Antarctic Science 12 (3): 343-362 (2000) 0 British Antarctic Survey Printed in the United Kingdom

Biodiversity and biogeography of Antarctic

SUZANNE RAZOULS,CLAUDE RAZOULS and FRANCIS DE BOVEE Observatoire Ocdanologique, CNRS UMR 7621, Laborntoire Arugo. F-65650 Banyuls-sur-iner, France

Abstract: A census of pelagic copepods identifies 346 species from 38 families (i.e. 16.7% of all copepods). Among them, 289 species are considered "cosmopolitan" and 57 "endemic". Most ofthe species were described in the late 19th or early 20th century. However, due to a resurgence of interest in biological diversity, a large number of exhaustive revisions at various taxonomic levels have recently been initiated. One hundred and thirteen documents covering the census and distribution of species are analysed. The distribution of species in the South Seas is given for 24 sectors chosen in relation to the geographical coordinates of the South Atlantic, South Pacific and Southern Indian oceans and their location with respect to the Antarctic Convergence or the continental shelf. The respective roles of Lagrangian displacement, of the hydrological features characterising the Southern Ocean and of the general ocean currents are emphasised to explain the scattered distributions of the species. Twenty-one species are catalogued as bipolar, 46 species as specifically sub- Antarctic and 222 cosmopolitan ones are probably from sub-tropicalitemperate regions.

Received 5 October 1999, accepted I1 March 2000

Key words: distribution, diversity, pelagic copepods

Introduction main hydrological traits of the Southern Ocean- circumpolar Interest in biological diversity is reviving, but as pointed out currents, hydrological fronts and gyres - and to their link with by Williamson (1 998) marine biodiversity remains poorly shelf seas, the ice-shelf and island topography. These unusual investigated, with the number of marine studies representing features may possibly provide biotope-refuges for neritic only a small proportion (c. 5%) of terrestrial studies. While species. the diversity of benthic Antarctic fauna may be considered Water-mass circulation is governed by a complex system of from an evolutionary point ofview thanks to paleogeographical hydrological fronts: the sub-tropical front (STF; 45'S), the studies (Crame 1994), it is still not possible to carry out a sub-Antarctic Front (SAF), the Polar Front or Antarctic census of the zoobenthos. Likewise, the planktonic faunal Convergence (PF or AC; SO'S) and the Antarctic divergence communities are at the first step in the perception of (AD; 65"s). Between the Polar Front and the Antarctic biodiversity: the numeration of species, with an attempt to Divergence, waters are displaced eastwards by the Antarctic localise both their precise distribution around the Southern Circumpolar Current (ACC) at a mean speed of 0.5 knots, Ocean and, if possible, their geographical origin. while south of the AD, a counter-current drifts westwards The role of spatial heterogeneity in regulating diversity in (Fig. 1). These fronts correspond to clear-cut frontier zones the sea may be highlighted with the pelagic communities of between well-identified water bodies, at least in the upper few copepods. Their locations remainaproblem, in relationto their hundred metres. Indeed, at different bathymetric levels, Lagrangian displacement, as the circulation patterns control several physical and chemical properties characterize waters the dynamics of all zooplankton populations in the Southern originating from different places (Fig. 2). Ocean (Huntley & Niiler 1995). Moreover, our knowledge of In Polar Front zones the water bodies flow in parallel, slightly pelagic biodiversity is gleaned from sampling during meandering currents, facilitating cross-frontal interleaving oceanographic surveys, which makes it discontinuous and and advective mixing processes, such as internal storm- dependent on available sampling gear. There is also the generated waves and eddies that are a dynamic factor in the absence of quantitative data concerning the numerical shearing and injection of waters (Park & Gamberoni 1997). abundance ofthe species. Indeed, the 1 13 documents used for The occurrence ofgyres is another characteristic ofAntarctic the evaluation of biodiversity in Antarctic copepods are circulation (Fig. 1). The largest is the Weddell-Scotia Sea qualitative and many are devoted to systematics. In contrast, gyre, with a 1700 kmcircumference, moving slowly eastwards only the more numerous species are considered for studies and thenvertically downwards ina movement associated with focussing on ecology, physiology or the energy balance. the westward-flowing counter-current along the continental slope, entering Drake Passage and the South Pacific Basin. In the Ross Sea the watermasses, hampered by the southward A short review of hydrological features invasion of warm-water components of the circumpolar deep No biogeographical distributionofpelagic communitiesaround water, do not extend northwards from under the ice shelf the Antarctic can be understood without reference to the three (Fontaine 1988).

343

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 344 SUZANNE RAZOULS eta/.

Census of copepods According to Van der Spoel & Heyman (1983), radiation of the sub-Antarcticand Antarctic species may well have occurred during the Miocene. The ecological radiation schemes proposed in the last ten years have hypothesized a marine, epibenthic origin followed by the colonization of the open pelagic environment. At the Family level, several phylogenies have been proposed, all grounded on morphological or anatomical characters such as cuticular pore signatures (Mauchline 1988, Fleminger & Hiilsemann 1987) or the structure of the spermatheca (Cuoc et al. 1997, Barthtltniy et al. 1998). Molecular genetics is now being used to confirm speciation within certain genera (Bucklin et al. 1995).

The number of species It is useful to remind ecologists that when publishing the names of species they should be followed by the naming authorities. This is often lacking in ecological papers, which Fig. 1. Diagram of oceanography in the Southern Ocean (from can lead to misinterpretation of geographical distribution. Longhurst 1988, p. 341; reproduced with the permission of The most recent world-wide census of copepods reports Academic Press). 2075 species (Razouls & De Bovte). Of these, 346 species (i.e. 16.7% of all species) are considered to be Antarctic; So pelagic copepods have to cope with current trajectories, 83.7% of them (289 species) are cosmopolitan and 16.5% (57 the mixing of waters and vertical transition waters of different species) are endemic, either to the whole Southern Ocean or origin (Ansorge et al. 1999). to certain restricted zones.

Fig. 2. Map of the global thermohaline circulation (from Gordon 1992 in Jean-Baptiste 1994; reproduced with permission of the Editor of Oceanus).

