Soap·Film Model

Total Page:16

File Type:pdf, Size:1020Kb

Soap·Film Model Demonstrating Science with Soap Films - Frontispiece F2. Photographs sh o wing the jump between the two soap-film configurations within a framework s haped as a pe ntagonal prism. 1_- Demonstrating Science with Soap Films David Lovett Department of Physics University of Essex Computer Programs John Tilley and David Lovett Institute of Physics Publishing Bristol and Philadelphia © lOP Publishing Ltd 1994 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with the Committee of Vice-Chancellors and Principals. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Library of Congress Cataloging-in-Publication Data Lovett, D. R. Demonstrating science with soap films / David R. Lovett; computer programmes, John Tilley and David Lovett. p. cm. Includes bibliographical references and index. ISBN 0-7503-0270-4. -- ISBN 0-7503-0269-0 (pbk.) 1. Soap-bubbles. 2. Soap-bubbles--Study and teaching. I. Tilley, John, Ph. D. II. Title. QC I83.L85 1994 530.4'275--dc20 94-30453 CIP ISBN 0 7503 0269 0 (pbk) o7503 0270 4 (hbk) The computer programs given in Appendix II were written using Mathematica. The programs were prepared for versions up to 2.2. Mathematica is a registered trademark of Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820- 7237, USA (phone: 1-217-398-0700; fax: 1-217-398-0747). Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Techno House, Redcliffe Way, Bristol BS I 6NX, UK US Editorial Office: Institute of Physics Publishing, The Public Ledger Building, Suite 1035, Independence Square, Philadelphia, PA 19106, USA Typeset in TJY( by Institute of Physics Publishing Printed in the UK by J W Arrowsmith Ltd, Bristol Contents Frontispiece iii Preface Xl 1 Introduction 1 1.1 What are soap films? 1 1.2 Surface tension and surface energy 4 1.3 A brief history of soap-film studies 5 1.4 Plateau's problem 7 1.5 The shape of minimal surfaces 9 1.6 The saddle-point bifurcation 11 2 Two-dimensional soap-film patterns 12 2.1 Introduction 12 2.2 Simple two-dimensional patterns 12 2.3 Bubbles within the two-dimensional patterns 21 2.4 Symmetry of patterns, objects and soap films 23 2.5 Further discussions on geometry 25 2.6 The general Steiner problem 27 3 Soap films and first- and second-order phase transitions 30 3.1 A 20 model for a first-order phase transition 30 3.2 Thermodynamics of the phase transition 38 3.3 The water-vapour phase transition 41 3.4 Physics of the four-pin soap-film model 42 3.5 A 20 model for a second-order phase transition 44 3.6 The Ehrenfest classification 46 3.7 The order parameter and symmetry 48 4 Soap-film models and catastrophe models 50 4.1 Introduction to catastrophe theory 50 4.2 The fold catastrophe 51 Vll VIII CONTENTS 4.3 The cusp catastrophe 52 4.4 The Zeeman catastrophe machine 54 4.5 Illustrating double-cusp catastrophes with soap films 57 4.6 Chapter appendix; phase transitions and Landau theory 67 5 Film within a wedge-the catenoidal surface 72 5.1 Film between three pins joining non-parallel plates 72 5.2 Film within a wedge 72 5.3 Setting the wedge apex upwards in a gravitational field 75 5.4 Interference colours 76 5.5 Theory of thin-film interference 78 5.6 Films between two cones 81 5.7 The H -surfaces of revolution 81 5.8 Altering pressure on one side of a film 83 5.9 Films within a helix-the helicoid 84 5.10 Chapter appendix; mathematics of the catenoidal surface 85 6 Soap films within three-dimensional frameworks and minimal surfaces 91 6.1 Films within simple prism-shaped frameworks 91 6.2 Films within simple variable frameworks 93 6.3 Film patterns within the regular Platonic polyhedra 98 6.4 Great arc configurations 100 6.5 Minimal surfaces and computers 104 6.6 Examples of minimal surfaces suitable for representation by computer graphics 105 7 Fermat's principle and refraction 112 7.1 Fermat's principle 112 7.2 Modelling ~imple refraction 114 7.3 Prisms and lenses 115 7.4 Mirages 117 7.5 P-waves through the earth 121 7.6 Curvature of space-the Schwarzschild geometry 127 7.7 Bending of light near a black hole 129 8 Bubbles 131 8.1 Simple bubbles 131 8.2 Bubbles within fixed frameworks 132 8.3 Bubbles within variable frameworks 135 8.4 Coalescing bubbles 137 CONTENTS IX 8.5 More about bubble patterns 141 8.6 The bubble raft and crystal structure 144 9 Analogies within the scientific world 149 9.1 Introduction 149 9.2 Biological unicellular forms and radiolarians 