Secondary Structure Prediction of ITS Rrna Region and Molecular Phylogeny: an Integrated Approach for the Precise Speciation of Muscodor Species

Total Page:16

File Type:pdf, Size:1020Kb

Secondary Structure Prediction of ITS Rrna Region and Molecular Phylogeny: an Integrated Approach for the Precise Speciation of Muscodor Species Annals of Microbiology (2018) 68:763–772 https://doi.org/10.1007/s13213-018-1381-8 ORIGINAL ARTICLE Secondary structure prediction of ITS rRNA region and molecular phylogeny: an integrated approach for the precise speciation of Muscodor species Neha Kapoor1,2 & Lokesh Gambhir3 & Sanjai Saxena1 Received: 23 March 2018 /Accepted: 21 September 2018 /Published online: 29 September 2018 # Springer-Verlag GmbH Germany, part of Springer Nature and the University of Milan 2018 Abstract Muscodor is a non-sporulating, volatile organic compounds producing endophytic fungi that has been extensively explored as a bio-fumigant and bio-preservative. Novel species of this genus have been mainly identified using ITS sequences. However, the ITS hyper-variability hinders the creation of reproducible alignments and stable phylogenetic trees. Conserved structural data of the ITS region represents as a vital auxiliary information for accurate speciation of fungi. In the present study, secondary structural data of ITS1, 5.8S, and ITS2 region of all Muscodor species were generated using LocaRNAweb server. The predicted secondary structural data displayed greater variability in ITS1 region in comparison to ITS2. The structural data of all sequences exhibited characteristic conserved features of eukaryotic rRNA. Evolutionary conserved motifs were found among all 5.8S and ITS2 sequences. Profile neighbor joining (PNJ) tree based on combined sequence-structural information of ITS region was generated in ProfDists. The PNJ tree resolved into four major groups whereby M. fengyangenesis and M. albus species formed monophyletic clades. However, three M. albus species along with other Muscodor species emerged as sister branches to the existing clades, thereby, improving the precision of phylogenetic analysis for identification of novel species of Muscodor genus. Hence, the results indicated that structural analysis along with primary sequence information can provide new insights for precise identification of Muscodor species. Keywords Endophytic fungi . rRNA . Muscodor species . ITS . Secondary structure Introduction been isolated and reported from tropical and subtropical flora in Australia, Central/South America, China, Thailand, and The genus Muscodor was established with the discovery of India (Strobel 2015). The unique attribute of this genus is Muscodor albus, a sterile endophytic fungus which was first the release of a characteristic mixture of volatile organic com- isolated from Cinnamomum zeylanicum in a botanical garden pounds, which have been exploited as volatile antimicrobial of Honduras. Since then, many members of this genus have agents, potential fuels, as well as biofumigants (Hutchings et al. 2017). Based on the morphological and molecular char- acteristics and the profile of these volatile organic compounds, Electronic supplementary material The online version of this article (https://doi.org/10.1007/s13213-018-1381-8) contains supplementary 19 species have been added to this genus up to now (Saxena material, which is available to authorized users. et al. 2015). The major constraint in identification and speciation of * Sanjai Saxena Muscodor genus is its non-sporulating nature. There are mul- [email protected]; [email protected] tiple strategies to accurately identify novel Muscodor species among which the most commonly used is ITS rRNA sequence 1 Department of Biotechnology, Thapar Institute of Engineering and analysis (Suwannarach et al. 2013). ITS region is a highly Technology, Patiala, Punjab 147004, India polymorphic multigene family. However, the polymorphism 2 Present address: Department of Microbiology, Uttaranchal (P.G) is not uniform across the ITS cassette due to the presence of College of Biomedical Sciences and Hospital, Dehradun, Uttarakhand 248001, India highly conserved 5.8S region between ITS1 and ITS2 of the nuclear rRNA cistron. Hyper-variable regions ITS1 and ITS2 3 Department of Biotechnology, Shri Guru Ram Rai University, Dehradun, Uttrakhand 248001, India have been used as a primary choice of molecular identification 764 Ann Microbiol (2018) 68:763–772 as well as formal fungal barcode. Hence, reliability of these M. fengyangensis species complex. As it has been found that sequences is of extreme importance (Nilsson et al. 2012; the