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 BIODIVERSITY & BIOGEOGRAPHY OF ANTARCTIC COPEPODS 345

All species sampled in the Southern Ocean sensu lato (from Table I. Number of species in the 24 zones defined in this paper. 45"s latitude (STF) to ice-edge) areconsidered to be Antarctic. No of species No of zones containing all these species Copepods belong to 38 families: 26 Calanoida, 1 , 11 20-24 4 Poecilostomatoida (Appendix). Antarctic copepods 38 11-19 constitute about 66% of the carbon biomass in the Antarctic 53 6-10 138 Polar Biome (Longhurst 1998), but in some sub-Antarctic 2-5 106 1 fjords, a single species of copepod may represent 90-100% of the meso-zooplankton (Razouls et al. 1997). However, the likelihood of finding a given species in a particular part of the masses may be identified by differences in individual size and Antarctic Ocean is highly variable, as shown in Table I. reproductive state, resulting in distinct cohorts of different A large number of families, genera and species have been ages (Ottestad 1932). revised since the initial descriptions. Most of the descriptions A population may also be permanently modified by transport and localities were published in the late 19th or early 20th in water masses, facilitating gene flow. Such disruptive century: 189 species from 1843 to 1909,85 between 1910 and individual distribution may lead to the occurrence of species 1969,72 in the last thirty years (Fig. 3) over widespread biogeographical regions. Up to 1939, oceanographic expeditions provided the bulk of the new species described. Definition of endemism for pelagic copepods Since the 1970s, the biodiversity of Antarctic copepods in collectionshas been under reappraisal, initially by the revision Fifty seven species are recognised as endemic (Table II), but of systematics at each taxonomic level: Heron (1977) revised they do not all have the same status in terms of endemism: the 0ncaeidae;T. Park (1978-93) investigated several families Four are known only north of the AC :Euaugaptilus (Aetideidae, Euchaetidae, Phaennidae) or genera and brevirostratus (PSE, ISE), Calocalanus antarcticus and Markhasaeva (1996) the Aetideidae family. Calocalanus fiolentus (ISW), Amallothrix In 1996 Schulz (Schulz 1996a, 1996b) described two new pseudopropinqua (PSW, PSE, ISE). pelagic Antarctic copepod species: Mospicalanus schielae, which is bathypelagic and Frigocalanus rauscherti, which is Fourteen are found in the vicinity of the AC (north or hyperbenthic. south) Calanoides acutus, Drepanopus pectinatus, Some species included in the Antarctic list are still under Onchocalanus trigoniceps, Onchocalanus wolfendeni, review in relation to the complexity of the nomenclature, the Amullothrix hadrosoma, Amaiiothix parufulcifer, definition of endemism for pelagic communities and the Mixtocalanus vervoorti, Scaphocalanus antarcticus, population concept, due to the difficulty in defining their Scaphocalanusparantarcticus, Scaphocalanus vervoorti, distribution. Scolecithricella cenotelis, Scolecithricella schizosoma, Oncaea illgi, Oncaea macilenta. Population concept in zooplancton assemblages Thirty-nine others have been recorded only south of the AC. Any individual is presumed to be a member of its own population, defined as individuals living together and able to Some of them are clearlyassociated with particularecosystems, interbreed. But, due to physical effects or biological behaviour, e.g. members of a population may drift away and be removed for a) the water layer under the ice, and the ice-shelf the population. Conversely new migrants may be integrated environment (23 endemic species, Table V). Some have into a local population. As a result of previous temperature been sampled all around the Antarctic continent, others conditions or development, from different water have been described from only one zone: Frigocalanus rauscherti Schulz (South Shetland Islands), Nospecies 160 Xanthocalanus harpagatus Bradford and Wells, Tharybis 140 magna Bradford and Wells (Ross Sea), 120 100 b) the brackish waters of Antarctic lakes (Drepanopus 80 bispinosus Bayly), 60 c) the neritic-coastal waters around sub-Antarctic islands 40 20 and fjords. Drepanopus forcipatus Giesbrecht inhabits n the South Atlantic (Falkland Islands, South Orkney Islands before 1850- 1880- 1910- 1940- 1970- and South Georgia) and SW Pacific. According to 1850 1879 1909 1939 1969 1999 Hulsemann (1985a), the Polar Front zone represents an Fig. 3. Number of copepod species described from earliest times effective barrier to mixing of the two populations of this to 1999.

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 SUZANNE RAZOULS eta/.

Table 11. Endemic species in the Pacific, Atlantic and Indian sectors of the Southern Ocean.

Species common to Species localized in one sector of the Southern Ocean several Antarctic sectors Pacific Atlantic Indian Paralabidocera antarctica * * * Paralabidocera grandispina Paralabidocera separabilis Aetideopsis antarctica * * Batheuchaeta antarctrca Batheuchaeta pubescens Chiridiella megadactyla Pseudochirella formosa Euaugaphh austrinus * * Euaugaphlus brevirostratus * * Euaugaphlus hadrocephahrs Calanoides acuhis Q * * Drepanopus bispinosus Drepanopus pectinatus * * Paraeuchaeta austrina * * Paraeuchata erebi Paraeuchaeta similis * * Paraeuchaeta tycodesma Heterorhabdus nrgrotinctus Metridia andraeana * * Metridia trispinosa Calocalanus antarcticus Calocalanus fiolentus Onchocalanus paratrigoniceps * * Onchocalanus wolfndeni * * * Xanthocalanus antarcticus Xanthocalanus gracilis * * * Xanthocalanus harpagatus Xanthocalanus tenuiserratus Amallothrix hadrosoma * * Amallothrrx parafalcifer * * * Amallothrix pseudopropinqua * * Landrumius antarcticus * * Mixtocalanus vewoorh * Scaphocalanus antarcticus * Scaphocalanus parantarcticus * Scaphocalanus vewoorti * Scolecrthrrcella cenotelrs * Scolecithricella schisosoma * Scolecithrix incisa Mospicalanus schielae Stephos antarcticus * * Temora kerguelensis Neoscolecithrix antarctica Tharybis magna Conaea hispida Conaea succurva Oncaea bowmani Oncaea brocha Oncaea convexa Oncaea damkaeri Oncaea illgi Oncaea macilenta Oncaea olsonr Oncaea petila Oncaea walleni Frigocalanus rauscherti

