Scanity High Performance, Cost-Effective, Multi-Application Film Scanner
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital High School Photography Curriculum
California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2003 Digital high school photography curriculum Martin Michael Wolin Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Art Education Commons Recommended Citation Wolin, Martin Michael, "Digital high school photography curriculum" (2003). Theses Digitization Project. 2414. https://scholarworks.lib.csusb.edu/etd-project/2414 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. DIGITAL HIGH SCHOOL PHOTOGRAPHY CURRICULUM A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Education: Career and Technical'Education by Martin Michael Wolin June 2003 DIGITAL HIGH SCHOOL PHOTOGRAPHY CURRICULUM A Project Presented to the Faculty of California State University, San Bernardino by Martin Michael June 2003 Approved by: Dr. Ronald^Pendelton, Second Reader © 2003 Martin Michael Wolin ABSTRACT The purpose of this thesis was to create a high school digital photography curriculum that was relevant to real world application and would enable high school students to enter the work force with marketable skills or go onto post secondary education with advanced knowledge in the field of digital imaging. Since the future of photography will be digital, it was imperative that a high school digital photography curriculum be created. The literature review goes into extensive detail about digital imaging. -
Silverfastjobmanager Silverfast Jobmanager for Film Scanner
ManualAi6 K6 12 E.qxd5 31.10.2003 14:47 Uhr Seite 279 SilverFastJobManager SilverFast JobManager for Film Scanner Overview To activate the JobManager, click on “JobManager”-button in the vertical list of buttons to the left of the large SilverFastAi preview window. SilverFastAi dialog using Macintosh SilverFastAi dialog using Windows 6.12 ® ManualAi6 K6 12 E.qxd5 SilverFast Manual 040903 279 ManualAi6 K6 12 E.qxd5 31.10.2003 14:47 Uhr Seite 280 SilverFastJobManager SilverFastJobManager Tools Icons indicating the current correc- SilverFastJobManager-Menu tions and the output format chosen: Referring to actions with relation to complete jobs (such as saving and loading) Execute auto-adjust before sca Name of current jobs Gradation curve changes in A star (*) indicates, whether a job effect has been changed Selective colour correction Image information active File name Active filter RGB output format selected Output dimensions / scaling Horizontal and vertical Lab output format selected Output resolution – file size CMYK output format selected Icons representing actions with reference to the Job: Add the active frame from the preview Add all frames from the preview 6.12 Add images from image overview dialog window Activate VLT Starting and stopping Directory File format of job execution the final images will selection box for the be saved to during desired file format. Delete the job entries selected execution. Edit parameters of the job entry selected Copy job-entry parameters 280 SilverFast® Manual ManualAi6 K6 12 E.qxd5 31.10.2003 14:47 Uhr Seite 281 SilverFast JobManager™ Purpose of the JobManager What is the JobManager? SilverFastJobManager (from here on referred to as “JM”) is a built-in function for the scan software SilverFastAi, as well as for the Photoshop plugins which operate independently of a scanner and the Twain modules SilverFastHDR, SilverFastDC and SilverFastPhotoCD. -
Format Factor Fundamentals (Corrections Appreciated - [email protected])
Mark Schubin's Format Factor Fundamentals (corrections appreciated - [email protected]) Dimensions in mm; figures rounded; diagonal determines lens format; AR is aspect ratio; divide comparable dimensions for format factor; lp/mm figures for dimension with highest resolution; 1920 represents lp/mm at full-HD resolution. Camera Diagonal AR :1 Width Height lp/mm 1920 Vision Research Phantom 65 59.6 5:3 1.67 51.2 30.5 40 19 Full-frame DSLR (Canon 5D) 43.3 3:2 1.5 36 24 27 Dalsa Origin, Evolution 38.1 ~2:1 1.98 34.0 17.2 60 31 NAC Memrecam fx K4 35.6 5:4 1.25 27.8 22.2 23 35 Super Hi-Vision 2.5-inch 34 16:9 1.78 29.8 16.4 129 32 Super 35 film 31.1 4:3 1.33 24.9 18.7 -- -- Weisscam HS-2 31.1 4:3 1.33 24.9 18.7 55 39 ARRI D-21 30.8 4:3 1.33 23.8 17.8 61 40 Vision Research Phantom HD 29.1 16:9 1.78 25.6 13.9 40 38 APS-C Canon 7D 28.6 ~13:8 1.64 24.4 14.9 39 APS-C Nikon, Pentax DSLR 28.4 3:2 1.5 23.6 15.8 41 Red One 28.0 16:9 1.78 24.4 13.7 93 39 Panavision Genesis 27.5 16:9 1.78 24.0 13.5 120 40 35-mm Academy aperture film 27.3 11:8 1.38 22.0 16.0 -- -- APS-C Canon DSLR 26.8 3:2 1.5 22.3 14.9 43 Photron Ultima APX-RS 24.6 1:1 1 17.4 17.4 29 55 Panasonic 4/3 DSLR 21.6 16:9 1.78 18.9 10.6 51 Weinberger Cine SpeedCam 20 ~3:2 1.55 17 11 47 56 Super Hi-Vision/4K 1.25-inch 19 16:9 1.78 16.6 9.2 231 58 Weisscam HS-1 19 5:4 1.25 15 12 43 64 1-inch 1035-line HDTV 16.0 16:9 1.78 13.9 7.8 69 69 1-inch 720-line HDTV 16.0 16:9 1.78 13.9 7.8 46 69 Super 16 film 14.5 5:3 1.67 12.5 7.4 -- -- 16-mm film 12.7 11:8 1.38 10.3 7.5 -- -- Ikonoskop a-cam dII 12.2 -
