Recent High Resolution Studies of Maser Emission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Large Molecules in the Envelope Surrounding IRC+10216
Mon. Not. R. Astron. Soc. 316, 195±203 (2000) Large molecules in the envelope surrounding IRC110216 T. J. Millar,1 E. Herbst2w and R. P. A. Bettens3 1Department of Physics, UMIST, PO Box 88, Manchester M60 1QD 2Departments of Physics and Astronomy, The Ohio State University, Columbus, OH 43210, USA 3Research School of Chemistry, Australian National University, ACT 0200, Australia Accepted 2000 February 22. Received 2000 February 21; in original form 2000 January 21 ABSTRACT A new chemical model of the circumstellar envelope surrounding the carbon-rich star IRC110216 is developed that includes carbon-containing molecules with up to 23 carbon atoms. The model consists of 3851 reactions involving 407 gas-phase species. Sizeable abundances of a variety of large molecules ± including carbon clusters, unsaturated hydro- carbons and cyanopolyynes ± have been calculated. Negative molecular ions of chemical 2 2 formulae Cn and CnH 7 # n # 23 exist in considerable abundance, with peak concen- trations at distances from the central star somewhat greater than their neutral counterparts. The negative ions might be detected in radio emission, or even in the optical absorption of background field stars. The calculated radial distributions of the carbon-chain CnH radicals are looked at carefully and compared with interferometric observations. Key words: molecular data ± molecular processes ± circumstellar matter ± stars: individual: IRC110216 ± ISM: molecules. synthesis of fullerenes in the laboratory through chains and rings 1 INTRODUCTION is well-known (von Helden, Notts & Bowers 1993; Hunter et al. The possible production of large molecules in assorted astronomi- 1994), the individual reactions have not been elucidated. Bettens cal environments is a problem of considerable interest. -
Organics in the Solar System
Organics in the Solar System Sun Kwok1,2 1 Laboratory for Space Research, The University of Hong Kong, Hong Kong, China 2 Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, B.C., Canada [email protected]; [email protected] ABSTRACT Complex organics are now commonly found in meteorites, comets, asteroids, planetary satellites, and interplanetary dust particles. The chemical composition and possible origin of these organics are presented. Specifically, we discuss the possible link between Solar System organics and the complex organics synthesized during the late stages of stellar evolution. Implications of extraterrestrial organics on the origin of life on Earth and the possibility of existence of primordial organics on Earth are also discussed. Subject headings: meteorites, organics, stellar evolution, origin of life arXiv:1901.04627v1 [astro-ph.EP] 15 Jan 2019 Invited review presented at the International Symposium on Lunar and Planetary Science, accepted for publication in Research in Astronomy and Astrophysics. –2– 1. Introduction In the traditional picture of the Solar System, planets, asteroids, comets and planetary satellites were formed from a well-mixed primordial nebula of chemically and isotopically uniform composition. The primordial solar nebula was believed to be initially composed of only atomic elements synthesized by previous generations of stars, and current Solar System objects later condensed out of this homogeneous gaseous nebula. Gas, ice, metals, and minerals were assumed to be the primarily constituents of planetary bodies (Suess 1965). Although the presence of organics in meteorites was hinted as early as the 19th century (Berzelius 1834), the first definite evidence for the presence of extraterrestrial organic matter in the Solar System was the discovery of paraffins in the Orgueil meteorites (Nagy et al. -
Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis Of