n = 23 n = 22 n= 1 n= 11

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 BIODIVERSITY & BIOGEOGRAPHY OF ANTARCTIC COPEPODS 347

Table 111. Localization of the sub-Antarctic species in the Pacific, Atlantic and Indian sectors of the Southern Ocean as a function of their situation with respect to the Antarctic Convergence. Common species Pacific sector Atlantic sector Indian sector Aetideus australis * * * Acurtia ensifera N Aetideus pseudannatus N Aetideopsis tumorosu Euchirella latirostris N * Euchirella rostromagna * * Euchirellu similis N * Pseudochirellu hirsutu * * Pseudochirella mawsoni * * Euaugaptilus aliquuntus S Euaugaptilus brevirostratus N * * Euaugaptilus perusetosus S Huloptilus ocellatus * * * Culanoides macrocarinatus N Calunoides patugoniensis N Culanus propinquus * * Calanus simillimus * * Canducia cheiruru N * Candaciu maxima * * Clausoculanus brevipes * * Clausocalanus ingens N Clausoculanus laticeps * * * Ctenocalanus citer * * Drepunopus forciputus * * Drepanopus pectinatus * Subeuculunus iongiceps * Purueuchaetu unturcticu * * Paraeuchaeta biloba * * Parueuchuetu ductylifera Puraeuchaeta eltuninae S * Purueuchaeta parvulu * Parueuchuetu rasu * Paraeuchuetu regalis * Heterorhubdus uustrinus * Heterorhubdus furrani * Heterorhabdus pustulifer * Lucicutiu ruru N Bathycalanus eltaninae S Buthycalunus inflatus * * Bradycalunus pseudritypicus S Metridia gerlachei * * * Calocalanus antarcticus N Calocalanus fiolenti N Calocalanus longispinus N Comucalunus robustus * * Amnllothrix dentipes * Arnallothrix pseudopropinqua N Stephos longipes S Oithona frigidu Oncaeu antarctica Oncaea curvata

~~~ ~ Total species = 5 1 Endemic species (in bold) = 5 N = North AC, S = South AC, without N or S = North and South AC

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 348 SUZANNE RAZOULS eta/.

Table IV. GeomaDhical distribution of biDolar soecies.

~~ ~ Pacific Ocean Arctic Ocean Atlantic Ocean Indian Ocean Antarctic South Chile North North South Brazil Antarctic Antarctic Aetideopsis minor * * * * * Batheuchaeta peculiaris * * Chiridius poluris * * * * Gaetanus parucurvicornis * * * Pseudochirella batillipu * * * * Pseudochirellu specrubilk * * * * * * Augaptilus cornutus * * Cundacia falcifera * * * Epicalymma schmitti * * * Epiculym umbonuta * * * Lubbockia curinuta * * Lubbockia jlemingeri * * Lubbockia forcipula * * Lubbockia wilsonae * * * Oncaea lacinia * * Oncaea parila * * * * Oncaea prolata * * Oncaea compacta * * Oncaea pumilis * * Spinocalanus horridus * * * Soinocalanus antarcticus *

species. Statistically significant differencesfound between Arctic Basin and in the Antarctic (SE Indian Ocean and populations from the coasts of Patagonia and South SE ice edge, Weddell Sea). Yamanaka (1976) suggests Georgia may indicate that these two populations are that the bipolar distribution of species may be due to a morphologically the same but genetically distinct. In remnant community fromdeep water, or evenfrombottoni contrast, D. pectinatus Brady is found only on the water, flowing to the South from the Atlantic and Indian continental shelf of the South Indian Ocean (Crozet, Oceans (Table IV). Kerguelen, Heard islands). Its absence from Prince c) 91 species live occasionally in an ice environment Edward and Marion islands supports the supposition that (Table V). these islands constitute aseparate province (Briggs 1974).

Indistinct geographic distribution Cosmopolitan species The distribution of cosmopolitan copepods (289 species) Among the 289 cosmopolitan species, the most typically sub- inhabiting the Southern Ocean, is shown on the map (Fig. 4). antarctic or amphiboreal ones were classified using the matrix With the exception of the endemic species (57), the amphiboreal of the world-wide distribution of copepods (Razouls & de species (21) and the sub-Antarctic species (46) the 222 Bovte in press): remaining species may well be from sub-tropical and/or a) 46 species are characteristic of the sub-Antarctic sector: temperate zones (Razouls & de Bovte in press). 10 species occur only in the NAC area, 6 only in the SAC and 30 are found throughout the AC (Table 111). The Classifying copepods by their hydro-geographical zone criterion for decision to identify species as sub-Antarctic is founded on their wide distribution and where they are The distributions of the various Antarctic copepod species thought to originate: the South Atlantic areas (South have been identified in terms of 24 arbitrarily-defined Africa E & W, central South Atlantic, off Brazil- geographical zones in the Southern Ocean, defined on the Argentina), the South Indian Ocean or the South Pacific basis of two criteria: a) the geographical provinces - eastern, zones (Eastern Australia, Chile-Juan Fernandez cluster). southern, western - of the Atlantic, Indian, and Pacific oceans, and b) the areas around the Antarctic continent Longhurst b) 21 species are amphiboreal. Thesecopepods, restricted (1998): to northern parts in the Northern Hemisphere (Arctic Ocean, northern part of Atlantic and Pacific oceans), i) the sub-Antarctic area, or sub-Antarctic water ring seem also to inhabit great depths in the Antarctic region. province, north of the Antarctic Convergence area (NAC) Among them, only one, Spinocalanus antarcticus is only characterized by gradients of temperature and Wolfenden is bipolar, dwelling exclusively in the northern salinities and is the most imprecise to localize (Saint-

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 BIODIVERSITY & BIOGEOGRAPHY OF ANTARCTIC COPEPODS 349

Table V. Localisation of copepods sampled in an ice-environment.

Ross McMurdo Weddell Indian Ross McMurdo Weddell Indian Sea area ice cont Sea area ice cont Paralabidocera antarctica * * Buthyculunus princeps * Paralabidocera grandispina Buthyculanus richurdi * Aetideopsis antarctica * Meguculunus princeps * Aetideopsis minor * * Metridiu curticuudu * * * Aetideopsis rostrutu * Metridiu gerluchei * * * * Brudyidius unnatus * Metridiu lucens * Chiridiella megadactyla Metridiu princeps * * * Chiridius poluris * Pteuromumma grucilis * Euchirellu rostromugnu * Cephulophunes frigidus * Guetunus unturcticus * * Cornuculunus chelifer * Guetunus intennedius Onchoculunus magnus * * Guidius brevispinus * Onchoculanus trigoniceps * Guidius pungens * Onchocalanus woljendeni * * * * Guidius tenuispinus * * * Xanthocalanus antarcticus * Pseudochirellu hirsutu Xanthocalanus gracilis * Pseudochirellu spectubilis Xanthocalanus harpagatus * Augaptilus comutus Xanthocalanus tenuiserratus * Augaptilus gluciulis * Lclbidoceru ucutifrons * Euuuguptilus luticeps * Amullothrix dentipes * Euuuguptilus plucitus * Amallothrix emarginutu * Huloptilus ucutifrons * Amallothrix parafalcifer Huloptilus longicornis * Racovitzunus antarcticus * * * Huloptilus ocellutus * * * Scuphocuhnus ufinis Huloptilus oxycephalus * Scaphocalanus antarcticus Pseuduuguptitus longiremis Scuphocuhnus furruni * Temorites brevis Scuphoculunus impur #Culunoides ucutus * Scuphoculunus magnus Calunus propinquus * Scuphoculanus subbreviccimis Culunus simillimus Scaphocalanus vervoorti * Neoculunus tonsus Scolecithricella cenotelis Cunduciu maxima * Scolecithricella minor (= gluciulis) * * * Cluusoculunus brevipes Scolecithrix incisa * Cluusoculunus luticeps Mimoculmus cultrifer Ctenoculunus citer * Spinocuhnus abyssulis * * Ctenoculunus vunus * * Spinocalanus antarcticus * Drepunopus bispinosus Spinoculanus magnus * * Furruniu frigidu * * Teneriformu nu.