Diversity of Non-Crop Plants and Arthropods in Soybean Agro- Ecosystems in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of Non-Crop Plants and Arthropods in Soybean Agro- Ecosystems in South Africa Diversity of non-crop plants and arthropods in soybean agro- ecosystems in South Africa PD Janse van Rensburg orcid.org 0000-0003-4354-1969 Dissertation accepted in fulfilment of the requirements for the degree Master of Science in Environmental Sciences with Integrated Pest Management at the North-West University Supervisor: Prof J van den Berg Co-supervisors: Prof SJ Siebert Graduation May 2020 25091840 Acknowledgements There are several people without whom this project would not have been possible. Therefore, I would like to give special thanks to: • My supervisors, Prof Johnnie van den Berg, Prof Stefan Siebert as well as Dr Tlou Masehela (SANBI), for their guidance and dedication to this project. • Dr Suria Ellis, Ms Bianca Greyvenstein and Ms Nanette van Staden for their assistance with statistical analyses. • Fellow students who assisted with fieldwork. • All the farmers who allowed us to work in their soybean fields. • My family for their support and encouragement. i Abstract Soybean is widely cultivated in the Grassland Biome of South Africa (>700 000 ha per annum). Yet the possible effects large-scale cultivation of soybean has on biodiversity in adjacent habitat is not fully understood. It is important to expand current data in order to assess and adapt methods of agriculture – where possible – to ensure the future functionality of soybean agro-ecosystems. This study aimed to describe plant and arthropod species assemblages, diversity patterns and relationships between plant and arthropod diversity within soybean agro-ecosystems in South Africa. Surveys were conducted in three treatment zones, i.e., the soybean crop, field boundary (transition zone between soybean fields and adjacent habitat) and adjacent untransformed grassland. A total of 4910 individuals and 320 plant species and 9216 individuals and 373 arthropod morpho-species were recorded from 60 plots (5 localities x 2 sites x 2 transects x 3 treatments). The soybean crop had significantly lower plant and arthropod diversity than adjacent habitats. Plant diversity remained the same between the field boundary and grassland. A higher diversity of arthropods was collected in the boundary than the grassland. These results suggest soybean fields had no adverse effects on biodiversity patterns in the adjacent habitat. However, the boundary, dominated by alien plant species, did contain a significantly different plant species composition from the untransformed grassland that was mirrored by unique assemblages of arthropods. This suggests that disturbance, resulting from the soybean crop, led to species losses and gains that changed the plant and arthropod species composition of the field boundary but had no effect on grassland beyond the boundary (>50 m). Correlations between plant and arthropod species richness and diversity index values were generally weak and non-significant suggesting other factors, for instance, plant functional and structural diversity, may be important to explain arthropod diversity. Unique species assemblages and high diversity of plants and arthropods in the boundary and untransformed grassland suggest that these zones may have important conservation value in soybean agro-ecosystems by supporting unique species and ecosystem services. Keywords: Agro-ecosystem; Biodiversity; Species Richness; Soybean; Arthropods; Plants; Grassland; Field Boundary; Ecosystem Services ii Table of Contents Acknowledgments .................................................................................................................. i Abstract..................................................................................................................................ii Chapter 1: Introduction ...................................................................................................... 1 1.1 Introduction ................................................................................................................... 1 1.2 Aims, objectives and hypotheses ................................................................................ 2 References .......................................................................................................................... 4 Chapter 2: Literature review ............................................................................................... 8 2.1 Biodiversity ................................................................................................................... 8 2.1.1 General principles of biodiversity .................................................................................. 8 2.1.1 Measurement of biodiversity…………………………………………………………………..8 2.2 Agro-ecosystems ........................................................................................................ 10 2.2.1 General description of agro-ecosystems .................................................................... 10 2.2.2 Biodiversity of agro-ecosystems ................................................................................. 11 2.2.3 Spillover of species between the crop and non-crop habitat ....................................... 15 2.2.4 Importance of biodiversity in agro-ecosystems ........................................................... 18 2.3 Soybean agro-ecosystems ......................................................................................... 21 2.3.1 Weed and arthropod diversity of soybean agro-ecosystems....................................... 21 2.4 Glyphosate-tolerant soybean ..................................................................................... 26 2.4.1 Background ................................................................................................................ 26 2.4.2 Impact on plants ......................................................................................................... 