substantial portion of nucleotide sequences in publicly Schoch et al. 2012). However, the hyper variability of ITS1 available databases are chimeric, the sequence under the pres- region as compared to ITS2 region complicates the generation ent study was therefore checked for the purity using UNITE of reproducible sequence alignments and reconstruction of PlutoF chimera checker (Nilsson et al. 2010; Edgar et al. 2011) stable and robust phylogenetic trees for accurate speciation of fungi. Multi-locus-based taxonomy is commonly adopted Sequence assembly and phylogenetic tree for precise speciation of various fungi (Donnell et al. 2012; construction Marques et al. 2013). However, this strategy is limited by the lack of sequence information of Muscodor species (Yuan et al. An intensive phylogenetic analysis of all the retrieved se- 2011). Thus, there is a need for delineating an alternative quences based on ITS1, 5.8S, ITS2, and all of them together combinatorial strategy incorporating additional parameter was conducted in MEGA 5.2 (Tamura et al. 2011). The se- along with sequence alignment to construct a phylogenetic quences were aligned using ClustalW in MEGA 5.2, and evo- tree for accurate speciation. lutionary relationship was inferred by employing neighbor Though ITS1 and ITS2 sequences display greater se- joining (Saitou and Nei 1987) and maximum likelihood meth- quence variation among different species of the same ge- od. Bootstrap analysis (1000 bootstrap) was conducted to infer nus, they still exhibited significant levels of structurally the consensus tree (Felsenstein 1985) for the representation of conserved regions (Hausner and Wang 2005). ITS1 and phylogenetic diversity and evolutionary relationship. ITS2 conserved secondary structures have been deduced for a wide variety of eukaryotic groups including fungi Secondary structure prediction and motif detection (Barik et al. 2011; Koetschan et al. 2014), dinoflagellates (Thornhill and Lord 2010), and nematodes (Ma et al. 2008) Secondary structures of ITS1, 5.8S, and ITS2 marker were for gaining insights to illustrate phylogenetic relationships generated using LocaRNA-P simultaneous RNA alignment at different taxonomic levels (Schultz and Wolf 2009). and folding option of the Freiburg RNA Tools web server Hence, an integrated approach utilizing primary sequence (http://rna.informatik.uni-freiburg.de:8080/LocARNA/Input. data and secondary structure to generate reproducible jsp)(Smithetal.2010;Willetal.2012)andRNAfoldweb alignments and stable phylogenetic tree appears to be an server ([email protected]) hosted by Institute of Theoretical amenable method of delineating species identification and Chemistry, University of Vienna (Hofacker 2004). The three enhancing phylogenetic resolution (Seibel et al. 2006; conserved motifs M1, M2, and M3 among eukaryotes were Wolf et al. 2008;Letschetal.2010; Koetschan et al. also predicted. The minimum free energy (MFE) method 2014). For this reason, in the present study, we have uti- utilizing dynamic programming algorithm and partition lized the cumulative sequence-structure data of ITS region function algorithm was adopted to predict the secondary (ITS1 and ITS2) from rRNA for the precise speciation of structures as it provides the lowest free energy secondary Muscodor species. Secondary structures of ITS region structure that indicates high occurrence likelihood. Apart were predicted and compared. Further, the secondary struc- from the MFE, centroid structures (i.e., the structure with ture data and the sequence alignment were employed to minimal base-pair distance to all structures in the thermo- construct a phylogenetic tree. dynamic ensemble) and positional entropy (entropy of base given by the probability of forming the pair) were used to compare and validate the MFE-generated structures Material and methods (Mathews et al. 2004;Gruberetal.2008). Retrieval of datasets Sequence-structure assembly, alignment, and phylogenetic tree construction Type sequences of Muscodor species reported till date were retrieved from GenBank database at NCBI server on 14th ThesequenceandstructuredataofallMuscodor species February, 2016. The criteria behind selecting holotype lies were synchronously aligned using ClustalW (Larkin et al. within the fact that the type sequences exhibit enough se- 2007) to generate a multiple alignment of sequence- quence diversity and all the species were characterized at mor- structure data in 4SALE v 1.7 (Seibel et al. 2006;Seibel phological and molecular levels. Final data set comprised 36 et al. 2008). Further, phylogenetic relationship among all sequences for phylogenetic reconstruction and secondary Muscodor sp. was inferred by profile neighbor joining as structure prediction for ITS1, 5.8S, and ITS2 regions, out of implemented in ProfDistS 0.9.9 (Friedrich et al. 2005;Wolf which 19 were type sequences belonging to holotype speci- et al. 2008) by the use of sequence structure specific gen- mens, 12 sequences to M. albus, and 5 sequences were from eral time reversible (GTR) model of substitution and 1000 Ann Microbiol (2018) 68:763–772 765 Table 1 Showing ΔG required for the formation of secondary structure bootstrap replicates. The visualization of the phylogenetic
