes on the network. Examples include fuel consumption of vehicles together with refueling stations, information loss during dissemination with error correcting nodes, consumption of ammunition of military troops while moving, and migration of wild animals in a network with a limited number of water-holes. We undertake this study from two different perspectives. First, we consider a network science perspective where we are interested in identifying the influential nodes, and estimating a nodes’ relative spreading influence in the network.
    [Show full text]
  • Structural Graph Theory Meets Algorithms: Covering And
    Structural Graph Theory Meets Algorithms: Covering and Connectivity Problems in Graphs Saeed Akhoondian Amiri Fakult¨atIV { Elektrotechnik und Informatik der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Rolf Niedermeier Gutachter: Prof. Dr. Stephan Kreutzer Gutachter: Prof. Dr. Marcin Pilipczuk Gutachter: Prof. Dr. Dimitrios Thilikos Tag der wissenschaftlichen Aussprache: 13. October 2017 Berlin 2017 2 This thesis is dedicated to my family, especially to my beautiful wife Atefe and my lovely son Shervin. 3 Contents Abstract iii Acknowledgementsv I. Introduction and Preliminaries1 1. Introduction2 1.0.1. General Techniques and Models......................3 1.1. Covering Problems.................................6 1.1.1. Covering Problems in Distributed Models: Case of Dominating Sets.6 1.1.2. Covering Problems in Directed Graphs: Finding Similar Patterns, the Case of Erd}os-P´osaproperty.......................9 1.2. Routing Problems in Directed Graphs...................... 11 1.2.1. Routing Problems............................. 11 1.2.2. Rerouting Problems............................ 12 1.3. Structure of the Thesis and Declaration of Authorship............. 14 2. Preliminaries and Notations 16 2.1. Basic Notations and Defnitions.......................... 16 2.1.1. Sets..................................... 16 2.1.2. Graphs................................... 16 2.2. Complexity Classes................................
    [Show full text]
  • Network Flow - Theory and Applications with Practical Impact
    3 Network flow - Theory and applications with practical impact Masao Iri Department of Information and System Engineering Faculty of Science and Engineering, Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan. Tel: +81-3-3817-1690. Fax: +81-3-3817-1681. e-mail: [email protected] Keywords Network flow, history, applications, duality, future 1 INTRODUCTION The research in this subject has now a long history and a large variety of related fields in science, engineering and operations research, and is still developing fast, especially in its algorithmic aspects, attracting many excellent senior as well as young researchers. And the space allotted to this paper is limited. So, in this paper I will not lay so much stress on particular frontiers of research in the subject as on the wider and historical viewpoint. Network-flow theory is one of the best studied and developed fields of optimization, and has important relations to quite different fields of science and technology such as com­ binatorial mathematics, algebraic topology, electric circuit theory, nonlinear continuum theory including plasticity theory, geographic information systems, VLSI design, etc., etc., besides standard applications to transportation, scheduling, etc. in operations research. An important point of view from which we should look at network flow theory is the "duality" viewpoint, to which due attention was paid at the earlier stages of development of the theory but which tends to be gradually ignored as time goes. Since the papers and books published on network flow are too many to cite here, I do not intend to compile even an incomplete list of references but only to cite a few which I directly mention and which I think tend to become obscured during the long history in spite of their ever lasting importance.
    [Show full text]
  • Inequity in Searching for Knowledge in Organizations
    The World is Not Small for Everyone: Inequity in Searching for Knowledge in Organizations _______________ Jasjit SINGH Morten HANSEN Joel PODOLNY 2010/11/ST/EFE (Revised version of 2009/49/ST/EFE) The World is Not Small for Everyone: Inequity in Searching for Knowledge in Organizations By Jasjit Singh * Morten T. Hansen** Joel M. Podolny*** ** February 2010 Revised version of INSEAD Working Paper 2009/49/ST/EFE * Assistant Professor of Strategy at INSEAD, 1 Ayer Rajah Avenue, Singapore 138676 Ph: +65 6799 5341 E-Mail: [email protected] ** Professor of Entrepreneurship at INSEAD, Boulevard de Constance, Fontainebleau 77305 France Ph: + 33 (0) 1 60 72 40 20 E-Mail: [email protected] *** Professor at Apple University, 1 Infinite Loop, MS 301-4AU, Cupertino, CA 95014, USA Email: [email protected] A working paper in the INSEAD Working Paper Series is intended as a means whereby a faculty researcher's thoughts and findings may be communicated to interested readers. The paper should be considered preliminary in nature and may require revision. Printed at INSEAD, Fontainebleau, France. Kindly do not reproduce or circulate without permission. ABSTRACT We explore why some employees may be at a disadvantage in searching for information in large complex organizations. The “small world” argument in social network theory emphasizes that people are on an average only a few connections away from the information they seek. However, we argue that such a network structure may benefit some people more than others. Specifically, some employees may have longer search paths in locating knowledge in an organization—their world may be large.