26 2.4.3 Herbicide-resistant weeds in glyphosate-tolerant crops .............................................. 27 2.4.4 Weeds shifts due to glyphosate use and changes in cultivation practices .................. 27 2.4.5 Impact on arthropods ................................................................................................. 27 References ........................................................................................................................ 30 Chapter 3: Materials and Methods ................................................................................... 52 iii 3.1 Study sites ................................................................................................................... 52 3.2 General method ........................................................................................................... 54 3.3 Arthropod sampling .................................................................................................... 55 3.4 Vegetation sampling ................................................................................................... 56 3.5 Data analysis ............................................................................................................... 56 3.5.1 Plant and arthropod species composition ................................................................... 56 3.5.2 Plant and arthropod diversity patterns ........................................................................ 56 3.5.3 Effect of land-use intensity and environmental variables on plant and arthropod species assemblages ....................................................................................................................... 57 3.5.4 Correlations between plant-arthropod diversity and predator-prey diversity ................ 58 References ........................................................................................................................ 59 Chapter 4: Plant species composition and diversity patterns of soybean agro- ecosystems ....................................................................................................................... 61 Abstract ............................................................................................................................. 61 4.1 Introduction ................................................................................................................. 62 4.2 Materials and Methods 4.3 Descriptive results ...................................................................................................... 63 4.4 Plant species composition along the soybean field-field margin gradient ............. 65 4.4.1 Results ....................................................................................................................... 65 4.4.2 Discussion .................................................................................................................. 67 4.5 Plant species diversity patterns along the soybean field-field margin gradient .... 69 4.5.1 Results ....................................................................................................................... 69 4.5.2 Discussion .................................................................................................................. 71 4.6 Effect of land-use intensity and environmental variables on plant species assemblages ..................................................................................................................... 73 4.6.1 Results ....................................................................................................................... 73 4.6.2 Discussion .................................................................................................................
Recommended publications
  • Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009
    Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Fauna Conservation Department Kadoorie Farm & Botanic Garden 29 June 2010 Kadoorie Farm and Botanic Garden Publication Series: No 6 Fung Yuen SSSI & Butterfly Reserve moth survey 2009 Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Executive Summary The objective of this survey was to generate a moth species list for the Butterfly Reserve and Site of Special Scientific Interest [SSSI] at Fung Yuen, Tai Po, Hong Kong. The survey came about following a request from Tai Po Environmental Association. Recording, using ultraviolet light sources and live traps in four sub-sites, took place on the evenings of 24 April and 16 October 2009. In total, 825 moths representing 352 species were recorded. Of the species recorded, 3 meet IUCN Red List criteria for threatened species in one of the three main categories “Critically Endangered” (one species), “Endangered” (one species) and “Vulnerable” (one species” and a further 13 species meet “Near Threatened” criteria. Twelve of the species recorded are currently only known from Hong Kong, all are within one of the four IUCN threatened or near threatened categories listed. Seven species are recorded from Hong Kong for the first time. The moth assemblages recorded are typical of human disturbed forest, feng shui woods and orchards, with a relatively low Geometridae component, and includes a small number of species normally associated with agriculture and open habitats that were found in the SSSI site. Comparisons showed that each sub-site had a substantially different assemblage of species, thus the site as a whole should retain the mosaic of micro-habitats in order to maintain the high moth species richness observed.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 39/00 (2006.01) C07D 303/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 49/242 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/048092 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 22 August 2016 (22.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/208,662 22 August 2015 (22.08.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NEOZYME INTERNATIONAL, INC.