^ Microculunus pusillus Stephos unturcticus * * Microculunus pygmaeus * Stephos longipes * * * * Rhinculunus gigus * Tharybis magna * Puraeuchuetu unturctica * Mormonillu phusma * Paraeuchaeta austrina Oithonu frigidu * * * * Purueuchuetu bilobu Oithonu similis * * * * Paraeuchata erebi * Corycueus (Agetus)$uccus * Purueuchuetu rusa * Corycueus (Urr,corycueus)furcifer * Paraeuchaeta similis * * Furrunulu grucilis * Paraeuchaeta tycodesma * Epiculymma schmitti * Heterorhubdus uustrinus * * Lubbockiu uculeatu * Heterorhubdus farruni * * Oncueu unturcticu * Heterorhubdus pustulifer Oncueu coniferu * * * Heterostylites longicornis * * Oncaea convexa * Heterostylites mujor * * Oncueu curvutu * * * Lucicutiu macroceru * * Oncueu englishi * Lucicutiu magna * Oncueu purilu * Lucicutiu ovulis * * * Oncueu prolutu * Lucicutia wolfendeni * * Oncueu venustu * * Buthvculunus brudvi * Supphirinu metullinu * endemic species in bold

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 350 SUZANNE RAZOULS eta/.

Fig. 4. Map of the origins of the 289 cosmopolitan copepod species found in the Southern Ocean. The labels give the number of species recorded both in the Southern Ocean and in others oceanic areas. The labels display the numbers of species common to the Southern Ocean and the other oceanic zones where they have been recorded. Except for the Antarctic, the common species have been numbered in each of their areas, independently from how many areas they belong to.

Guily 1991). Its northern limit has been fixed here at The number of recorded species is far from uniform in the 45 "S, to take into account both the communities extending different sectors, and records are lacking in three NAC sectors into the Polar Front and those spreading north to the sub- (southern and south-eastern Atlantic, SouthPacific) (Table VI). Antarctic Front (SAF) and on to the sub-tropical Front Factorial Correspondence Analysis (Fig. 5)was applied to (STF), or the reverse, as seen for Coccolithophores in the the presence-absence matrix built from the 346 planktonic Weddell Seatransportedfrom sub-tropical waters (Winter copepod species encountered in the 24 zones of the Antarctic etul. 1999). Province identified above. The figure shows the plane defined ii) the Antarctic Province, south of the Antarctic by the second and third axes of the analysis. Convergence area (SAC), in the whole zone of the ACC. The first axis is not represented because it separates the Whenever possible, precise localizations have been taken ISWN area (North Convergence part of the south-west Indian into account: the Antarctic Peninsula and Drake Passage, Ocean) from all the other areas on the basis of the high Ross and Weddell seas. diversity of Culocalunus spp. - 13 species were studied by Shmeleva( 1978)in theseareas alone. Consequently itsupplies iii) the Continental Ice border, represented by areas of the little information on the biogeographical distribution of continental ice-shelf or ice-seawater (McMurdo, south copepod species. and south-western shelves of Indian Ocean). The axis-2/axis-3 plane clearly indicates a distribution of areas from the southern part of all the oceans (Pacific (PSS),

...... _...... ,...... -......

Fig. 5. Factorial correspondence analysis between species and the 24 identified areas. WEDD = Weddell Sea, ROSS = Ross Sea, MURD = McMurdo area, SCOT = Scotia Sea, PEN1 = Peninsula, DRAK = Drake Passage, A = Atlantic, P = Pacific, I = Indian. The next letter indicates the oceanic sector: SW, S, SE, NW, N, NE. The last letter (N, S, C) indicates the position: north, south (of "Oncaeaspp" the Antarctic Convergence) or continental (close tohnder the continental ice shelf.

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 BIODIVERSITY & BIOGEOGRAPHY OF ANTARCTIC COPEPODS 35 1

Atlantic (ASS); Indian (ISES). The plane is separated in two Table VI. Number of species localised in each of the 24 defined oceanic directions: the first north of the Antarctic Convergence of all sectors. the oceans (PSEN, ISEN, ASWN), and the second indicating NAC SAC acontinental gradientto the Weddell and ScotiaSeas,Peninsula General Particular General Particular or the nearest part of the ocean to the Antarctic continent (ISC Pacific SW: 103 127 Ross Sea: 50 and ISWC). Calocalanus spp. was found once again (ISWN) McMurdo: 35 and in the southern part Oncaea spp (PSWS) was identified Pacific S: 4 60 thanks to the expertise of Heron (1977) on the Eltanin cruises. Pacific SE: 153 96 This indicates the bias occurring in biodiversity studies due to Drake: 53 Peninsula: 79 Atlantic SW: 55 108 Scotia: 35 the preponderance of the best-known genus and to the lack of Weddell: 81 quantitative data on their abundance or densities. Atlantic S: - 64 If we accept the Polar Front as the southern limit of the sub- Atlantic SE: - 19 Antarctic sector, some ambiguities arise: Indian SW: 50 68 Ice shelf 18 Indian S: 75 104 Ice shelf 68 a)As shown by the list of the sub-Antarctic copepods Indian SE: 115 93 originating in subtropical areas, a species may be found NAC I SAC = North I South of the Antarctic Convergence on both sides of the Polar Front (AC). One example is Drepanopus pectinatus, which is endemic to the continental shelf of Crozet, Heard and Kerguelen islands BiologicaVphysiological constraints and is found both north and south of the AC, but always Due to the physiological stress generated by low temperatures in fjords, in the neritic sector. It is considered a sub- and the episodic scarcity of their algal food supply, it is likely Antarctic species. that cosmopolitan species introduced into the Antarctic b)In the western South Pacific, Acartia ensifera or environment do not accomplish their entire life cycle there. Centropages aucklandicus, known to be endemic and Because they are out of their core region, and in borderline neritic in New Zealand, are believed to follow the West conditions, they can survive but not reproduce. Of the 289 Wind Drift circulation because of the northern cosmopolitan species found in the southern oceans, only 14 displacement of the sub-tropical convergence. They have are common in the Antarctic. been counted among the sub-Antarctic species, although The most relevant features are their life-span and life cycle. their core records are sub-tropical. The highly seasonal changes in their hydrological and feeding environments affect the life-span and reproductive effort of c)Incontrast, the species of Euaugaptilus and Bathycalanus species, particularly of those living in ice-covered water. from