UK Photography Activity Badge
making a start in photography Jessops is proud to support The Scout Association and sponsor the Scout Photographer Badge know your camera! welcome to the Single use cameras SLRs Digital cameras Single use cameras offer an inexpensive and ‘Single lens reflex’ cameras, often called SLRs, Digital cameras come in both compact and SLR exciting world of risk-free way to take great photos. They are built come in two main types - manual and auto-focus. formats. Rather than saving an image to film, complete with a film inside and once this is used SLRs give you greater artistic control as they can digital cameras save images onto memory cards. photography! up, the whole camera is sent for processing. They be combined with a vast range of interchangeable They have tiny sensors which convert an image are perfect for taking to places where you may lenses and accessories (such as lens filters). You electronically into ‘pixels’ (short for picture To successfully complete the Photographer Badge, be worried about losing or damaging expensive can also adjust almost every setting on the camera elements) which are put together to make up the you will need to learn the basic functions of a equipment (Scout camp for example) and you can yourself - aiding your photographic knowledge complete image. camera, how to use accessories, and how to care even get models suitable for underwater use - and the creative possibilities! for your equipment. You will also need to Capturing images this way means that as soon as perfect for taking to the beach! understand composition, exposure and depth of With manual SLRs, the photographer is in complete the picture is taken, you can view it on the LCD field, film types, how to produce prints and control - and responsible for deciding all the screen featured on most digital cameras. -
Spirit 4K® High-Performance Film Scanner with Bones and Datacine®
Product Data Sheet Spirit 4K® High-Performance Film Scanner with Bones and DataCine® Spirit 4K Film Scanner/Bones Combination Digital intermediate production – the motion picture workflow in which film is handled only once for scan- ning and then processed with a high-resolution digital clone that can be down-sampled to the appropriate out- put resolution – demands the highest resolution and the highest precision scanning. While 2K resolution is widely accepted for digital post production, there are situations when even a higher re- solution is required, such as for digital effects. As the cost of storage continues to fall and ultra-high resolu- tion display devices are introduced, 4K postproduction workflows are becoming viable and affordable. The combination of the Spirit 4K high-performance film scanner and Bones system is ahead of its time, offe- ring you the choice of 2K scanning in real time (up to 30 frames per second) and 4K scanning at up to 7.5 fps depending on the selected packing format and the receiving system’s capability. In addition, the internal spatial processor of the Spirit 4K system lets you scan in 4K and output in 2K. This oversampling mode eli- minates picture artifacts and captures the full dynamic range of film with 16-bit signal processing. And in either The Spirit 4K® from DFT Digital Film Technology is 2K or 4K scanning modes, the Spirit 4K scanner offers a high-performance, high-speed Film Scanner and unrivalled image detail, capturing that indefinable film DataCine® solution for Digital Intermediate, Commer- look to perfection. cial, Telecine, Restoration, and Archiving applications. -
Strands and Standards Commercial Photography 1
STRANDS AND STANDARDS COMMERCIAL PHOTOGRAPHY 1 Course Description An introduction to the field of commercial photography. This course will cover concepts, including but not limited to purchasing a digital camera; image capture; image editing; and image output. This course will also feature Adobe Photoshop, its features and use. These concepts will enable the student to be more knowledgeable and prepared to enter the field of commercial photography. CAMERA REQUIREMENT: It is recommended that students have access to a Digital SLR camera. However Digital Point and Shoot cameras can be used and will be covered in this course. At a minimum, cameras must use removable memory cards and have adjustable mode settings. Mobile devices may be used to complete some, but not all of the listed objectives. SOFTWARE REQUIREMENT: Photoshop or Photoshop Elements, Adobe Lightroom Intended Grade Level 10-12 Units of Credit 0.5 Core Code 40.13.00.00.012 Concurrent Enrollment Core Code 40.13.00.13.012 Prerequisite None Skill Certification Test Number 537 Test Weight 0.5 License Type CTE and/or Secondary Education 6-12 Required Endorsement(s) Endorsement 1 Commercial Photography Endorsement 2 NA Endorsement 3 NA ADA Compliant: August 2020 COMMERCIAL PHOTOGRAPHY 1 STRAND 1 Students will have knowledge of the history of photography. Standard 1 History of Photography • Overview of the origins of Technical Photographic Processes, and major milestones. • Camera Obscura • Wet Plate • Film • Digital • Sensor development • Storage development Standard 2 Evolution and future of Digital Photography. • Adobe Photoshop • Camera Raw STRAND 2 Students will be able to understand and apply the multi-step process of workflow. -