149 9.3 Forms of carbon and the fullerenes 152 9.4 The honeycomb 154 9.5 Cracks and fissures 157 9.6 Equilibrium shapes of crystals 157 9.7 Langmuir-Blodgett films 160 9.8 Application in technology; communications networks 163 9.9 Architectural applications 163 9.10 Concluding comments 164 Appendices 166 A.I Construction of the models 166 A.L1 The two-dimensional models and the wedge 166 A.I.2 The frameworks 169 A.II Soap-film patterns by computer using Mathematica, by John Tilley and David Lovett 171 A.II.I-A.II.16 Computer programs 172 Bibliography 192 Index 197 Preface For many, the blowing of soap bubbles as children formed a significant part of their introduction to science. By generating these bubbles, children meet ideas of shapes and forms which can be of considerable surprise even within very simple situations. They encounter the idea of stability, or perhaps more importantly the idea of instability as the bubbles burst. And they see something of the beauty which science can produce as they watch the bubbles catch the light to produce startling colours as a result of the interference of light within the surfaces of the bubbles. Throughout scientific history, soap films have held the interest of scientists and mathematicians with an equal intensity to that of children. A topic which, on the one hand, is very simple with few variables and constraints proves, on the other hand, to be difficult to solve in its entirety by mathematics and to embrace fundamental principles which underlie all of physical SClence. This book attempts to pass on some of the fun which can be obtained from studying soap films and soap bubbles. At the same time, it has a much more serious objective, that of using films to help one understand principles of physics in particular and other aspects of science in general. This is possible because soap films are forever attempting to minimize their energy. In the same way, minimization of energy is fundamental to the setting up of equilibrium physical situations. So this book is about soap The author demonstrating the films; but it is also about the importance of energy minimization wonder of soap films to a captivated to the establishment of the world around us. And it is about the audience. Picture by courtesy of patterns which are set up as a result of this minimization. Essex County Newspapers Ltd. In most topics in physical science it is difficult to avoid mathematics. The study of soap films is no exception and simple calculations and algebraic equations are dispersed throughout the book. Where the amount of mathematics is more significant, the relevant section has been boxed and can be left out if desired. Although the balance of content reflects very much my own emphases and interests, the development of the material has arisen from considerable interaction with colleagues and friends. I first became interested in the topic after attending, in close Xl XlI PREFACE succession, public lectures by Dr Cyril Isenberg on soap films and soap bubbles and by Professor Christopher Zeeman on catastrophe theory. Following this, the interest of colleagues in the Depa.rtment of Physics here at Essex University has been a great encouragement. In particular, I must acknowledge the considerable input from Dr John Tilley. Not only has he collaborated with me over many of the ideas, but he is making a major contribution to one of the appendices, and has provided numerous helpful suggestions concerning the overall text. Over the years, Dr Stephen Smith, Professor Rodney Loudon and Professor David Tilley have made many helpful suggestions. I should thank Brian Diamond and John Bartington who made the models, modified them with considerable originality, and sometimes repaired them. The staff at Institute of Physics Publishing have been most helpful in the preparation of the text. I am indebted to Jim Revill for his enthusiastic encouragement of the project and to AI Troyano for his contribution to the layout and his efficient transformation of the manuscript into a most attractive book. Above all, this book is a result of the fun and excitement I have had with hundreds of enthusiasts who have marvelled at the amazing patterns set up by soap films. David Lovett University of Essex December 1993 1 Introduction The nature of soap films and films produced by other surfactants is described. The importance of surface energy is explained, and minimal-area surfaces are introduced.