    [Show full text]
  • Network Flow-Based Refinement for Multilevel Hypergraph Partitioning
    Network Flow-Based Refinement for Multilevel Hypergraph Partitioning Tobias Heuer Karlsruhe Institute of Technology, Germany [email protected] Peter Sanders Karlsruhe Institute of Technology, Germany [email protected] Sebastian Schlag Karlsruhe Institute of Technology, Germany [email protected] Abstract We present a refinement framework for multilevel hypergraph partitioning that uses max-flow computations on pairs of blocks to improve the solution quality of a k-way partition. The frame- work generalizes the flow-based improvement algorithm of KaFFPa from graphs to hypergraphs and is integrated into the hypergraph partitioner KaHyPar. By reducing the size of hypergraph flow networks, improving the flow model used in KaFFPa, and developing techniques to improve the running time of our algorithm, we obtain a partitioner that computes the best solutions for a wide range of benchmark hypergraphs from different application areas while still having a running time comparable to that of hMetis. 2012 ACM Subject Classification Mathematics of computing → Graph algorithms Keywords and phrases Multilevel Hypergraph Partitioning, Network Flows, Refinement Digital Object Identifier 10.4230/LIPIcs.SEA.2018.1 Related Version A full version of the paper is available at https://arxiv.org/abs/1802. 03587. 1 Introduction Given an undirected hypergraph H = (V, E), the k-way hypergraph partitioning problem is to partition the vertex set into k disjoint blocks of bounded size (at most 1 + ε times the average block size) such that an objective function involving the cut hyperedges is minimized. Hypergraph partitioning (HGP) has many important applications in practice such as scientific computing [10] or VLSI design [40]. Particularly VLSI design is a field where small improvements can lead to significant savings [53].
    [Show full text]
  • Chemical Reaction Optimization for Max Flow Problem
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 7, No. 8, 2016 Chemical Reaction Optimization for Max Flow Problem Reham Barham Ahmad Sharieh Azzam Sliet Department of Computer Science Department of Computer Science Department of Computer Science King Abdulla II School for King Abdulla II School for King Abdulla II School for Information and Technology Information and Technology Information and Technology The University of Jordan The University of Jordan The University of Jordan Amman, Jordan Amman, Jordan Amman, Jordan Abstract—This study presents an algorithm for MaxFlow represents the flow capacity of the edge. Under these problem using "Chemical Reaction Optimization algorithm constraints, we want to maximize the total flow from the (CRO)". CRO is a recently established meta-heuristics algorithm source to the sink". In [3] they define it as " In deterministic for optimization, inspired by the nature of chemical reactions. networks, the maximum-flow problem asks to send as much The main concern is to find the best maximum flow value at flow (information or goods) from a source to a destination, which the flow can be shipped from the source node to the sink without exceeding the capacity of any of the used links. node in a flow network without violating any capacity constraints Solving maximum-flow problems is for instance important to in which the flow of each edge remains within the upper bound avoid congestion and improve network utilization in computer value of the capacity. The proposed MaxFlow-CRO algorithm is networks or data centers or to improve fault tolerance". presented, analyzed asymptotically and experimental test is conducted.