Recommended publications
  • Microbiological Research Muscodor Brasiliensis Sp. Nov. Produces
    Microbiological Research 221 (2019) 28–35 Contents lists available at ScienceDirect Microbiological Research journal homepage: www.elsevier.com/locate/micres Muscodor brasiliensis sp. nov. produces volatile organic compounds with T activity against Penicillium digitatum Lorena C. Penaa, Gustavo H. Jungklausa, Daiani C. Savia, Lisandra Ferreira-Mabaa, André Servienskia, Beatriz H.L.N.S. Maiab, Vinicius Anniesb, Lygia V. Galli-Terasawaa, ⁎ Chirlei Glienkea, Vanessa Kavaa, a Departamento de Genética, Universidade Federal do Paraná, Cx. Postal 19071, 81531-980, Curitiba, PR, Brazil b Departamento de Química, Universidade Federal do Paraná, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba, PR, Brazil ARTICLE INFO ABSTRACT Keywords: Endophytic fungi belonging to Muscodor genus are considered as promising alternatives to be used in biological Biocontrol control due to the production of volatile organic compounds (VOCs). The strains LGMF1255 and LGMF1256 VOCs were isolated from the medicinal plant Schinus terebinthifolius and, by morphological data and phylogenetic Endophytic fungus analysis, identified as belonging to Muscodor genus. Phylogenetic analysis suggests that strain LGMF1256 is a Plant diseases new species, which is herein introduced as Muscodor brasiliensis sp. nov. The analysis of VOCs production re- Green mold vealed that compounds phenylethyl alcohol, α-curcumene, and E (β) farnesene until now has been reported only from M. brasiliensis, data that supports the classification of strain LGMF1256 as a new species. M. brasiliensis completely inhibited the phytopathogen P. digitatum in vitro. We also evaluated the ability of VOCs from LGMF1256 to inhibit the development of green mold symptoms by inoculation of P. digitatum in detached or- anges. M. brasiliensis reduced the severity of diseases in 77%, and showed potential to be used for fruits storage and transportation to prevent the green mold symptoms development, eventually reducing the use of fungicides.
    [Show full text]
  • Volatile Hydrocarbons from Endophytic Fungi and Their Efficacy in Fuel Production and Disease Control B
    Naik Egyptian Journal of Biological Pest Control (2018) 28:69 Egyptian Journal of https://doi.org/10.1186/s41938-018-0072-x Biological Pest Control REVIEW ARTICLE Open Access Volatile hydrocarbons from endophytic fungi and their efficacy in fuel production and disease control B. Shankar Naik Abstract Endophytic fungi are the microorganisms which asymptomatically colonize internal tissues of plant roots and shoots. Endophytes produce a broad spectrum of odorous compounds with different physicochemical and biological properties that make them useful in both industry and agriculture. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds with high densities, which include terpenes, flavonoids, alkaloids, quinines, cyclohexanes, and hydrocarbons. Many of these compounds showed anti-microbial, anti-oxidant, anti-neoplastic, anti-leishmanial and anti-proliferative activities, cytotoxicity, and fuel production. In this review, the role of volatile compounds produced by fungal endophytes in fuel production and their potential application in biological control is discussed. Keywords: Endophytic fungi, Biocontrol, Biofuel, Mycodiesel, Volatile organic compounds Background activities, and cytotoxicity (Firakova et al. 2007;Korpiet Endophytic fungi are the microorganisms, which asymp- al. 2009; Kharwar et al. 2011; Zhao et al. 2016 and Wu et tomatically colonize the internal tissues of plant roots and al. 2016). shoots (Bacon and White 2000). Endophytes provide Volatile organic compounds (VOCs) are a large group beneficial effects on host plants in deterring pathogens, of carbon-based chemicals with low molecular weights herbivores, increased tolerance to stress drought, low soil and high vapor pressure produced by living organisms as fertility, and enhancement of plant biomass (Redman et al.