Recommended publications
  • Governing Equations for Simulations of Soap Bubbles
    University of California Merced Capstone Project Governing Equations For Simulations Of Soap Bubbles Author: Research Advisor: Ivan Navarro Fran¸cois Blanchette 1 Introduction The capstone project is an extension of work previously done by Fran¸coisBlanchette and Terry P. Bigioni in which they studied the coalescence of drops with either a hori- zontal reservoir or a drop of a different size (Blanchette and Bigioni, 2006). Specifically, they looked at the partial coalescence of a drop, which leaves behind a smaller "daugh- ter" droplet due to the incomplete merging process. Numerical simulations were used to study coalescence of a drop slowly coming into contact with a horizontal resevoir in which the fluid in the drop is the same fluid as that below the interface (Blanchette and Bigioni, 2006). The research conducted by Blanchette and Bigioni starts with a drop at rest on a flat interface. A drop of water will then merge with an underlying resevoir (water in this case), forming a single interface. Our research involves using that same numerical ap- proach only this time a soap bubble will be our fluid of interest. Soap bubbles differ from water drops on the fact that rather than having just a single interface, we now have two interfaces to take into account; the air inside the soap bubble along with the soap film on the boundary, and the soap film with any other fluid on the outside. Due to this double interface, some modifications will now be imposed on the boundary conditions involving surface tension along the interface. Also unlike drops, soap bubble thickness is finite which will mean we must keep track of it.
    [Show full text]
  • The Life of a Surface Bubble
    molecules Review The Life of a Surface Bubble Jonas Miguet 1,†, Florence Rouyer 2,† and Emmanuelle Rio 3,*,† 1 TIPS C.P.165/67, Université Libre de Bruxelles, Av. F. Roosevelt 50, 1050 Brussels, Belgium; [email protected] 2 Laboratoire Navier, Université Gustave Eiffel, Ecole des Ponts, CNRS, 77454 Marne-la-Vallée, France; fl[email protected] 3 Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405 Orsay, France * Correspondence: [email protected]; Tel.: +33-1691-569-60 † These authors contributed equally to this work. Abstract: Surface bubbles are present in many industrial processes and in nature, as well as in carbon- ated beverages. They have motivated many theoretical, numerical and experimental works. This paper presents the current knowledge on the physics of surface bubbles lifetime and shows the diversity of mechanisms at play that depend on the properties of the bath, the interfaces and the ambient air. In particular, we explore the role of drainage and evaporation on film thinning. We highlight the existence of two different scenarios depending on whether the cap film ruptures at large or small thickness compared to the thickness at which van der Waals interaction come in to play. Keywords: bubble; film; drainage; evaporation; lifetime 1. Introduction Bubbles have attracted much attention in the past for several reasons. First, their ephemeral Citation: Miguet, J.; Rouyer, F.; nature commonly awakes children’s interest and amusement. Their visual appeal has raised Rio, E. The Life of a Surface Bubble. interest in painting [1], in graphism [2] or in living art.