The Astrophysical Journal, 889:3 (26pp), 2020 January 20 https://doi.org/10.3847/1538-4357/ab616c © 2020. The American Astronomical Society. All rights reserved. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Acetylene (C2H2) and D2-acetylene (C2D2) Ices Exposed to Ionizing Radiation via Ultraviolet–Visible Spectroscopy, Infrared Spectroscopy, and Reflectron Time-of-flight Mass Spectrometry Matthew J. Abplanalp1,2 and Ralf I. Kaiser1,2 1 W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA 2 Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA Received 2019 October 4; revised 2019 December 7; accepted 2019 December 10; published 2020 January 20 Abstract The processing of the simple hydrocarbon ice, acetylene (C2H2/C2D2), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles penetrating solid matter, was carried out in an ultrahigh vacuum surface apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible spectroscopy and, during temperature programmed desorption, via a quadrupole mass spectrometer with an electron impact ionization source (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing single-photon photoionization (SPI-ReTOF-MS) along with resonance-enhanced multiphoton photoionization (REMPI-ReTOF-MS). The confirmation of previous in situ studies of ethylene ice irradiation -
JRASC-2007-04-Hr.Pdf
Publications and Products of April / avril 2007 Volume/volume 101 Number/numéro 2 [723] The Royal Astronomical Society of Canada Observer’s Calendar — 2007 The award-winning RASC Observer's Calendar is your annual guide Created by the Royal Astronomical Society of Canada and richly illustrated by photographs from leading amateur astronomers, the calendar pages are packed with detailed information including major lunar and planetary conjunctions, The Journal of the Royal Astronomical Society of Canada Le Journal de la Société royale d’astronomie du Canada meteor showers, eclipses, lunar phases, and daily Moonrise and Moonset times. Canadian and U.S. holidays are highlighted. Perfect for home, office, or observatory. Individual Order Prices: $16.95 Cdn/ $13.95 US RASC members receive a $3.00 discount Shipping and handling not included. The Beginner’s Observing Guide Extensively revised and now in its fifth edition, The Beginner’s Observing Guide is for a variety of observers, from the beginner with no experience to the intermediate who would appreciate the clear, helpful guidance here available on an expanded variety of topics: constellations, bright stars, the motions of the heavens, lunar features, the aurora, and the zodiacal light. New sections include: lunar and planetary data through 2010, variable-star observing, telescope information, beginning astrophotography, a non-technical glossary of astronomical terms, and directions for building a properly scaled model of the solar system. Written by astronomy author and educator, Leo Enright; 200 pages, 6 colour star maps, 16 photographs, otabinding. Price: $19.95 plus shipping & handling. Skyways: Astronomy Handbook for Teachers Teaching Astronomy? Skyways Makes it Easy! Written by a Canadian for Canadian teachers and astronomy educators, Skyways is Canadian curriculum-specific; pre-tested by Canadian teachers; hands-on; interactive; geared for upper elementary, middle school, and junior-high grades; fun and easy to use; cost-effective. -
Interstellar Dust Within the Life Cycle of the Interstellar Medium K
EPJ Web of Conferences 18, 03001 (2011) DOI: 10.1051/epjconf/20111803001 C Owned by the authors, published by EDP Sciences, 2011 Interstellar dust within the life cycle of the interstellar medium K. Demyk1,2,a 1Université de Toulouse, UPS-OMP, IRAP, Toulouse, France 2CNRS, IRAP, 9 Av. colonel Roche, BP. 44346, 31028 Toulouse Cedex 4, France Abstract. Cosmic dust is omnipresent in the Universe. Its presence influences the evolution of the astronomical objects which in turn modify its physical and chemical properties. The nature of cosmic dust, its intimate coupling with its environment, constitute a rich field of research based on observations, modelling and experimental work. This review presents the observations of the different components of interstellar dust and discusses their evolution during the life cycle of the interstellar medium. 