    [Show full text]
  • Graph Theory: Network Flow
    University of Washington Math 336 Term Paper Graph Theory: Network Flow Author: Adviser: Elliott Brossard Dr. James Morrow 3 June 2010 Contents 1 Introduction ...................................... 2 2 Terminology ...................................... 2 3 Shortest Path Problem ............................... 3 3.1 Dijkstra’sAlgorithm .............................. 4 3.2 ExampleUsingDijkstra’sAlgorithm . ... 5 3.3 TheCorrectnessofDijkstra’sAlgorithm . ...... 7 3.3.1 Lemma(TriangleInequalityforGraphs) . .... 8 3.3.2 Lemma(Upper-BoundProperty) . 8 3.3.3 Lemma................................... 8 3.3.4 Lemma................................... 9 3.3.5 Lemma(ConvergenceProperty) . 9 3.3.6 Theorem (Correctness of Dijkstra’s Algorithm) . ....... 9 4 Maximum Flow Problem .............................. 10 4.1 Terminology.................................... 10 4.2 StatementoftheMaximumFlowProblem . ... 12 4.3 Ford-FulkersonAlgorithm . .. 12 4.4 Example Using the Ford-Fulkerson Algorithm . ..... 13 4.5 The Correctness of the Ford-Fulkerson Algorithm . ........ 16 4.5.1 Lemma................................... 16 4.5.2 Lemma................................... 16 4.5.3 Lemma................................... 17 4.5.4 Lemma................................... 18 4.5.5 Lemma................................... 18 4.5.6 Lemma................................... 18 4.5.7 Theorem(Max-FlowMin-CutTheorem) . 18 5 Conclusion ....................................... 19 1 1 Introduction An important study in the field of computer science is the analysis of networks. Internet service providers (ISPs), cell-phone companies, search engines, e-commerce sites, and a va- riety of other businesses receive, process, store, and transmit gigabytes, terabytes, or even petabytes of data each day. When a user initiates a connection to one of these services, he sends data across a wired or wireless network to a router, modem, server, cell tower, or perhaps some other device that in turn forwards the information to another router, modem, etc. and so forth until it reaches its destination.
    [Show full text]
  • Financial Flows Centrality: Empirical Evidence Using Bilateral Capital Flows
    Financial Flows Centrality: Empirical Evidence using Bilateral Capital Flows Rogelio Marcado, Jr. and Shanty Noviantie TEP Working Paper No. 1119 December 2019 Trinity Economics Papers Department of Economics Financial Flows Centrality: Empirical Evidence using Bilateral Capital Flows Rogelio Mercado, Jr.* and Shanty Noviantie** This Version: December 2019 Abstract This paper uses a dataset on bilateral capital flows to construct a financial centrality measure for 64 advanced and emerging economies from 2000-16 to capture an economy’s importance within the global financial flows network. The results highlight the varying significance of network systemic and idiosyncratic factors in explaining financial centrality across different types of investments and residency of investors. Most notably, the findings show that financial centres have deeper and more developed financial system, implying their importance in global financial intermediation. Keywords: financial centrality, financial depth, network analysis JEL codes: D85, F21, F36, and G15 *Senior Economist, The SEACEN Centre, [email protected]. **Senior Financial Sector Specialist, The SEACEN Centre, [email protected]. The authors are grateful to the comments and suggestions of Hans Genberg and Maria Theresa Punzi. The views expressed in this paper are those of the authors alone and do not reflect the official views of the South East Asian Central Banks Research and Training (SEACEN) Centre. 0 I. Introduction The existing literature on financial network analysis focuses on financial links or ties between economies; whereas studies on cross-border transmissions highlights core-periphery dynamics. These concepts differ from financial centrality, which maps the importance and interconnectedness of economies within the global financial flows network. Economies that exhibit a high degree of financial centrality suggest their importance as sources or destinations of investments; as well as their vital role in global financial intermediation.