FILM FORMATS ------8 Mm Film Is a Motion Picture Film Format in Which the Filmstrip Is Eight Millimeters Wide
FILM FORMATS ------------------------------------------------------------------------------------------------------------ 8 mm film is a motion picture film format in which the filmstrip is eight millimeters wide. It exists in two main versions: regular or standard 8 mm and Super 8. There are also two other varieties of Super 8 which require different cameras but which produce a final film with the same dimensions. ------------------------------------------------------------------------------------------------------------ Standard 8 The standard 8 mm film format was developed by the Eastman Kodak company during the Great Depression and released on the market in 1932 to create a home movie format less expensive than 16 mm. The film spools actually contain a 16 mm film with twice as many perforations along each edge than normal 16 mm film, which is only exposed along half of its width. When the film reaches its end in the takeup spool, the camera is opened and the spools in the camera are flipped and swapped (the design of the spool hole ensures that this happens properly) and the same film is exposed along the side of the film left unexposed on the first loading. During processing, the film is split down the middle, resulting in two lengths of 8 mm film, each with a single row of perforations along one edge, so fitting four times as many frames in the same amount of 16 mm film. Because the spool was reversed after filming on one side to allow filming on the other side the format was sometime called Double 8. The framesize of 8 mm is 4,8 x 3,5 mm and 1 m film contains 264 pictures. -
Files/2014 Women and the Big Picture Report.Pdf>, Accessed 6 September 2018
The neuroscientific uncanny: a filmic investigation of twenty-first century hauntology GENT, Susannah <http://orcid.org/0000-0003-0091-2555> Available from the Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/26099/ A Sheffield Hallam University thesis This thesis is protected by copyright which belongs to the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Please visit http://shura.shu.ac.uk/26099/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions. THE NEUROSCIENTIFIC UNCANNY: A FILMIC INVESTIGATION OF TWENTY-FIRST CENTURY HAUNTOLOGY Susannah Gent A thesis submitted in partial fulfilment of the requirements of Sheffield Hallam University for the degree of Doctor of Philosophy October 2019 Candidate Declaration I hereby declare that: 1. I have not been enrolled for another award of the University, or other academic or professional organisation, whilst undertaking my research degree. 2. None of the material contained in the thesis has been used in any other submission for an academic award. 3. I am aware of and understand the University’s policy on plagiarism and certify that this thesis is my own work. The use of all published or other sources of material consulted have been properly and fully acknowledged. 4. The work undertaken towards the thesis has been conducted in accordance with the SHU Principles of Integrity in Research and the SHU Research Ethics Policy. -
I32-1997 the Use of Super 16 Mm Film for Television Production
EBU Technical Information I32-1997 The Use of Super 16 mm Film for Television Production EBU Committee First issued Revised Re-issued PMC 1997 Keywords: Film, 16:9 Telecines 1. Introduction This EBU Technical Information document reports on the way and extent that EBU Members and their programme suppliers use Super 16 mm film in 4:3 and 16:9 television production. A questionnaire was sent to EBU Members and other organisations involved in programme production for EBU Members. Replies were received from 36 organisations; 31 broadcasting organisations and 5 film and/or video post-production organisations. The replies showed that 26 organisations were using Super 16 mm; 22 of these were broadcasters located in Austria, Belgium, the Czech Republic, Denmark, Finland, France, Germany, Japan, Greece, the Netherlands, Norway, Poland, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. The present Technical Information document is based on the replies to the questionnaire. In a parallel exercise, the EBU has attempted to give a comparison between the costs of using Super 16 mm and 35 mm film for television production. This comparison is given in Appendix 1 2. Main Applications of Super 16 mm Film 2.1 Types of programme produced on Super 16 mm film Super 16 mm film is mainly used for single camera drama and documentary production. The final product may be intended for television release only, or, in the case of a co-production, it may be intended for both television and cinema release. 2.2 Reported advantages in the use of Super 16 mm film The reported advantages of producing in Super 16 mm film, as compared to 35 mm film, are lower costs of camera film and equipment, lower costs of film laboratory services, and a smaller technical staff needed for shooting. -