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 7,267,975 B2 Strobe] Et A1
    US007267975B2 (12) United States Patent (10) Patent N0.: US 7,267,975 B2 Strobe] et a1. (45) Date of Patent: Sep. 11,2007 (54) METHODS AND COMPOSITIONS Chen, J ., et al. “Termites fumigate their nests with naphthalene,” RELATING TO INSECT REPELLENTS Nature. 392:558-559 (Apr. 1998). FROM A NOVEL ENDOPHYTIC FUNGUS Daisy, B. H. et al. “Muscodor vitigenus, anam. sp. nov. an endophyte from Paullinia paullinioides, ” Mycotaxon 84:39-50. (2002). (75) Inventors: Gary Strobe], BoZeman, MT (US); Daisy, B. et a1 “Napthalene, an insect repellent, is produced by Bryn Daisy, Anchorage, AK (U S) Muscodor vitigenus, a novel endopythic fungus”, Microbiology (2002), 148, 3737-3747. (73) Assignee: Montana State University, BoZeman, Guarro, J. et al. “Developments in Fungal Taxonomy,” Clin MT (US) Microbiol Rev. 12(3):454-500, (Jul. 1999). ( * ) Notice: Subject to any disclaimer, the term of this Hawksworth, D. C. et al. “Where are the undescribed fungi?” patent is extended or adjusted under 35 Phytopath 87(9):888-891 (1987). U.S.C. 154(b) by 234 days. Heath, R. R., et al. “Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a (21) App1.No.: 10/687,546 charcoal-infused medium for air puri?cation,” Journal of Chemical Ecology. 18(7):1209-1226 (1992). (22) Filed: Oct. 15, 2003 Mitchell, J. I., et al. “Sequence or Structure? A Short Review on the Application of Nucleic Acid Sequence Information to Fungal Tax (65) Prior Publication Data onomy,” Mycologist. (1995). US 2004/0185031 A1 Sep. 23, 2004 Morrill, W. L., et al.
    [Show full text]
  • Evaluation of Their Potential As a Biological Control Agent for Ganoderma Boninense, a Pathogenic Fungus of Elaeis Guineensis
    Characterization of new Muscodor padawan and Muscodor sarawak, isolated from Sarawak, Malaysia: evaluation of their potential as a biological control agent for Ganoderma boninense, a pathogenic fungus of Elaeis guineensis By Noreha Mahidi A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy at Swinburne University of Technology 2015 Abstract The aim of this thesis is to isolate endophytic Muscodor-like fungi that produces anti-Ganoderma volatile chemicals, from the rich biodiversity resources of Sarawak. These fungi were then examined for their potential to be developed as biological control agents to control Ganoderma boninense, a pathogenic fungus that causes basal stem rot disease in oil palm, Elaeis guineensis. Ten new isolates of endophytic Muscodor-like fungi were successfully obtained from leaves of different plants of Cinnamomum javanicum collected from the Padawan forest in Kuching, Sarawak, Malaysia, using a co-culture technique with Muscodor albus as the selection organism. Two isolates, Muscodor padawan and Muscodor sarawak were selected for further investigation. Muscodor padawan, when grown on potato dextrose agar, exhibits poor production of aerial mycelia, a yellowish colour, with 20 to 28mm colony diameter after 10 days of incubation at 250C. Muscodor sarawak forms whitish colony with a diameter of 23 to 30mm after 10 days of incubation at 250C and produces moderate aerial mycelia on potato dextrose agar. Scanning electron micrograph of the aerial mycelia of M. padawan showed hyphal formed coiled-like structures, spider mat-like attachments on the surface of hyphae and occasionally the presence of chlamydospores and clumps of hyphae. Formation of new hyphae at lateral main hyphae, chlamydospores at intermediate hyphae, half coiled hyphae at the tip and a strip of hyphae attached by lateral hyphae that formed short bridge-like structure were found in M.