1. INTRODUCTION Interstellar dust grains are found everywhere in the Universe: in the Solar System, around stars at all evolutionary stages, in interstellar clouds of all kind, in galaxies and in the intergalactic medium. Cosmic dust is intimately mixed with the gas-phase and represents about 1% of the gas (in mass) in our Galaxy. The interstellar extinction and the emission of diffuse interstellar clouds is reproduced by three dust components: a population of large grains, the BGs (Big Grains, ∼10–500 nm) made of silicate and a refractory mantle, a population of carbonaceous nanograins, the VSGs (Very Small Grains, 1–10 nm) and a population of macro-molecules the PAHs (Polycyclic Aromatic Hydrocarbons) [1]. These three components are more or less abundant in the diverse astrophysical environments reflecting the coupling of dust with the environment and its evolution according to the physical and dynamical conditions. -
Laboratory Astrophysics: from Observations to Interpretation
April 14th – 19th 2019 Jesus College Cambridge UK IAU Symposium 350 Laboratory Astrophysics: From Observations to Interpretation Poster design by: D. Benoit, A. Dawes, E. Sciamma-O’Brien & H. Fraser Scientific Organizing Committee: Local Organizing Committee: Farid Salama (Chair) ★ P. Barklem ★ H. Fraser ★ T. Henning H. Fraser (Chair) ★ D. Benoit ★ R Coster ★ A. Dawes ★ S. Gärtner ★ C. Joblin ★ S. Kwok ★ H. Linnartz ★ L. Mashonkina ★ T. Millar ★ D. Heard ★ S. Ioppolo ★ N. Mason ★ A. Meijer★ P. Rimmer ★ ★ O. Shalabiea★ G. Vidali ★ F. Wa n g ★ G. Del-Zanna E. Sciamma-O’Brien ★ F. Salama ★ C. Wa lsh ★ G. Del-Zanna For more information and to contact us: www.astrochemistry.org.uk/IAU_S350 [email protected] @iaus350labastro 2 Abstract Book Scheduley Sunday 14th April . Pg. 2 Monday 15th April . Pg. 3 Tuesday 16th April . Pg. 4 Wednesday 17th April . Pg. 5 Thursday 18th April . Pg. 6 Friday 19th April . Pg. 7 List of Posters . .Pg. 8 Abstracts of Talks . .Pg. 12 Abstracts of Posters . Pg. 83 yPlenary talks (40') are indicated with `P', review talks (30') with `R', and invited talks (15') with `I'. Schedule Sunday 14th April 14:00 - 17:00 REGISTRATION 18:00 - 19:00 WELCOME RECEPTION 19:30 DINNER BAR OPEN UNTIL 23:00 Back to Table of Contents 2 Monday 15th April 09:00 { 10:00 REGISTRATION 09:00 WELCOME by F. Salama (Chair of SOC) SESSION 1 CHAIR: F. Salama 09:15 E. van Dishoeck (P) Laboratory astrophysics: key to understanding the Universe From Diffuse Clouds to Protostars: Outstanding Questions about the Evolution of 10:00 A. -
Aerosols in Astrophysics Stars Complete Their Cycle of Existence, There R.E.Stencel, C.A
Aerosols in Astrophysics stars complete their cycle of existence, there R.E.Stencel, C.A. Jurgenson & is a wholesale return of modified material T.A. Ostrowski-Fukuda back to the interstellar medium, affecting the The Observatories, University of Denver, next generation of star and planet formation. Department of Physics & Astronomy, Denver, Colorado 80208, USA Submitted: Evolved stars are characterized by surface 2002December30, Email: [email protected] temperatures low enough to allow molecules and solid-phase particles to exist in their ABSTRACT: atmospheres. In contrast to the nearly 6000K surface temperature of the Sun, the Solid phase material exists in low density kinetic temperatures of evolved stars may astrophysical environments, from stellar range between 2000K near their “surfaces” atmospheres to interstellar clouds, from to a few hundred K in their circumstellar current times to early phases of the universe. envelopes [CSE] at a few stellar radii We consider the origin, composition and distance. Time-dependent phase transitions evolution of solid phase materials in the from ionized plasma to cold, solid state are particular case of stellar outer atmospheres, observed, spectroscopically, to exist. as representative of many conditions. Also considered are the dynamics and interactions Some terminology may be helpful for the in circumstellar and galactic environments. reader not already acquainted with stellar Finally, new observational prospects for evolution. Solar mass stars are predicted to spectroscopy, polarimetry and leave the hydrogen-fusing “main sequence” interferometry are discussed. after approximately ten billion years, and progress through a rapid series of internal changes during what is known as the red 1.0 INTRODUCTION giant and asymptotic giant branch [RGB, AGB] phases, lasting one percent of the Solid phase material can be found nearly main sequence lifetime. -