sub-tropicalorigin, are found only in the bathypelagic Most of the zooplankton in the Weddell Sea probably zone south of the AC. complete their life cycle within the gyre (Hopkins & Torres The distribution patterns of copepods reflect the discontinuity 1988). Spawninggenerally takes place in spring and summer. in space and time of the sampling effort and of the patchy The development of young stages, depending on temperature, sampling area. Relevant information about the geographical last several months. They either reach adulthood in the same distribution of pelagic copepods should also include the year, e.g. Paralabidocera antarctica (Tanimura et at 1996) sampling methods used. Sampling is usually done by vertical and Stephos longipes (Kurbjeweit et al. 1993), or they enter or oblique hauls, which means that the optimum depth, if any, diapause during the winter period, often migrating to deep for copepod species is rarely identifiable (Appendix). Depth water. In this case, they achieve their last moult and reach preferences have to be treated with caution for several reasons. adulthood during the following summer, as in Rhincalanus Some are biological and due either to die1 vertical migration, gigas or Calanoides acutus (Atkinson 1998). Other ways for or to seasonal and ontogenic features. Some of the most copepods to adapt to acold environment include the production numerous species (Calanoides acutus, Rhincalanus gigas, of lipid reserves (Hagen et al. 1993) and change from strictly Calanuspropinquus),termed interzonal by Zmijewska (1987), herbivorousfeeding habits to opportunistic omnivory (Hopkins make such excursions, preferring deeper water in winter and etal. 1993). surface water in summer. Other reasons are linked to hydrological facts, as pointed out by Huntley & Niiler (1995): Conclusions “the circulation of the ocean may act either as a dispersive or cohesive force on the population” and more recently by Angel The aim of this paper was to review current understanding of (1998) who highlights the role of physical control on the Antarctic copepod biodiversity. This synthesis shows that zooplanktonic communities. we probably do not know all the species of pelagic copepods dwelling in peculiar ecosystems such as very deep waters or the epi-benthos. The ecological affinities and the relative abundances of

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 352 SUZANNE RAZOULS et al.

small species as defined in Atkinson’s synthesis (1999) for the References Scotia Sea highlight the specific distribution in relation to ANGEL,M.V. 1998. Pelagic biodiversity. In ORMOND,R.F.G., GAGE, mesoscale hydrologic conditions. But for many other species J.D. &ANGEL,M.V., eds. Marinebiodiversity: patterns and processes. of the Southern Ocean we have only few data, if any. An Cambridge: Cambridge University Press, 35-68. intensive collection and compilation of data from an extensive ANSORGE,I.J, FRONEMAN,P.W., PAKHOMOV,E.A., LUTIEHARMS, J.R.E., literature survey is be needed. PERISSINOTTO,R., VAN BALLEGOOYEN,R.C. 1999. Physical-biological coupling in the waters surrounding the Prince Edward Islands The biodiversity and biogeography of pelagic Antarctic (Southern Ocean). Polar Biology, 21, 13.5-145. copepods is linked to movements of water masses at different ARCOS,D.F. 1974. Los copepodos Calanoideos colectadosen la region scales of time and space. Knowledge of the biodiversity of Magallanica por la Expedition Hero 72-4b. Boletin de la Sociedad Antarctic mesozooplankton needs improvement of the de Biologia de Concepcion, 47, 2 15-22.5. taxonomic knowledge of copepods using conventional as well ARCOS,D.F. & BONILLA,M.A. 1989. Composicion y distribucion de la abundancia relativa de zooplancton en el estrecho Bransfield as new biomolecular tools. (Antarctica) duranteel verano austral de 1987-1988. ActuAntarcticu Gene flow in populations is probably ensured by the Ecuatoriana, 1, 103-109. permanent circulation of currents (West Wind Drift and East ATKINSON,A. 1998. Life cycle strategies of epipelagic copepods in the Wind Currents), associated with the circulation of deep water Southern Ocean. Journal of Marine Systems, 15, 289-31 1. masses, and the mixing zones born from meanders and gyres ATKINSON,A. & PECK,J.M. 1988. A summer-winter comparison of zooplankton in the oceanic area around South Georgia. Polar in the frontal zones. Zooplankton experience these different Biology, 8, 463-473. water masses during their specific vertical migrations ATKINSON,A,, WARD, P., PECK,J.M. &MURRAY,A.W.A. 1990. Mesoscale (nycthemeral, seasonal or ontogenic) and may be trapped distribution of zooplankton around South Georgia. Deep-sea inside them and transported away from their core regions. Research, 37, 1213-1227. The deep or intermediate currents, as well as the Antarctic BARTHELEMY,R-M., Cuoc, C., DEFAYE,D., BRUNET,M. & MAZZA.J. 1998. Female genital structures in several families of Centropagidae wind drifts, seem the most probable agents of distribution of (Copepoda: Calanoida). Philosophical Transactions of the Royal Antarctic copepods. Indeed, the distribution of Antarctic Society, London, B353, 721-736. copepods is probably related to the opening of the Drake BAYLY,I.A.E. 1982. The genus Drepanopus (Copepoda: Calanoida): Passage (about 90 m.y.a.) and to circumpolar oceanic areview ofspecie Antarctic and subantarctic waters, withadescription circulation. of D. bispinosus, sp. nov.. Australian Journal in of Marine and Freshwater Research, 33, 16 1-17 I. The next step in the study copepods must be the detailed of BEAUMONT,K.L. & HOSIE,G.W. 1997. Mesoscale distribution and investigation of certain target species with regard to: abundance of four pelagic copepod species in Prydz Bay. Antarctic a) speciation, comparing the genetic structure of true Science, 9, 121-133. BJORNBERG,T.K.S. 1968. Four new species of Megacalanidae populations clearly geographicallydistinct, but belonging (Crustacea: Copepoda). Antarctic Research Series, 11, 73-90. to the same genus, Drepanopus bungei (Arctic, Barentz BJORNBERG,T.K.S. 1973. The planktonic copepods of the Marchile I Sea), D. bispinosus (brackish Antarctic lakes), expedition and of the “Eltanin” cruises 3-6 taken in the SE Pacific. D. forcipatus (Atlantic sub-Antarctic areas, Falkland Boletim de Zoologia e Biologia Marina, Nuevo Serie, 30, 245-394. Islands, southern Chile?), D. pectinatus (Indian neritic BJORNBERG,T.K.S. & CAMPANER,A.F. 1988. On Gaussia Wolfenden (Copepoda, Calanoida, Metridinidae). Hydrnbiologia, 167/168, sector, Crozet, Heard and Kerguelen Plateau), 351-356. b)the genetic structure of common species with a circum- BODEN,B.P. &PARKER,L.D. 1986. The plankton of the Prince Edward such as Calanoides acutus, Islands. Polar Biology, 5, 81-93. Antarctic distribution, BOYSEN-ENNEN,E. 1987. On the distribution of meso- and macro- Calanus propinquus, Calanus simillimus, Metridia zooplancton in the surface water of the Weddell sea (Antarctica). gerlachei, Rhincalanus gigas, and Reports on Polar Research, 