    [Show full text]
  • An Inventory of Nepal's Insects
    An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera & Diptera) V. K. Thapa An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera& Diptera) V.K. Thapa IUCN-The World Conservation Union 2000 Published by: IUCN Nepal Copyright: 2000. IUCN Nepal The role of the Swiss Agency for Development and Cooperation (SDC) in supporting the IUCN Nepal is gratefully acknowledged. The material in this publication may be reproduced in whole or in part and in any form for education or non-profit uses, without special permission from the copyright holder, provided acknowledgement of the source is made. IUCN Nepal would appreciate receiving a copy of any publication, which uses this publication as a source. No use of this publication may be made for resale or other commercial purposes without prior written permission of IUCN Nepal. Citation: Thapa, V.K., 2000. An Inventory of Nepal's Insects, Vol. III. IUCN Nepal, Kathmandu, xi + 475 pp. Data Processing and Design: Rabin Shrestha and Kanhaiya L. Shrestha Cover Art: From left to right: Shield bug ( Poecilocoris nepalensis), June beetle (Popilla nasuta) and Ichneumon wasp (Ichneumonidae) respectively. Source: Ms. Astrid Bjornsen, Insects of Nepal's Mid Hills poster, IUCN Nepal. ISBN: 92-9144-049 -3 Available from: IUCN Nepal P.O. Box 3923 Kathmandu, Nepal IUCN Nepal Biodiversity Publication Series aims to publish scientific information on biodiversity wealth of Nepal. Publication will appear as and when information are available and ready to publish. List of publications thus far: Series 1: An Inventory of Nepal's Insects, Vol. I. Series 2: The Rattans of Nepal.
    [Show full text]
  • Section IV – Guideline for the Texas Priority Species List
    Section IV – Guideline for the Texas Priority Species List Associated Tables The Texas Priority Species List……………..733 Introduction For many years the management and conservation of wildlife species has focused on the individual animal or population of interest. Many times, directing research and conservation plans toward individual species also benefits incidental species; sometimes entire ecosystems. Unfortunately, there are times when highly focused research and conservation of particular species can also harm peripheral species and their habitats. Management that is focused on entire habitats or communities would decrease the possibility of harming those incidental species or their habitats. A holistic management approach would potentially allow species within a community to take care of themselves (Savory 1988); however, the study of particular species of concern is still necessary due to the smaller scale at which individuals are studied. Until we understand all of the parts that make up the whole can we then focus more on the habitat management approach to conservation. Species Conservation In terms of species diversity, Texas is considered the second most diverse state in the Union. Texas has the highest number of bird and reptile taxon and is second in number of plants and mammals in the United States (NatureServe 2002). There have been over 600 species of bird that have been identified within the borders of Texas and 184 known species of mammal, including marine species that inhabit Texas’ coastal waters (Schmidly 2004). It is estimated that approximately 29,000 species of insect in Texas take up residence in every conceivable habitat, including rocky outcroppings, pitcher plant bogs, and on individual species of plants (Riley in publication).
    [Show full text]
  • Coleoptera: Chrysomelidae)
    334 Florida Entomologist 80(3) September, 1997 FEEDING RECORDS OF COSTA RICAN LEAF BEETLES (COLEOPTERA: CHRYSOMELIDAE) R. WILLS FLOWERS1 AND DANIEL H. JANZEN2 1Agricultural Research Programs, Florida A&M University Tallahassee, FL 32307-4100, rfl[email protected] 2Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 [email protected] ABSTRACT Host plant associations are given for 137 species representing 7 subfamilies and 92 genera of Costa Rican Chrysomelidae. A numeric score is introduced to objectively describe confidence that a field observation of an interaction between a chrysomelid and a plant represents true herbivory. Literature host plant records, if they exist, are given for included chrysomelid taxa. Key Words: herbivory, Criocerinae, Chrysomelinae, Cryptocephalinae, Eumolpinae, Galerucinae, Hispinae, Lamprosominae, host plants RESUMEN Se presentan asociaciones de plantas hospederas para 137 especies de Chrysome- lidae de Costa Rica, representando 7 subfamilias y 92 géneros de escarabajos. Se in- troduce una calificación numérica para describir objetivamente la confianza en que una observación de campo de una interacción entre un escarabajo y una planta repre- senta un caso verdadero de herbivoría. Se presentan datos de plantas hospederas de la literatura, si existen, para los taxa de escarabajos incluidos. In recent years, there has been a surge of interest in relationships between tropi- cal plants and insects. The interest is driven by the related agendas of studying them for their intrinsic scientific interest, and protecting tropical biodiversity through find- ing practical and non-destructive ways to use it. The latter agenda is exemplified by the biochemical prospecting programs recently started in several areas of the world (Reid et al.