    [Show full text]
  • Weighted Transparency: Literal and Phenomenal
    Frei Otto soap bubble model (top left), Antonio Gaudi gravity model (bottom left), Miguel Fisac fabric form concrete wall (right) Weighted Transparency: Literal and Phenomenal SPRING 2020, OPTION STUDIO VISITING ASSOCIATE PROFESSOR NAOMI FRANGOS “As soon as we adventure on the paths of the physicist, we learn to weigh and to measure, to deal with time and space and mass and their related concepts, and to find more and more our knowledge expressed and our needs satisfied through the concept of number, as in the dreams and visions of Plato and Pythagoras; for modern chemistry would have gladdened the hearts of those great philosophic dreamers.” On Growth and Form, D’Arcy Wentworth Thompson Today’s maker architect is such a dreamt physicist. What is at stake is the ability to balance critical form-finding informed by the behavior of matter itself with the rigor of precision afforded by computational thinking. This studio transposes ideas of cross- disciplinarity in design, art, science, engineering and material studies pioneered by our forerunner master-builders into built prototypes by studying varying degrees of literal and phenomenal transparency achieved through notions of weight. Working primarily with a combination of plaster/concrete and glass/porcelain, juxtapositions are provoked between solid and void, heavy and light, opaque and transparent, smooth and textured, volume and surface. How can the actual weight of a material affect its sense of mass? How can mass capture the phenomena of weightlessness? How can physical material properties dictate appearances beyond optical transparency? Using dynamic matter/flexible formwork (i.e. salt, sand, gravel, fabric), suspended/submerged and compression/ expansion systems, weight plays a major role in deriving methods of fabrication and determining experiential qualities of made artifacts.
    [Show full text]
  • Deformations of the Gyroid and Lidinoid Minimal Surfaces
    DEFORMATIONS OF THE GYROID AND LIDINOID MINIMAL SURFACES ADAM G. WEYHAUPT Abstract. The gyroid and Lidinoid are triply periodic minimal surfaces of genus 3 embed- ded in R3 that contain no straight lines or planar symmetry curves. They are the unique embedded members of the associate families of the Schwarz P and H surfaces. In this paper, we prove the existence of two 1-parameter families of embedded triply periodic minimal surfaces of genus 3 that contain the gyroid and a single 1-parameter family that contains the Lidinoid. We accomplish this by using the flat structures induced by the holomorphic 1 1-forms Gdh, G dh, and dh. An explicit parametrization of the gyroid using theta functions enables us to find a curve of solutions in a two-dimensional moduli space of flat structures by means of an intermediate value argument. Contents 1. Introduction 2 2. Preliminaries 3 2.1. Parametrizing minimal surfaces 3 2.2. Cone metrics 5 2.3. Conformal quotients of triply periodic minimal surfaces 5 3. Parametrization of the gyroid and description of the periods 7 3.1. The P Surface and tP deformation 7 3.2. The period problem for the P surface 11 3.3. The gyroid 14 4. Proof of main theorem 16 4.1. Sketch of the proof 16 4.2. Horizontal and vertical moduli spaces for the tG family 17 4.3. Proof of the tG family 20 5. The rG and rL families 25 5.1. Description of the Lidinoid 25 5.2. Moduli spaces for the rL family 29 5.3.
    [Show full text]
  • Vibrations of Fractal Drums
    VOLUME 67, NUMBER 21 PHYSICAL REVIEW LETTERS 18 NOVEMBER 1991 Vibrations of Fractal Drums B. Sapoval, Th. Gobron, and A. Margolina "' Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique, 91128 Palaiseau CEDEX, France (Received l7 July l991) Fractal boundary conditions drastically alter wave excitations. The low-frequency vibrations of a membrane bounded by a rigid fractal contour are observed and localized modes are found. The first lower eigenmodes are computed using an analogy between the wave and the diffusion equations. The fractal frontier induces a strong confinement of the wave analogous to superlocalization. The wave forms exhibit singular derivatives near the boundary. PACS numbers: 64.60.Ak, 03.40.Kf, 63.50.+x, 71.55.3v Objects with irregular geometry are ubiquitous in na- shown in Fig. 2. ture and their vibrational properties are of general in- The observation of confined modes was a surprise be- terest. For instance, the dependence of sea waves on the cause, in principle, the symmetry of the structure forbids topography of coastlines is a largely unanswered question. their existence. In fact, this experimental localization is The emergence of fractal geometry was a significant due both to damping and to the existence of narrow paths breakthrough in the description of irregularity [11. It has in the geometry of the membrane. If only one of the been suggested that the very existence of some of the equivalent regions like A is excited, then a certain time T, fractal structures found in nature is attributable to a called the delocalization time is necessary for the excita- self-stabilization due to their ability to damp harmonic tion to travel from A to B.