Imaging the Circumstellar Envelope of OH 26.5+0.6
A&A 396, 581–587 (2002) Astronomy DOI: 10.1051/0004-6361:20021272 & c ESO 2002 Astrophysics Imaging the circumstellar envelope of OH 26.5+0.6 D. Fong1, K. Justtanont2,M.Meixner1, and M. T. Campbell1 1 Department of Astronomy, University of Illinois, 1002 W. Green Street Urbana, IL 61801, USA 2 SCFAB, Stockholm Observatory, Department of Astronomy, 106 91 Stockholm, Sweden Received 10 July 2002 / Accepted 28 August 2002 Abstract. Using the Berkeley-Illinois-Maryland-Association (BIMA) Millimeter Array, we were able to map the extreme OH/IR star, OH 26.5+0.6, in the 12CO J = 1–0 line transition. The CO emission is partially resolved with a deconvolved source size of 8:500 5:500. The spectrum shows that the blue-shifted emission is missing, most likely due to interstellar absorption. By × 6 1 modelling the infrared spectral energy distribution, we derive a dust mass loss rate of 1:9 10− M yr− .Fromthisweareable × to place an upper limit on the extent of the dusty envelope of 1016 cm while our BIMA map shows that the CO photodissociation radius extends out to about 7 1016 cm. To best fit the BIMA observations and the higher CO rotational transitions using our full radiative transfer code, we needed× to include a second, more tenuous AGB wind, outside the high density superwind to account for the observed flux. From our model, we conclude that up to 80% of the CO flux comes from the unresolved superwind. Key words. stars: AGB and post-AGB – stars: circumstellar matter – stars: individual : OH 26.5+0.6 – stars: late-type – stars: mass loss 1. -
Habitable Environments in Late Stellar Evolution
Habitable Environments in Late Stellar Evolution Conditions for Abiogenesis in the Planetary Systems of White Dwarfs Author: Dewy Peters Supervisor: Prof. dr. F.F.S. van der Tak A thesis submitted in fulfillment of the requirements for the degree BSc in Astronomy Faculty of Science and Engineering University of Groningen The Netherlands March 2021 Abstract With very high potential transit-depths and an absence of stellar flare activity, the planets of White Dwarfs (WDs) are some of the most promising in the search for detectable life. Whilst planets with Earth-like masses and radii have yet to be detected around WDs, there is considerable evidence from spectroscopic and photometric observations that both terrestrial and gas-giant planets are capable of surviving post-main sequence evolution and migrating into the WD phase. WDs are also capable of hosting stable Habitable Zones outside orbital distances at which Earth-mass plan- ets would be disintegrated by tidal forces. Whilst transition- ing to the WD Phase, a main-sequence star has to progress along the Asymptotic Giant Branch (AGB), whereby orbit- ing planets would be subjected to atmospheric erosion by its harsh stellar winds. As a trade-off, the Circumstellar En- velope (CSE) of an AGB star is found to be rich in organics and some of the simple molecules from which more complex prebiotic molecules such as amino acids and simple sugars can be synthesised. It is found that planets with initial or- bital distances equivalent to those of Saturn and the Kuiper Belt would be capable of accreting a mass between 1 and 20 times that of the Earth’s atmosphere from the CSE and as a result, could obtain much of the material necessary to sustain life after the AGB and also experience minimal at- mospheric erosion. -
Molecular Dust Precursors in Envelopes of Oxygen-Rich AGB Stars
Why Galaxies Care About AGB Stars: A Continuing Challenge through Cosmic Time Proceedings IAU Symposium No. 343, 2018 c 2018 International Astronomical Union F. Kerschbaum, H. Olofsson & M. Groenewegen, eds. DOI: 00.0000/X000000000000000X Molecular dust precursors in envelopes of oxygen-rich AGB stars and red supergiants Tomasz Kami´nski Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Submillimeter Array Fellow, email: [email protected] Abstract. Condensation of circumstellar dust begins with formation of molecular clusters close to the stellar photosphere. These clusters are predicted to act as condensation cores at lower temperatures and allow efficient dust formation farther away from the star. Recent