    [Show full text]
  • UC Riverside UC Riverside Previously Published Works
    UC Riverside UC Riverside Previously Published Works Title Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Permalink https://escholarship.org/uc/item/3fm155t1 Authors U'Ren, Jana M Miadlikowska, Jolanta Zimmerman, Naupaka B et al. Publication Date 2016-05-01 DOI 10.1016/j.ympev.2016.02.010 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California *Graphical Abstract (for review) ! *Highlights (for review) • Endophytes illuminate Xylariaceae circumscription and phylogenetic structure. • Endophytes occur in lineages previously not known for endophytism. • Boreal and temperate lichens and non-flowering plants commonly host Xylariaceae. • Many have endophytic and saprotrophic life stages and are widespread generalists. *Manuscript Click here to view linked References 1 Contributions of North American endophytes to the phylogeny, 2 ecology, and taxonomy of Xylariaceae (Sordariomycetes, 3 Ascomycota) 4 5 6 Jana M. U’Ren a,* Jolanta Miadlikowska b, Naupaka B. Zimmerman a, François Lutzoni b, Jason 7 E. Stajichc, and A. Elizabeth Arnold a,d 8 9 10 a University of Arizona, School of Plant Sciences, 1140 E. South Campus Dr., Forbes 303, 11 Tucson, AZ 85721, USA 12 b Duke University, Department of Biology, Durham, NC 27708-0338, USA 13 c University of California-Riverside, Department of Plant Pathology and Microbiology and Institute 14 for Integrated Genome Biology, 900 University Ave., Riverside, CA 92521, USA 15 d University of Arizona, Department of Ecology and Evolutionary Biology, 1041 E. Lowell St., 16 BioSciences West 310, Tucson, AZ 85721, USA 17 18 19 20 21 22 23 24 * Corresponding author: University of Arizona, School of Plant Sciences, 1140 E.
    [Show full text]
  • A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
    Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA.
    [Show full text]
  • Recent Progress in Biodiversity Research on the Xylariales and Their Secondary Metabolism
    The Journal of Antibiotics (2021) 74:1–23 https://doi.org/10.1038/s41429-020-00376-0 SPECIAL FEATURE: REVIEW ARTICLE Recent progress in biodiversity research on the Xylariales and their secondary metabolism 1,2 1,2 Kevin Becker ● Marc Stadler Received: 22 July 2020 / Revised: 16 September 2020 / Accepted: 19 September 2020 / Published online: 23 October 2020 © The Author(s) 2020. This article is published with open access Abstract The families Xylariaceae and Hypoxylaceae (Xylariales, Ascomycota) represent one of the most prolific lineages of secondary metabolite producers. Like many other fungal taxa, they exhibit their highest diversity in the tropics. The stromata as well as the mycelial cultures of these fungi (the latter of which are frequently being isolated as endophytes of seed plants) have given rise to the discovery of many unprecedented secondary metabolites. Some of those served as lead compounds for development of pharmaceuticals and agrochemicals. Recently, the endophytic Xylariales have also come in the focus of biological control, since some of their species show strong antagonistic effects against fungal and other pathogens. New compounds, including volatiles as well as nonvolatiles, are steadily being discovered from these fi 1234567890();,: 1234567890();,: ascomycetes, and polythetic taxonomy now allows for elucidation of the life cycle of the endophytes for the rst time. Moreover, recently high-quality genome sequences of some strains have become available, which facilitates phylogenomic studies as well as the elucidation of the biosynthetic gene clusters (BGC) as a starting point for synthetic biotechnology approaches. In this review, we summarize recent findings, focusing on the publications of the past 3 years.