FS60 User Manual V1.0 14MP Film and Photo Scanner
FS60 User Manual v1.0 14MP Film and Photo Scanner Thank you for your purchase of this Magnasonic product. Please read this user manual carefully before using product to ensure proper use. Keep this manual in a safe place for future reference. magnasonic.com/support We reserve the right to change models, configurations, or specification without notice or liability. Product may not be exactly as shown. © MAGNASONIC®, MAGNASONIC®, the MAGNASONIC® marks may be registered. All other trademarks are property of their respective owners Since 1954, Magnasonic has been a leader in developing innovative and unique products. We are dedicated to empowering people using six key fundamentals: superior quality, performance, simplicity, style, value and a fanatical obsession with outstanding customer service. At Magnasonic, our mission is a simple one – create people-driven products that make life’s daily adventures easier and more fun. We believe everyday experiences should be extraordinary. Thank you for your purchase of this Magnasonic® product. We hope you enjoy your experience. Questions? Give us a chance to help, we’re just a click away. www.youtube.com/magnasonic Magnasonic.com/support Magnasonic.com/contact Don’t forget to register your product with us! Magnasonic.com/registration Table Of Contents What’s Included ...................................................................................................................3 Product Information ...........................................................................................................4 -
Film Printing
1 2 3 4 5 6 7 8 9 10 1 2 3 Film Technology in Post Production 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 40 1 2 3111 This Page Intentionally Left Blank 1 2 3 Film Technology 4 5 6 in Post Production 7 8 9 10 1 2 Second edition 3 4 5 6 7 8 9 20 1 Dominic Case 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 40 1 2 3111 4 5 6 7 8 Focal Press 9 OXFORD AUCKLAND BOSTON JOHANNESBURG MELBOURNE NEW DELHI 1 Focal Press An imprint of Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041 A division of Reed Educational and Professional Publishing Ltd A member of the Reed Elsevier plc group First published 1997 Reprinted 1998, 1999 Second edition 2001 © Dominic Case 2001 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 0LP. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalogue record -
Simulation of Film Media in Motion Picture Production
Simulation of film media in motion picture production using a digital still camera Arne M. Bakke, Jon Y. Hardeberg and Steffen Paul Gjøvik University College, P.O. Box 191, N-2802 Gjøvik, Norway ABSTRACT The introduction of digital intermediate workflow in movie production has made visualization of the final image on the film set increasingly important. Images that have been color corrected on the set can also serve as a basis for color grading in the laboratory. In this paper we suggest and evaluate an approach that has been used to simulate the appearance of different film stocks. The GretagMacbeth Digital ColorChecker was captured using both a Canon EOS 20D camera as well as an analog film camera. The film was scanned using an Arri film scanner. The images of the color chart were then used to perform a colorimetric characterization of these devices using models based on polynomial regression. By using the reverse model of the digital camera and the forward model of the analog film chain, the output of the film scanner was simulated. We also constructed a direct transformation using regression on the RGB values of the two devices. A different color chart was then used as a test set to evaluate the accuracy of the transformations, where the indirect model was found to provide the required performance for our purpose without compromising the flexibility of having an independent profile for each device. 1. INTRODUCTION AND BACKGROUND The post-production work on a movie is typically carried out on digital representations of the movie frames. The use of digital technology has brought unique possibilities in all aspects of the post-production of a movie (editing, color grading, visual effects) to the creative community of filmmakers.