35, 1-126. BRADFORD,J.M. 197 1 a. Aetideus and Euaetideus (Copepoda: c) research in upwelling areas of certain species, indicators Calanoida) from the Atlantic and Pacific oceans. New Zealund of deep-water layers that may be allied to bipolar species. Journal of Murine and Freshwater Research, 5, 12-40. BRADFORD,J.M. 197 1 b. Pelagic copepoda. New Zealand Department qf‘Scientific and Industrial Research Bulletin, 206, 9-46. Acknowledgements BRADFORD,J.M. I98 1. Records of Puraeuchaeta (Copepoda: Calanoida) We thank the referees A. Atkinson and R. Harris for their from McMurdo Sound, Antarctica, with a description of three hitherto unknown males. New Zealand Journal ojMarine and Freshwater helpful comments. We are grateful to the Editorial Assistant Research, 15, 391-402. Sharon Cooke for her considerable assistance in fitting our BRADFORD-GRIEVE,J.M. 1994. The marine fauna of New Zealand. manuscript into the journal format. Pelagic Calanoid Copepoda: Megacalanidae, Calanidae, Paracalanidae, Mecynoceridae, Eucalanidae, Spinocalanidae, Clausocalanidae. New Zealand Oceanographic Institute Memoir, 102, 160 pp. BRADFORD,J.M. & JILLETT,J.B. 1980. The marine fauna of New Zealand. Pelagic Calanoid copepods: family Aetideidae. New Zeuland Depurtment ofscientific and Industrial Bulletin, 86,102 pp.

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 BIODIVERSITY & BIOGEOGRAPHY OF ANTARCTIC COPEPODS 353

BRADFORD,J.M. &WELLS,J.B.J. 1983.New Calanoid and Harpacticoid FUKUCHI,M., TANIMURA,A. & OHTSUKA,H. 1985. Zooplankton copepods from beneath the Ross ice shelf, Antarctica. Polar Bitthgy, community conditions under sea ice near Syowa Station, Antarctica. 2, 1-15. Bulletin of Marine Science, 37, 5 18-528. BRADFORD,J.M., HAAKONSSEN,L. & JILLET,J.B. 1983. The fauna of GIESBRECHT,W. 1902. Copepoden. Re'sultats du Voyage de la

New Zealand: pelagic Calanoid copepods: families Euchaetidae, "Belgica I' en 1897-99. Rapports Scientifiques. Zoologic, 1-49. Phaennidae, Scolecithricidae, Diaixidae and Tharybidae. New GONZALEZ,H.E., KURBJEWEIT,F. & BATHMANN,U.V. 1994. Occurrence Zealand Oceanographic Institute Memoir, 90, 150 pp, of cyclopoid copepods and faecal material in the Halley Bay region, BRADY,G.S. 1883. Report on the Copepoda collected by H.M.S. Antarctica, during January-February 1991. Polar Biology, 14. Challenger during the years 1873-76. Reports of the Scientific 331-342. Results of the Voyage of H.M.S. Challenger. Zoology, 8, 1-142. GRINDLEY,J.R. & LANE,S.B. 1979. Zooplankton around Marion and BRADY,G.S. 19 18. Copepoda. Australasian Antarctic Expedition Prince Edward Islands. Publications du CNFRA, 44, 111-125. 1911-14. Scientific Reports, 5, 1-48. HAGEN,W., KATTNER,G. & GRAEVE,M. 1993. Cakmoide.sacutus and BRIGGS,J.C. 1974. Marine ZOogeOgrUphy. New York: McGraw-Hill, Calanus propinyuus, Antarctic copepods with different lipid storage 158-193. modes via wax esters or triacylglycerols. Marine ECOhglCd Progress BRODSKY,G.S. & ZVEREVA,J.A. 1976a. New species of Cornucalanus Series, 97, 135-142. from the Bering Sea and the Antarctic and the description of a HARDY,A.C. &GUNTHER,F.R. 1935. The plankton of the South Georgia Cornucalanus indicus Sewell male. Crustaceuna, 31, 18 1-1 89. whaling grounds and adjacent waters, 1926-1927. Discovery Reports. BRODSKY,G.S. & ZVEREVA,J.A. 1976b. Paralabidr~ceraseparabilis 11, 1-456. sp. n. and P. antarctica (J.C. Thompson) (Copepoda, Calanoida) HERON,G.A. 1977. Twenty-six species of Oncaeidae (Copepoda: from Antarctica. Crustaceuna, 31, 234-239. Cyclopoida) from the southwest Pacific-Antarctic area. Anturctic BUCKLIN,A,, FROST,B.W. & KOCHER,T.D. 1995. Molecular systematics Research Series, 26, 37-96. of six Calanus and three Metridia species (Calanoida: Copepoda). HERON,G.A. & DAMKAER,D.M. 1978. Seven Lubbockia species Murine Biology, 121, 655-664. (Copepoda: Cyclopida) from the plankton of the northeast Pacific, CHOJNACKI,J. & WEGLENSKA,T. 1984. Periodicity of composition, with a review of the genus. Smithsontan Contriburions to ZOO~O~~, abundance, and vertical distribution of summer zooplankton (l977/ 267, 36 pp. 1978) in Ezcurra Inlet, Admiralty Bay (King George Island, South HOPKINS,T.L. 1985. The zooplankton community of Croker Passage, Shetland). Journal of Plankton Research, 6, 997-1017. Antarctic Peninsula. Polar Biology, 4, 161-170. CRAME,J.A. 1994. Evolutionary history of Antarctica. In HEMPEL,G., HOPKINS,T.L. 1987. Midwater food web in McMurdo Sound, Ross Sea, ed. Antarctic science: global concerns. Berlin: Springer Verlag, Antarctica. Marine Biology, 96, 93-10. 188-2 14. HOPKINS,T.L. &TORRES,J.J. 1988. The zooplankton community in the CUOC,C., DEFAYE,D., BRUNET,M., NOTONIER,R. & MAZZA,J. 1997. vicinity of the ice edge, western Weddell Sea, March 1986. Polar Female genital structures of Metridinidae (Copepoda: Calanoida). Biology, 9, 79-87. Marine Biology, 129, 651-665. HOPKINS,T.L., LANCRAFT,T., TORRES,J. & DONNELLY,J. 1993. DINOFRIO,E.O. 1983. Planktonic copepods of waters near the South Community structure and trophic ecology of zooplankton in the Orkney Islands. In EL-SAYED,S.E. & TOMO,A.P., eds. Antarctic Scotia Sea marginal ice zone in winter (1988). Deep-sea Research, aquatic biology. BIOMASS Scientific Series, 7, 53-65. 40, 81-105. ERRHIF,A. 1998. Composition et structure du zooplancton du secteur HOSHIAI,T., TANIMURA,A., WATANABE, K. & FUKUCHI,M. 199I. Algae- Indien de 1'OcPan Austral. R6le du me'tabolisme respiratoire. Thkse copepod-fish link associated with Antarctic sea ice. In MAUCHLINE, Doctorat Univiversitt Aix-Marseille 111, 146 pp. J. & NEMOTO,T., ed. Marine biology: its accomplishment and,future ERRHIF,A,, RAZOULS,C. & MAYZAUD,P. 1997. Composition and prospect. Tokyo: Hokusen-sha, 237-246. community structure of pelagic copepods in the Indian sector of the HOSIE,G.W. & COCHRAN,T.G. 1994. Mesoscale disribution patterns of Antarctic Ocean during the end of the austral summer. Polar macrozooplankton communities in Prydz Bay, Antarctica, January Biology, 17, 41 8-430. to February 1991. Marine Ecd~gyProgress Series, 106, 21-39. FARRAN,G.P. 1929. Crustacea. Part X: Copepoda. British Antarctic HULSEMANN,K. 1985a. Two species of Drepanopus Brady (Copepoda ("TerraNOVU") Expedition, 1910. Nuturd History Reports, Zoology, Calanoida) with discrete ranges in the southern hemisphere. Journal 8, 203-306. of Plankton Research, 7, 909-925. FLEMINGER,A. & HULSEMANN,K. 1987. Geographical variation in HULSEMANN,K. 1985b. New species of Neoscolecithrixcanu (Copepoda Culanus helgolandicus s.1. (Copepoda, Calanoida) and evidence of Calanoida) in Antarctic water with remarks on the genus. Polar recent speciation of the Black Sea population. Biological Biology, 5, 55-62. Oceanography, 5, 43-8 1. HUNTLEY,M.E. & NIILER,P.P. 1995. Physical control of population FONTAINE,M. 1988. Taxonomy and distribution of the Antarctica dynamics in the southern ocean. ICES Journal of Marine Science, species group of the genus Euchueta (Copepoda, Calanoida). 