    [Show full text]
  • Emarcea Castanopsidicola Gen. Et Sp. Nov. from Thailand, a New Xylariaceous Taxon Based on Morphology and DNA Sequences
    STUDIES IN MYCOLOGY 50: 253–260. 2004. Emarcea castanopsidicola gen. et sp. nov. from Thailand, a new xylariaceous taxon based on morphology and DNA sequences Lam. M. Duong2,3, Saisamorn Lumyong3, Kevin D. Hyde1,2 and Rajesh Jeewon1* 1Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China; 2Mushroom Research Centre, 128 Mo3 Ban Phadeng, PaPae, Maetaeng, Chiang Mai 50150, Thailand 3Department of Biology, Chiang Mai University, Chiang Mai, Thailand *Correspondence: Rajesh Jeewon, [email protected] Abstract: We describe a unique ascomycete genus occurring on leaf litter of Castanopsis diversifolia from monsoonal forests of northern Thailand. Emarcea castanopsidicola gen. et sp. nov. is typical of Xylariales as ascomata develop beneath a blackened clypeus, ostioles are papillate and asci are unitunicate with a J+ subapical ring. The ascospores in Emarcea cas- tanopsidicola are, however, 1-septate, hyaline and long fusiform, which distinguishes it from other genera in the Xylariaceae. In order to substantiate these morphological findings, we analysed three sets of sequence data generated from ribosomal DNA gene (18S, 28S and ITS) under different optimality criteria. We analysed this data to provide further information on the phylogeny and taxonomic position of this new taxon. All phylogenies were essentially similar and there is conclusive mo- lecular evidence to support the establishment of Emarcea castanopsidicola within the Xylariales. Results indicate that this taxon bears close phylogenetic affinities to Muscodor (anamorphic Xylariaceae) and Xylaria species and therefore this genus is best accommodated in the Xylariaceae. Taxonomic novelties: Emarcea Duong, R. Jeewon & K.D.
    [Show full text]
  • Flavour Compounds in Fungi
    FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Davide Ravasio Flavour compounds in fungi Flavour analysis in ascomycetes and the contribution of the Ehrlich pathway to flavour production in Saccharomyces cerevisiae and Ashbya gossypii Academic advisor: Prof. Steen Holmberg, Department of Biology, University of Copenhagen. Co-supervisor: Prof. Jürgen Wendland, Yeast Genetics Group, Carlsberg Laboratory Submitted: 01/10/14 “There is nothing like looking, if you want to find something. You certainly usually find something, if you look, but it is not always quite the something you were after.” ― J.R.R. Tolkien, The Hobbit Institutnavn: Natur- og Biovidenskabelige Fakultet Name of department: Department of Biology Author: Davide Ravasio Titel: Flavour-forbindelser i svampe. Flavour-analyse i ascomyceter og bidrag fra Ehrlich biosyntesevejen til smagsproduktion i Saccharomyces cerevisiae og Ashbya gossypii Title: Flavour compounds in fungi. Flavour analysis in ascomycetes and the contribution of the Ehrlich pathway to flavour production in Saccharomyces cerevisiae and Ashbya gossypii Academic advisor: Prof. Steen Holmberg, Prof. Jürgen Wendland Submitted: 01/10/14 Table of contents Preface ................................................................................................................................................ 1 List of Papers ..................................................................................................................................... 2 Summary ...........................................................................................................................................
    [Show full text]
  • Efficacy of the Biofumigant Fungus Muscodor Albus (Ascomycota
    BIOLOGICAL AND MICROBIAL CONTROL Efficacy of the Biofumigant Fungus Muscodor albus (Ascomycota: Xylariales) for Control of Codling Moth (Lepidoptera: Tortricidae) in Simulated Storage Conditions 1 L. A. LACEY, D. R. HORTON, D. C. JONES, H. L. HEADRICK, AND L. G. NEVEN USDAÐARS, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, WA 98951 J. Econ. Entomol. 102(1): 43Ð49 (2009) ABSTRACT Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), a serious pest of pome fruit, is a threat to exportation of apples (Malus spp.) because of the possibility of shipping infested fruit. The need for alternatives to fumigants such as methyl bromide for quarantine security of exported fruit has encouraged the development of effective fumigants with reduced side effects. The endophytic fungus Muscodor albus Worapong, Strobel and Hess (Ascomycota: Xylariales) produces volatile compounds that are biocidal for several pest organisms, including plant pathogens and insect pests. The objectives of our research were to determine the effects of M. albus volatile organic compounds (VOCs) on codling moth adults, neonate larvae, larvae in infested apples, and diapausing cocooned larvae in simulated storage conditions. Fumigation of adult codling moth with VOCs produced by M. albus for 3 d and incubating in fresh air for 24 h at 25ЊC resulted in 81% corrected mortality. Four- and 5-d exposures resulted in higher mortality (84 and 100%, respectively), but control mortality was also high due to the short life span of the moths. Exposure of neonate larvae to VOCs for3donapples and incubating for 7 d resulted in 86% corrected mortality. Treated larvae were predominantly Þrst instars, whereas 85% of control larvae developed to second and third instars.