    [Show full text]
  • ‣ Max-Flow and Min-Cut Problems ‣ Ford–Fulkerson Algorithm ‣ Max
    7. NETWORK FLOW I ‣ max-flow and min-cut problems ‣ Ford–Fulkerson algorithm ‣ max-flow min-cut theorem ‣ capacity-scaling algorithm ‣ shortest augmenting paths ‣ Dinitz’ algorithm ‣ simple unit-capacity networks Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos Last updated on 1/14/20 2:18 PM 7. NETWORK FLOW I ‣ max-flow and min-cut problems ‣ Ford–Fulkerson algorithm ‣ max-flow min-cut theorem ‣ capacity-scaling algorithm ‣ shortest augmenting paths ‣ Dinitz’ algorithm ‣ simple unit-capacity networks SECTION 7.1 Flow network A flow network is a tuple G = (V, E, s, t, c). ・Digraph (V, E) with source s ∈ V and sink t ∈ V. Capacity c(e) ≥ 0 for each e ∈ E. ・ assume all nodes are reachable from s Intuition. Material flowing through a transportation network; material originates at source and is sent to sink. capacity 9 4 15 15 10 10 s 5 8 10 t 15 4 6 15 10 16 3 Minimum-cut problem Def. An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A and t ∈ B. Def. Its capacity is the sum of the capacities of the edges from A to B. cap(A, B)= c(e) e A 10 s 5 t 15 capacity = 10 + 5 + 15 = 30 4 Minimum-cut problem Def. An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A and t ∈ B. Def. Its capacity is the sum of the capacities of the edges from A to B. cap(A, B)= c(e) e A 10 s 8 t don’t include edges from B to A 16 capacity = 10 + 8 + 16 = 34 5 Minimum-cut problem Def.
    [Show full text]
  • Lecture Notes for IEOR 266: Graph Algorithms and Network Flows
    Lecture Notes for IEOR 266: Graph Algorithms and Network Flows Professor Dorit S. Hochbaum Contents 1 Introduction 1 1.1 Assignment problem . 1 1.2 Basic graph definitions . 2 2 Totally unimodular matrices 4 3 Minimum cost network flow problem 5 3.1 Transportation problem . 7 3.2 The maximum flow problem . 8 3.3 The shortest path problem . 8 3.4 The single source shortest paths . 9 3.5 The bipartite matching problem . 9 3.6 Summary of classes of network flow problems . 11 3.7 Negative cost cycles in graphs . 11 4 Other network problems 12 4.1 Eulerian tour . 12 4.1.1 Eulerian walk . 14 4.2 Chinese postman problem . 14 4.2.1 Undirected chinese postman problem . 14 4.2.2 Directed chinese postman problem . 14 4.2.3 Mixed chinese postman problem . 14 4.3 Hamiltonian tour problem . 14 4.4 Traveling salesman problem (TSP) . 14 4.5 Vertex packing problems (Independent Set) . 15 4.6 Maximum clique problem . 15 4.7 Vertex cover problem . 15 4.8 Edge cover problem . 16 4.9 b-factor (b-matching) problem . 16 4.10 Graph colorability problem . 16 4.11 Minimum spanning tree problem . 17 5 Complexity analysis 17 5.1 Measuring quality of an algorithm . 17 5.1.1 Examples . 18 5.2 Growth of functions . 20 i IEOR266 notes: Updated 2014 ii 5.3 Definitions for asymptotic comparisons of functions . 21 5.4 Properties of asymptotic notation . 21 5.5 Caveats of complexity analysis . 21 5.6 A sketch of the ellipsoid method . 22 6 Graph representations 23 6.1 Node-arc adjacency matrix .
    [Show full text]
  • GRAPH THEORY: NETWORK FLOW Vrushali Manohar Asst Prof, IFIM College, Bangalore
    GRAPH THEORY: NETWORK FLOW Vrushali Manohar Asst Prof, IFIM College, Bangalore 1. Introduction the fastest possible route between the source and An important study in the field of computer destination? Supposing that all of the traffic science is the analysis of networks. Internet between two components was to follow a single service providers (ISPs), cell-phone companies, path, however, how would this affect the search engines, e-commerce sites, and a variety performance of the individual components and of other businesses receive, process, store, and connections along the route? The optimum transmit gigabytes, terabytes, or even petabytes solution for the fastest possible transmission of of data each day. When a user initiates a data often involves spreading out traffic to other connection to one of these services, he sends data components, even though one component or across a wired or wireless network to a router, connection might be much faster than all the modem, server, cell tower, or perhaps some other others. device that in turn forwards the information to In graph theory, a flow network is a another router, modem, etc. and so forth until it directed graph where each edge has a capacity reaches its destination. For any given source, and each edge receives flow. The amount of flow there are often many possible paths along which on an edge cannot exceed the capacity of the the data could travel before reaching its intended edge. Often in Operations Research, a directed recipient. When I will initiate a connection to graph is called a network, the vertices are called Google from my laptop here at the Sinhgad the nodes and edges are called the arcs.
    [Show full text]