52,457-468. Antarctic Research Series, 47, 27-57. JEAN-BAPTISTE,P. 1994. Circulation ocCanique gknerale et traceurs. FOSTER,B.A. 1987. Composition and abundance of zooplankton under Oceanis, 20(6), 3-20. the spring sea-ice of McMurdo Sound, Antarctica. Polar BiokJgy, 8, KNOX,G.A., WAGHORN,E.J. & ENSORP.H. 1996. Summer plankton 41-48. beneath the McMurdo ice shelf at Whote Island, McMurdo Sound, FOSTER,B.A. 1989. Timeand depthcomparisons ofsub-ice zooplankton Antarctica. Polar Biology, 16, 87-94. in McMurdo Sound, Antarctica. Polar Bi~logy,9, 43 1-435. KURBJEWEITF. & ALI-KHAN,S. 1990. Distribution and abundance of FRANSZ,H.G. 1988. Vernal abundance, structure and development of planktonic copepods () in the Weddell Sea in summer epipelagic copepod populations of the Eastern Weddell Sea 1980-81, Reports on Polar Research, 72, 53 pp. (Antarctica). Polar BiokJgy,9, 107-1 14. KURBJEWEIT,F., GRADINGER,R. & WEISSENBERGER,J. 1993. The life FREIRE,A.S., COELHO,M.J.C. & BONECKER,S.L.C. 1993. Short term cycle of Stephos longipes - an example for cryopehgic coupling in spatial-temporal distribution patterns of zooplankton in Admiralty the Weddell Sea (Antarctica). Marine Ec~l~gyProgress Series, 98, Bay (Antarctica). Polar Biology, 13, 433-439. 255-262.

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 354 SUZANNE RAZOULS eta/.

LONGHURST,A. 1998. Ecologicd geogruphy of the sea. London: PARK,T.S. 1983b. Calanoid copepods of the family Phaennidae from Academic Press, 398 pp. Antarctic and subantarctic waters. Anturctic Research Series, 39, MARIN,V. 1987. The oceanographic structure of the eastern Scotia 3 17-368. Sea. IV. Distribution of copepod species in relation to hydrography PARKT.S. 1988. Calanoid copepods of the genus Huloptilus from in 1981. Deep-Seu Research, 34, 105-121. Antarctic and subantarctic waters. Antarctic Research Series, 47, MARIN,V. & ANTEZANA,T. 1985. Species composition and relative 1-25. abundance of copepods in Chilean fjords. Journul of Plankton PARK,T.S. 1993. Calanoid copepods of the genus Euuuguptilus from Research, 7. 961-966. Antarctic and subantarctic waters. Antarctic Reseurch Series, 58, MARIN,V. & SCHNACK-SCHIEL,S.B. 1993. Theoccurence of Rhinculunus 1-48. gigas, Culunoides acutus and Culanus propinquus (Copepoda, PARK,C. & WORMUTH,J.H. 1993. Distribution of antarctic zooplankton Calanoida) in late May in the area of the Antarctic Peninsula. Polar around Elephant Island during the austral summers of 1988, 1989, Biology, 12, 35-40. and 1990. Polur Biology, 13, 215-225. MARKHASEVA,E.L. 1996. Calanoid copepods of the family Aetideidae. PARK,Y. & GAMBERONI, L. 1997. CroSS-frOntal exchange Of Antarctic Proceedings of the Zoological Institute, Russiun Acudemy oj intermediate water and Antarctic bottom water in the Crozet Basin. Sciences, 268, 331 pp. Deep-sea Reseurch II, 44, 963-986. MATTHEWS,L.H. 1925. A new Antarctic copepod, belonging to the PERissiNoTTo, R. 1989. The structure and diurnal variations of the genus Eucalunus. Annuls und Muguzine of Natural History99( 15), zooplankton of the Prince Edward Islands: implications for biomass 127-1 29. build-up of higher trophic levels. Polar BidJgy, 9, 505-5 10. MAUCHLINE,J. 1988. Taxonomic value ofpore pattern in the integument QUIDOR,A. 1908. Copepodes. Expiditimn Anturctiyue FranGuise of calanoid copepods (Crustacea). Journal of Zoology, London, (1903-1905), 1-20. 214, 697-749. RAMIREZ,F.C. 1970. Copepodos planctonicos del sector patagonico. MAZZOCHI,M.G., ZAGAMI, G., IANORA,A,, GUGLIELMO,L., CRESCENTI, N. Resultados de la campana ”PesyueriuXI”. Physis, 29(79), 473-476. & HURE,J. 1995. Copepods. In GuGLiELMo, L. & IANORA,A,, eds. RAMIREZ, F.C. & DINOFRIO.E.0. 1976. Resultados phnctologicos de la Atlas of marine zooplankton. Struiis of Magellan. Berlin: Springer campana Oceantar I. 111. Copepodos. Conribuciones del Institute Verlag, 279 pp. Anturctico Argentino, 196,l-49. MENSHENINAL. & MELNIKOV,LA. 1995. Under-ice zooplanktonof the RAZOULS,C. & DE BOVEE.F. In press. Diversity and Geographical western Weddell Sea. Proceedings NIPR Symposium on Polur Distribution of Pelagic Copepoda. 3. An Overview and initial Biology, 8, 126-138. interpretation. Annules de 1‘lnstitut Ocdunogruphiyue, Puris. MENSHENINA, L. &RAKUSA-SUSZCZEWSKI,s. 1992. Zooplanktonchanges RAZOULS,S. & RAZOULS,C. 1990. Biological cycle of a population of during the year in Admiralty Bay (February 1990-January 1991). subantarctic copepod Drepanopus pecrinatus (Clausocalanidae), Polskie Archiwum Hydrobiologii, 39, 65-76. Kerguelen Archipelago. Polur Biology, 10, 541-543. METZ,C. 1995. Seasonal variation in the distribution and abundance RAZOULS,S., KOUBBI,P. & MAYZAUD,P. 1996. Spatio-temporal of Oithonu and Oncuea species (Copepoda, Crustacea) in the distribution of mesozooplankton in a sub-antarctic coastal basin of southeastern Weddell Sea, Antarctica. Pokur Biology, 15, 187- 194. the Kerguelen Archipelago (southern Indian Ocean). Polar Bi~logy. MICHEL,H. 1994. Antarctic Megacalanidae (Copepoda: Calanoida) 16, 581-587. and the distribution of the family. Journal ($the Marine Biological RAZOULS,S., DE BOVEE,F., DELILLE,D., FIALA,M. & MAYZAUD,P. 1997. Association UK, 74, 175-192. Temporal variability of plankton assemblages of the sub-Antarctic MINODA,T.& HOSHIAI,T. 1982. Zooplankton community in the Cove Morbihan Bay (Kerguelen Archipelago). In BATTAGLIA,B., VALENCIA, of Cumberland Bay, South Georgia, in the southern summer from J. & WALTON, D.W.H.,eds. Antarctic communities: species. siructure January to February 1973. Memoirs of the Naiiond lnstitut Polar and survivul. Cambridge: Cambridge University Press, 86-92. Reseurch, Speciul Issue, 23, 32-37. ROSENDORN,1. 1917. Copepoda I der deutschen Tiefsee Expedition, MIZDALSKI,E. 1988. Weight and length data of zooplankton in the Die Gattung Oithonu . Wissentschqftliche Ergebnisse der deutschen Weddell Sea in austral spring 1986 (ANT V/3). Reports on Polur Tiefiee-Expedition “Vuldiviu”. 23, 1-58. Research, 55, 72 pp. SAINT-GUILLY,B. I99 I. Physique de I‘OcCan Austral et du courant NAKAMURA,M., KADOTA,S. & FUKUCHI,M. 1982. Epipelagic copepods circumpolaire antarctique. Acudimie de Murine. Communirutiorls of Calanoida in the Indian sector of the Antarctic Ocean. Memoirs el Mdmoires, 3, 99-1 12. of the Nutional Institute Polor Reseurch, Speciul Issue, 23, 28-3 I. SCHULZ,K. 1996a. Mospicalunus schielae, a new species of calanoid NISHIDA,S. 1985. Taxonomy and distribution of the family Oithonidae copepod (Crustacea: Spinocalanidae) from deep Antarctic waters. in the Pacific and Indian Ocean. Bulletin of the Ocean Reseurch Polar Biology, 16, 595-600. Institute University of Tokyo, 20, 167 pp. SCHULZ,K. 1996b. Frigoculunus ruuscherti, a new genus and species OTTESTAD,P. 1932. On the biology of some southern Copepoda. of hyperbenthic copepod (Calanoida, Clausocalanoidea) from the Hvulrudeis Skrijter, 5, 5-61. sublittoral of King George Island (Antarctica). Mitteilungen uus PARK,T.S. 1978. Calanoid copepods (Aetideidae and Euchaetidae) dem hamburgischen roologischen Museum und Instirut, 93, 