    [Show full text]
  • Memoirs of a Bubble Blower
    Memoirs of a Bubble Blower BY BERNARD ZUBROVVSKI Reprinted from Technology Review, Volume 85, Number 8, Nov/Dec 1982 Copyright 1982, Alumni Association of the Massachusetts Institute of Technolgy, Cambridge, Massachusetts 02139 EDUCATION A SPECIAL REPORT Memoirs N teaching science to children, I have dren go a step further by creating three- found that the best topics are those dimensional clusters of bubbles that rise I that are equally fascinating to chil• up a plexiglass tube. These bubbles are dren and adults alike. And learning is not as regular as those in the honeycomb most enjoyable when teacher and students formation, but closer observation reveals are exploring together. Blowing bubbles that they have a definite pattern: four provides just such qualities. bubbles (and never more than four) are Bubble blowing is an exciting and fruit• usually in direct contact with one another, ful way for children to develop basic in• with their surfaces meeting at a vertex at tuition in science and mathematics. And angles of about 109 degrees. And each working with bubbles has prompted me to of a bubble in the cluster will have roughly the wander into various scientific realms such same number of sides, a fact that turns out as surface physics, cellular biology, topol• to be scientifically significant. ogy, and architecture. Bubbles and soap Bubble In the 1940s, E.B. Matzke, a well- films are also aesthetically appealing, and known botanist who experimented with the children and I have discovered bubbles bubbles, discovered that bubbles in an to be ideal for making sculptures. In fact, array have an average of 14 sides.
    [Show full text]
  • Computer Graphics and Soap Bubbles
    Computer Graphics and Soap Bubbles Cheung Leung Fu & Ng Tze Beng Department of Mathematics National University of Singapore Singapore 0511 Soap Bubbles From years of study and of contemplation A boy, with bowl and straw, sits and blows, An old man brews a work of clarity, Filling with breath the bubbles from the bowl. A gay and involuted dissertation Each praises like a hymn, and each one glows; Discoursing on sweet wisdom playfully Into the filmy beads he blows his soul. An eager student bent on storming heights Old man, student, boy, all these three Has delved in archives and in libraries, Out of the Maya.. foam of the universe But adds the touch of genius when he writes Create illusions. None is better or worse A first book full of deepest subtleties. But in each of them the Light of Eternity Sees its reflection, and burns more joyfully. The Glass Bead Game Hermann Hesse The soap bubble, a wonderful toy for children, a motif for poetry, is at the same time a mathematical entity that has a fairly long history. Thanks to the advancement of computer graphics which led to solutions of decade-old conjectures, 'soap bubbles' have become once again a focus of much mathematical research in recent years. Anyone who has seen or played with a soap bubble knows that it is a spherical object. It is indeed a sphere if one defines a soap bubble to be a surface minimizing the area among all surfaces enclosing the same given volume. Relaxing this condition, mathematicians defined a soap bubble or surface of constant mean curvature to be a surface which is locally the stationary point of the area function when compared again locally to neighbouring surfaces enclosing the same volume.