observations of metal oxides, such as AlO, AlOH, TiO, and TiO2, whose emission can be traced at high angular resolutions with ALMA, have allowed first observational studies of the condensation process in oxygen-rich stars. We are now in the era when depletion of gas-phase species into dust can be observed directly. I review the most recent observations that allow us to identify gas species involved in the formation of inorganic dust of AGB stars and red supergiants. I also discuss challenges we face in interpreting the observations, especially those related to non- equilibrium gas excitation and the high complexity of stellar atmospheres in the dust-formation zone. Keywords. stars: AGB and post-AGB; circumstellar matter; stars: mass loss; stars: winds, outflows; dust, extinction; ISM: molecules 1. Dust formation and seed particles in O-rich stars Galaxies certainly care about AGB stars | in the local Universe, galaxies owe huge amounts of dust to these unexhaustive factories of cosmic solids. -
(AGB) Stars David Leon Gobrecht
Molecule and dust synthesis in the inner winds of oxygen-rich Asymptotic Giant Branch (A GB) stars Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von David Leon Gobrecht aus Gebenstorf Aargau Basel, 2016 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch David Leon Gobrecht Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. F.-K. Thielemann, PD Dr. Isabelle Cherchneff, PD Dr. Dahbia Talbi Basel, den 17. Februar 2015 Prof. Dr. Jörg Schibler Dekanin/Dekan IK Tau as seen by Two Micron All Sky Survey, 2MASS, (top) and Sloan Digital Sky Survey, SDSS, (bottom) from the Aladin Sky Atlas in the Simbad astronomical database (Wenger et al., 2000) 3 Abstract This thesis aims to explain the masses and compositions of prevalent molecules, dust clusters, and dust grains in the inner winds of oxygen-rich AGB stars. In this context, models have been developed, which account for various stellar conditions, reflecting all the evolutionary stages of AGB stars, as well as different metallicities. Moreover, we aim to gain insight on the nature of dust grains, synthesised by inorganic and metallic clusters with associated structures, energetics, reaction mechanisms, and finally possible formation routes. We model the circumstellar envelopes of AGB stars, covering several C/O ratios below unity and pulsation periods of 100 - 500 days, by employing a chemical-kinetic approach. Periodic shocks, induced by pulsation, with speeds of 10 - 32 km s−1 enable a non-equilibrium chemistry to take place between 1 and 10 R∗ above the photosphere. -
Arxiv:1803.01452V1 [Astro-Ph.EP] 5 Mar 2018
The when and where of water in the history of the universe Karla de Souza Torres1, and Othon Cabo Winter2 1CEFET-MG, Curvelo, Brazil; E-mail: [email protected] 2UNESP, Grupo de Din^amica Orbital & Planetologia, Guaratinguet´a,Brazil E-mail: [email protected] Abstract It is undeniable that life as we know it depends on liquid water. It is difficult to imagine any biochemical machinery that does not require water. On Earth, life adapts to the most diverse environments and, once established, it is very resilient. Considering that water is a common compound in the Universe, it seems possible (maybe even likely) that one day we will find life elsewhere in the universe. In this study, we review the main aspects of water as an essential compound for life: when it appeared since the Big Bang, and where it spread throughout the diverse cosmic sites. Then, we describe the strong relation between water and life, as we know it. Keywords water; life; universe; H2O; astrobiology 1. Introduction. Why water is essential for life? It is well known that liquid water has played the essential and undeniable role in the emergence, development, and maintenance of life on Earth. Two thirds of the Earth's surface is covered by water, however fresh water is most valuable as a resource for animals and plants. Thus, sustain- ability of our planet's fresh water reserves is an important issue as population numbers increase. Water accounts for 75% of human body mass and is the major constituent of organism fluids. All these facts indicate that water is one of the most important elements for life on Earth.