    [Show full text]
  • Lessertia | Plantz Africa About:Reader?Url=
    Lessertia | Plantz Africa about:reader?url=http://pza.sanbi.org/lessertia pza.sanbi.org Lessertia | Plantz Africa Lessertia DC. Family: Fabaceae Common names: Introduction This group of plants, which now includes Sutherlandia (the cancer bush group), is reported to be useful medicinally and also good for pasture. Description Description Lessertia species are mainly perennials with a few annuals. The genus consists of erect, prostrate or decumbent herbs and shrubs. It has compound or rarely unifoliate leaves, paired stipules, an elongated or subcapitate raceme, paired bracts. The original group differs from the plants previously known as Sutherlandia in flower and fruit. In original Lessertia species flowers are small and they range from 6-10 mm long. They are pink, yellow or purple in colour. Fruits are either linear, compressed or subcompressed and few are inflated. In the Sutherlandia (cancer bush) group, flowers are very big, red in colour about 15 to 30 mm long. Fruits are also big, inflated and bladder-like in form. Distribution and habitat Distribution description Prior to the inclusion of Sutherlandia species , Lessertia DC . consists of about 50 species. The genus is mainly restricted to Africa with most of the diversity (about 46) centred in southern Africa, only four species extend into tropical Africa and they are L. benguellensis, L. pauciflora, L. incana , and L. stipulata . Species are found thoughout southern Africa: 24 species have been recorded in Western Cape, 18 in Eastern Cape and Northern Cape, 14 in Free State, 12 in Namibia, 10 in KwaZulu-Natal, seven in Lesotho, six in Gauteng, five in North-West and Botswana, four in Mpumalanga and one in Swaziland.
    [Show full text]
  • Molecular Evidence of Cycad Seed Predation by Immature Aulacoscelidinae (Coleoptera: Orsodacnidae)
    Systematic Entomology (2012), DOI: 10.1111/j.1365-3113.2012.00639.x Molecular evidence of cycad seed predation by immature Aulacoscelidinae (Coleoptera: Orsodacnidae) ALBERTO PRADO1, DUANE D. MCKENNA2 and DONALD WINDSOR3 1Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada, 2Department of Biological Sciences, University of Memphis, Memphis, TN, U.S.A. and 3Smithsonian Tropical Research Institute, Balboa-Ancon, Panama Abstract. Adult beetles in the small subfamily Aulacoscelidinae (superfamily Chrysomeloidea) are known to feed on the foliage and juices of New World cycads (Order Cycadales; family Zamiaceae), but the habits of larvae have long remained a mystery. We provide the first direct evidence that Aulacoscelidinae larvae feed on and develop within the megagametophyte of the Mesoamerican cycad, Dioon merolae (Zamiaceae). Phylogenetic analyses based on partial DNA sequences from 3 genes recover a cycad seed-feeding larva proposed to belong to Aulacoscelidinae. These observations reveal a more intimate feeding relationship between Aulacoscelidinae and their New World cycad host plants than was previously recognized. Further, adult Aulacoscelidinae have long been noted to resemble Jurassic fossil chrysomeloids in the extinct subfamily Protoscelidinae. The molecular, morphological, ecological and fossil data reported herein are broadly compatible with an early association between Aulacoscelidinae and their gymnosperm hosts. Introduction Phytophaga, and that the complex plant–phytophage associ- ations observed today may have originated well before the The Phytophaga (1 30 000 species), comprising the angiosperm radiation on one or more of these formerly impor- Chrysomeloidea and Curculionoidea, together contain close tant lineages of plants (Labandeira, 2000; Labandeira et al., to 50% of phytophagous insect species and nearly 80% of 2007).