    [Show full text]
  • Graphs in Nature
    Graphs in Nature David Eppstein University of California, Irvine Algorithms and Data Structures Symposium (WADS) August 2019 Inspiration: Steinitz's theorem Purely combinatorial characterization of geometric objects: Graphs of convex polyhedra are exactly the 3-vertex-connected planar graphs Image: Kluka [2006] Overview Cracked surfaces, bubble foams, and crumpled paper also form natural graph-like structures What properties do these graphs have? How can we recognize and synthesize them? I. Cracks and Needles Motorcycle graphs: Canonical quad mesh partitioning Problem: partition irregular quad-mesh into regular submeshes [Eppstein et al. 2008] Inspiration: Light cycle game from TRON movies Mesh partitioning method Grow cut paths outwards from each irregular (non-degree-4) vertex Cut paths continue straight across regular (degree-4) vertices They stop when they run into another path Result: approximation to optimal partition (exact optimum is NP-complete) Mesh-free motorcycle graphs Earlier... Motorcycles move from initial points with given velocities When they hit trails of other motorcycles, they crash [Eppstein and Erickson 1999] Application of mesh-free motorcycle graphs Initially: A simplified model of the inward movement of reflex vertices in straight skeletons, a rectilinear variant of medial axes with applications including building roof construction, folding and cutting problems, surface interpolation, geographic analysis, and mesh construction Later: Subroutine for constructing straight skeletons of simple polygons [Cheng and Vigneron 2007; Huber and Held 2012] Image: Huber [2012] Construction of mesh-free motorcycle graphs Main ideas: Define asymmetric distance: Time when one motorcycle would crash into another's trail Repeatedly find closest pair and eliminate crashed motorcycle Image: Dancede [2011] O(n17=11+) [Eppstein and Erickson 1999] Improved to O(n4=3+) [Vigneron and Yan 2014] Additional log speedup using mutual nearest neighbors instead of closest pairs [Mamano et al.
    [Show full text]
  • On the Shape of Giant Soap Bubbles
    On the shape of giant soap bubbles Caroline Cohena,1, Baptiste Darbois Texiera,1, Etienne Reyssatb,2, Jacco H. Snoeijerc,d,e, David Quer´ e´ b, and Christophe Claneta aLaboratoire d’Hydrodynamique de l’X, UMR 7646 CNRS, Ecole´ Polytechnique, 91128 Palaiseau Cedex, France; bLaboratoire de Physique et Mecanique´ des Milieux Het´ erog´ enes` (PMMH), UMR 7636 du CNRS, ESPCI Paris/Paris Sciences et Lettres (PSL) Research University/Sorbonne Universites/Universit´ e´ Paris Diderot, 75005 Paris, France; cPhysics of Fluids Group, University of Twente, 7500 AE Enschede, The Netherlands; dMESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands; and eDepartment of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved January 19, 2017 (received for review October 14, 2016) We study the effect of gravity on giant soap bubbles and show The experimental setup dedicated to the study of such large 2 that it becomes dominant above the critical size ` = a =e0, where bubbles is presented in Experimental Setup, before information p e0 is the mean thickness of the soap film and a = γb/ρg is the on Experimental Results and Model. The discussion on the asymp- capillary length (γb stands for vapor–liquid surface tension, and ρ totic shape and the analogy with inflated structures is presented stands for the liquid density). We first show experimentally that in Analogy with Inflatable Structures. large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed Experimental Setup to account for this effect, predicting the shape based on mechan- The soap solution is prepared by mixing two volumes of Dreft© ical equilibrium.
    [Show full text]
  • Soap Films: Statics and Dynamics
    Soap Films: Statics and Dynamics Frederik Brasz January 8, 2010 1 Introduction Soap films and bubbles have long fascinated humans with their beauty. The study of soap films is believed to have started around the time of Leonardo da Vinci. Since then, research has proceeded in two distinct directions. On the one hand were the mathematicians, who were concerned with finding the shapes of these surfaces by minimizing their area, given some boundary. On the other hand, physical scientists were trying to understand the properties of soap films and bubbles, from the macroscopic behavior down to the molecular description. A crude way to categorize these two approaches is to call the mathematical shape- finding approach \statics" and the physical approach \dynamics", although there are certainly problems involving static soap films that require a physical description. This is my implication in this paper when I divide the discussion into statics and dynamics. In the statics section, the thickness of the film, concentration of surfactants, and gravity will all be quickly neglected, as the equilibrium shape of the surface becomes the only matter of importance. I will explain why for a soap film enclosing no volume, the mean curvature must everywhere be equal to zero, and why this is equivalent to the area of the film being minimized. For future reference, a minimal surface is defined as a two-dimensional surface with mean curvature equal to zero, so in general soap films take the shape of minimal surfaces. Carrying out the area minimization of a film using the Euler-Lagrange equation will result in a nonlinear partial differential equation known as Lagrange's Equation, which all minimal surfaces must satisfy.