    [Show full text]
  • Downloaded from 1 Week at 25±2 °C on PDA Were Carried out According to the Genbank
    Ann Microbiol (2013) 63:1341–1351 DOI 10.1007/s13213-012-0593-6 ORIGINAL ARTICLE Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand Nakarin Suwannarach & Jaturong Kumla & Boonsom Bussaban & Kevin D. Hyde & Kenji Matsui & Saisamorn Lumyong Received: 1 August 2012 /Accepted: 13 December 2012 /Published online: 9 January 2013 # Springer-Verlag Berlin Heidelberg and the University of Milan 2013 Abstract The genus Muscodor comprises fungal endo- Introduction phytes which produce mixtures of volatile compounds (VOCs) with antimicrobial activities. In the present study, Endophytes colonize healthy inter- and intracellular living tissue four novel species, Muscodor musae, M. oryzae, M. suthe- of host plants, typically without causing any visible symptoms pensis and M. equiseti were isolated from Musa acuminata, of disease (Azevedo et al. 2000; Saikkonen et al. 2004; Hyde Oryza rufipogon, Cinnamomum bejolghota and Equisetum and Soytong 2008). Endophytes also protect their hosts from debile, respectively; these are medicinal plants of northern infectious agents and adverse conditions by secreting bioactive Thailand. The new Muscodor species are distinguished secondary metabolites (Azevedo et al. 2000; Gao et al. 2010). based on morphological and physiological characteristics The highest plant biodiversity biomes are found in tropical and and on molecular analysis of ITS-rDNA. Volatile compound temperate rainforest regions, and plants in these areas also analysis showed that 2-methylpropanoic acid was the main possess a high endophyte diversity (Strobel 2003). Muscodor VOCs produced by M. musae, M. suthepensis and M. equi- species are volatile, producing endophytes known from certain seti. The mixed volatiles from each fungus showed in vitro tropical tree and vine species in Australia, Central and South antimicrobial activity.
    [Show full text]
  • <I>Muscodor Cinnamomi</I>, a New Endophytic Species from <I
    ISSN (print) 0093-4666 © 2010. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON doi: 10.5248/114.15 Volume 114, pp. 15–23 October–December 2010 Muscodor cinnamomi, a new endophytic species from Cinnamomum bejolghota Nakarin Suwannarach1, Boonsom Bussaban1, Kevin D. Hyde2 & Saisamorn Lumyong1* *[email protected] 1Department of Biology, Faculty of Science, Chiang Mai University Chiang Mai 50200, Thailand 2School of Science, Mae Fah Luang University Chiang Rai 57100, Thailand Abstract — Muscodor cinnamomi is described as a new species, endophytic within leaf tissues of Cinnamomum bejolghota (Lauraceae) in Doi Suthep-Pui National Park, Northern Thailand. Molecular analysis indicated differences from the five previously described Muscodor spp. Volatile organic compounds analysis showed that M. cinnamomi produced azulene (differentiating it from M. crispans) but did not produce naphthalene (differentiating it from M. albus, M. roseus, and M. vitigenus). Key words — sterile ascomycete, cinnamon, endophytes, volatile compounds Introduction Plants are reservoirs of untold numbers of endophytic organisms (Bacon & White 2000). By definition, these microorganisms (mostly fungi and bacteria) reside in the tissues beneath the epidermal cell layer and cause no apparent harm to the host (Azevedo et al. 2000, Hyde & Soytong 2008). Endophytes from rainforest and medicinal plants have been studied for their volatile antibiotic and other medicinal characteristics (Strobel et al. 2003, Huang et al. 2008, 2009, Mitchell et al. 2008, Tejesvi et al. 2009, Aly et al. 2010). Five endophytes characterized by sterile mycelium that have recently been described as novel fungi are Muscodor albus isolated from Cinnamomum zeylanicum (Lauraceae) in Honduras (Worapong et al. 2001), M. roseus from Grevillea pteridifolia (Proteaceae) in the Northern Territory of Australia (Worapong et al.
    [Show full text]