    [Show full text]
  • Appendix 2. Species Lists of the Beetles, Non-Beetle Hexa- Pods and Non-Hexapod Invertebrates of Montserrat M
    Appendix 2. Species lists of the beetles, non-beetle hexa- pods and non-hexapod invertebrates of Montserrat M. A. Ivie, K. A. Marske, I. A. Foley & L. L. Ivie The beetles of Montserrat: an annotated checkllist Below are listed all of the beetles known to us from Montserrat, organized by family. Each has a name at the level we are able to assign it. Each has a code indicating the species’ distributional status (Table A), from single island endemic to invasive exotic. The symbol “?” associated with this ranking, indicates our lack of knowledge of a particular taxon. Following the distributional code is the original citation (if any) of the species from Montserrat, as well as any notes. This format is also followed for the sections on non‐beetle hexapods and the non‐hexapods invertebrates. Table A. Key to Distributional Status Distributional status Code Description Island Endemic IE Montserrat only Local Endemic LE Few islands, i.e St. Kitts, Montserrat & Guadeloupe Leeward Island Endemic LIE Sombrero to Dominica North Eastern Caribbean NEC Puerto Rico to Dominica Endemic Lesser Antilles Endemic LAE Sombrero to Grenada West Indian Endemic WIE Not on mainland, or only south Florida Widespread Native WN West Indies and Mainland S. America and Lesser SA Sombrero to Grenada & S. America Antilles Native Native N? Full distribution unknown Exotic EIS Invasive Species (exotic species not introduced on purpose) Biological Control Agent EBC Exotic spp introduced for beneficial purpose Status Uncertain ? Identity not yet ascertained, or range in dispute COLEOPTERA Rhysodidae Clinidium (s.str.) n.sp. nr planum IE Carabidae (determined by George Ball and Danny Shpeley, with individual species determined by Wendy Moore, James Liebherr and Terry Erwin) Cicindela trifasciata Fabricius WN Eohomopterus n.sp.
    [Show full text]
  • Biblioqraphy & Natural History
    BIBLIOQRAPHY & NATURAL HISTORY Essays presented at a Conference convened in June 1964 by Thomas R. Buckman Lawrence, Kansas 1966 University of Kansas Libraries University of Kansas Publications Library Series, 27 Copyright 1966 by the University of Kansas Libraries Library of Congress Catalog Card number: 66-64215 Printed in Lawrence, Kansas, U.S.A., by the University of Kansas Printing Service. Introduction The purpose of this group of essays and formal papers is to focus attention on some aspects of bibliography in the service of natural history, and possibly to stimulate further studies which may be of mutual usefulness to biologists and historians of science, and also to librarians and museum curators. Bibli• ography is interpreted rather broadly to include botanical illustration. Further, the intent and style of the contributions reflects the occasion—a meeting of bookmen, scientists and scholars assembled not only to discuss specific examples of the uses of books and manuscripts in the natural sciences, but also to consider some other related matters in a spirit of wit and congeniality. Thus we hope in this volume, as in the conference itself, both to inform and to please. When Edwin Wolf, 2nd, Librarian of the Library Company of Phila• delphia, and then Chairman of the Rare Books Section of the Association of College and Research Libraries, asked me to plan the Section's program for its session in Lawrence, June 25-27, 1964, we agreed immediately on a theme. With few exceptions, we noted, the bibliography of natural history has received little attention in this country, and yet it is indispensable to many biologists and to historians of the natural sciences.
    [Show full text]
  • The “Alluvial Mesovoid Shallow Substratum”, a New Subterranean Habitat
    The “Alluvial Mesovoid Shallow Substratum”, a New Subterranean Habitat Vicente M. Ortuño1*, José D. Gilgado1, Alberto Jiménez-Valverde2,4, Alberto Sendra1, Gonzalo Pérez- Suárez1, Juan J. Herrero-Borgoñón3 1 Departamento de Ciencias de la Vida, Facultad de Biología Ciencias Ambientales y Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain, 2 Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain, 3 Departamento de Botánica, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain, 4 Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, Madrid, Spain Abstract In this paper we describe a new type of subterranean habitat associated with dry watercourses in the Eastern Iberian Peninsula, the “Alluvial Mesovoid Shallow Substratum” (alluvial MSS). Historical observations and data from field sampling specially designed to study MSS fauna in the streambeds of temporary watercourses support the description of this new habitat. To conduct the sampling, 16 subterranean sampling devices were placed in a region of Eastern Spain. The traps were operated for 12 months and temperature and relative humidity data were recorded to characterise the habitat. A large number of species was captured, many of which belonged to the arthropod group, with marked hygrophilous, geophilic, lucifugous and mesothermal habits. In addition, there was also a substantial number of species showing markedly ripicolous traits. The results confirm that the network of spaces which forms in alluvial deposits of temporary watercourses merits the category of habitat, and here we propose the name of “alluvial MSS”. The “alluvial MSS” may be covered or not by a layer of soil, is extremely damp, provides a buffer against above ground temperatures and is aphotic.
    [Show full text]