    [Show full text]
  • Chemomechanical Simulation of Soap Film Flow on Spherical Bubbles
    Chemomechanical Simulation of Soap Film Flow on Spherical Bubbles WEIZHEN HUANG, JULIAN ISERINGHAUSEN, and TOM KNEIPHOF, University of Bonn, Germany ZIYIN QU and CHENFANFU JIANG, University of Pennsylvania, USA MATTHIAS B. HULLIN, University of Bonn, Germany Fig. 1. Spatially varying iridescence of a soap bubble evolving over time (left to right). The complex interplay of soap and water induces a complex flowonthe film surface, resulting in an ever changing distribution of film thickness and hence a highly dynamic iridescent texture. This image was simulated using the method described in this paper, and path-traced in Mitsuba [Jakob 2010] using a custom shader under environment lighting. Soap bubbles are widely appreciated for their fragile nature and their colorful In the computer graphics community, it is now widely understood appearance. The natural sciences and, in extension, computer graphics, have how films, bubbles and foams form, evolve and break. On the ren- comprehensively studied the mechanical behavior of films and foams, as dering side, it has become possible to recreate their characteristic well as the optical properties of thin liquid layers. In this paper, we focus on iridescent appearance in physically based renderers. The main pa- the dynamics of material flow within the soap film, which results in fasci- rameter governing this appearance, the thickness of the film, has so nating, extremely detailed patterns. This flow is characterized by a complex far only been driven using ad-hoc noise textures [Glassner 2000], coupling between surfactant concentration and Marangoni surface tension. We propose a novel chemomechanical simulation framework rooted in lu- or was assumed to be constant.
    [Show full text]
  • A Chiral Family of Triply-Periodic Minimal Surfaces from the Quartz Network
    A chiral family of triply-periodic minimal surfaces from the quartz network Shashank G. Markande 1, Matthias Saba2, G. E. Schroder-Turk¨ 3 and Elisabetta A. Matsumoto 1∗ 1School of Physics, Georgia Tech, Atlanta, GA 30318, USA 2 Department of Physics, Imperial College, London, UK 3School of Engineering and IT, Mathematics and Statistics, Murdoch University, Murdoch, Australia ∗ Author for correspondence: [email protected] May 21, 2018 Abstract We describe a new family of triply-periodic minimal surfaces with hexagonal symmetry, related to the quartz (qtz) and its dual (the qzd net). We provide a solution to the period problem and provide a parametrisation of these surfaces, that are not in the regular class, by the Weierstrass-Enneper formalism. We identified this analytical description of the surface by generating an area-minimising mesh interface from a pair of dual graphs (qtz & qzd) using the generalised Voronoi construction of De Campo, Hyde and colleagues, followed by numerical identification of the flat point structure. This mechanism is not restricted to the specific pair of dual graphs, and should be applicable to a broader set of possible dual graph topologies and their corresponding minimal surfaces, if existent. 1 Introduction The discovery of cubic structures with vivid photonic properties in a wide range of biological systems, such as those responsible for the structural colouring seen in the wing scales of butterflies [1, 2, 3, 4] and in beetle cuticles [5, 6], has driven a renewed interest in mathematics of minimal surfaces – surfaces which, every- where, have zero mean curvature. The optical properties in these structures comes from the periodic nature of their bulk structure.
    [Show full text]