73--82. from Antarctic and subantarctic waters. Antarctic Reseurch Series, SCOTT,T. 1912. The Entmostraca of the Scottish National Antarctic 27, 91-290. Expedition, 1902- 1904. Trunsucfions of the Royul Society PARK,T.S. 1980. Calanoid copepods of the genus Scolecithricellu Edinburgh, 48, 521-599. from Antarctic and subantarctic waters. Antarctic Research Series, SCOTT,T. I91 4. Remarks on some copepoda from the Falkland Islands 31, 25-79. collected by Mr R. Vallentin, F.L.S. Annuls und Muguzine of PARK,T.S. 1982. Calanoid copepods of the genus Scuphoculunus from Nutural History, 13(8), 1-1 1. Antarctic and subantarctic waters. Anturctic Research Series, 34, SENO,J., KOMAKI,Y. & TAKEDA,A. 1963a. Report on the biology of the 75-127. “Umituku-Muru” expedition. Plankton collected by the “Umiruku- PARK,T.S. 1983a. Calanoid copepods of some Scolecithricid genera Muru” in the Antarctic and adjacent waters with special references from Antarctic and subantarctic waters. Anturctic Reseurch Series, to Copepoda. Journal of’ the Tokyo University of Fisheries, 49, 38, 165-213. 53-62.

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 BIODIVERSITY & BIOGEOGRAPHY OF ANTARCTIC COPEPODS 355

SENO, J., KOMAKI,Y. & TAKEDA,A. 1963b. Report on the biology of VERVOORT,W. 1972. Antarctic copepods from Halley Bay, Coat’s the “Umitaka-Maru” expedition. Plankton collected by the “Umituka- Land. Crustuceuna, 22, 94-97. Maru” in the Antarctic and adjacent waters by larva net, with special VoRoNrNA, N. M. & KOLOSOVA,E.G. 1999. Composition, distribution references to Copepoda. Journal of the Tokyo University of Fisheries, and temporary changes in the abundance of zooplankton under fast 50(1), 1-10. ice in the Weddell Sea, compared with the open Ocean zooplankton. SENO,J., KoMAKl Y. & TAKEDA,A. 1966. Report on the biology of the Oceanology, 39,69-75. [Translated from Okeunologiyu, 39,80-861. “Llmituka-Maru” expedition. Plankton collected in the Antarctic WAGHORN,E.J. 1979. Two new species of copepoda from White Island, Ocean and adjacent waters by closing net, with special references to Antarctica. New Zeulund Journal cifMurine & Freshwuter Reseurch, Copepoda. Journal of the Tokyo University of Fisheries, 52, 1-16. 13, 459-470. SERET,c. 1979. Taxonomie, biologie et biogiogruphie des Cope‘ppodes WANG,Z., LIN, B. & CAO,Y. 1990. The study of adaptability of pilugiques re‘colte‘s au cours de lu cumpugne MD 03 du “Murion- Drepunopus bispinosus to temperature and salinity in the Antarctic Dufresne” (iles Crozet, Kerguelen et Heard). These Doctorat, Burton Lake. Science in Chinu, B33, 801-809. UniversitC de Paris, 187 pp. WARD,P. 1989. The distribution of zooplankton in an antarctic fjord SHMELEVA,A.A. 1978. New species of copepods of the genus at South Georgia during summer and winter. Anturctic Science. 1, Caluculunus from the Indian sector of the Antarctic and the South 141-150. Atlantic. Biologia Moryu, Vludivostok, 1978(2), 82-86. WILLIAMSON,M. 1998. Marine biodiversity in its global context. In SHMELEVA,A.A. 1979. Composition and distribution of the genus ORMOND,R.F.G., GAGE, J.D.& ANGEL,M.V., eds. Murine biodiversity: Caloculunus (Copepoda, Calanoida) in the Indian Ocean. Vestnik putterns und processes. Cambridge: Cambridge University Press, Zoologii, 6, 39-44. 1-34. SIEGEL,V., SKIBOWSKI,A. &HARM, U. 1992. Community structure of WINTER,A,, ELBRACHTER,M. & KRAUSE,G. 1999. Subtropical the epipelagic zooplankton community under the sea-ice of the coccolithophores in the Weddell Sea. Deep-sea Reseurch, 46, northern Weddell Sea. Polar Biology, 12, 15-24. 439-449. TAKEDA-AKIYAMA,A. & ARAI, R. 1968. Plankton. Reports on the Third WILSON,C.B. 1938. Plankton copepods collected during Admiral Antarctic expedition, 1964.1965 of the “Umitaku-Muru”,5,27-49. Byrd’s Expedition to the Antarctica, 1933 to 1935. Internutionul TANAKA,0. 1960. Pelagic Copepoda. Biologicd results of the Revue der gesurnmten Hydrobiologie, 36, 356-361. Japanese Antarctic Reseurch Expedition, No. 10, 1-95. WOLFENDEN,R.N. 1908. Crustacea. VIII. Copepoda. NutionalAnturctic TANAKA,0. 1964. Two small collections of copepods from the Expedition 1901-1904, Nuturul History, 4, Zr,ology, 1-46. Antarctic. Jupunese Antarctic Research Expedition JARE Scientific WOLFENDEN,R.N. 191 1. Die marinen Copepoden der Deutschen Reports Series E, No. 22, 1-20. Sudpolar-Expedition 1901-1902. Deutche Siidpolur Expedition, TANIMURA,A,, FUKUCHI,M. & HOSIAI,T. 1986. Seasonal change in the 12, Zoologic, 4, 181-380. abundance of zooplankton and species composition of copepods in YAMADA,S. & KAWAMURA,A. 1986. Some characteristics of the the ice-covered sea near Syowa station, Antarctica. Memoirs of the zooplankton distribution in the Prydz Bay region of the Indian sector Nuticmu1 Institute Polar Reseurch, Speciul Issue, 40, 212-220. of the Antarctic Ocean in the summer of 1983f84. Memoirs National TANIMURA, A., HOSHIAI,T. & FUKUCHI,M. 1996. The life strategy of the Institute Polar Reseurch Speciul Issue, 44, 86-95. ice-associated copepod, Purulabidoceru anturcticu (Calanoida, YAMADA,S., TANIMURA,A. & MINODA,T. 1991. Copepods collected Copepoda), at Syowa station, Antarctica. Antarctic Science, 8, along 13”E longitude of the Antarctic ocean in the 1973 summer. 257-266. Anturctic Record, 35(2), 155-160. THOMPSON,I.C. 1898. Report on a small collection of Antarctic YAMADA,s., TANIMURA, A. & MINODA,T. 1992. Copepods collected plankton from the neighbourhood of the South Shetlands, collected along 33.5”E longitude of the Antarctic Ocean in the 1976 summer. by the staff of a Dundee whaler in 1892-3. Proceedings of the Antarctic Record, 36( I), 60-64. Transactions of the Liverpool BifJkJgicUl Society, 12, 29 1-297. YAMANAKA,N. 1976. The distribution of some copepods (Crustacea) TUCKER,M.J. &BURTONH.R. 1988. The inshore marine ecosystem off in the Southern Ocean and adjacent regions from 40” to 81”W long. the Vestfold Hills, Antarctica. Hydrobidogiu, 165, 129-139. Boletim de ZOCJkJgiU, 1, 161-196. TUCKER,M.J. & BURTONH.R. 1990. Seasonal and spatial variations in ZMIJEWSKA,M.I. 1987. Horizontal and vertical distribution of Copepoda the zooplankton community of an eastern Antarctic coastal location. in the southern part of the Drake Passage and in the Bransfield Strait Polar Biolugy, 10, 571-579. (BIOMASS-SIBEX 198311 984). PolskiePolurReseurch, 8,381-390. VANDER SPOEL,S. & HEYMAN,R.P. 1983. A cctmpurutive atlas of ZMIJEWSKA,M.I. 1988. Vertical distribution and population structure zooplunkron. Berlin: Springer Verlag, 186 pp. of Copepoda in a water column between King George Island and VERVOORT,W. 1951. Plankton copepods from the Atlantic sector of Elephant Island (BIOMASS 111, October-November 1986). Polish the Antarctic. Verhhundelingen der Krminklidjke Nederlundse Polar Research, 9, 283-304. Akademie van Wetenschappen Afdeling Nutuurtkunde, Tweede ZVEREVA,J.A. 1972. Seasonal changes in Antarctic plankton in the Secrie, 47(4), 1-156. Molodezhnaya and Mirnyy area. 1s.sledovaniia Fumy Morei; 12(20), VERVOORT,W. 1957. Copepods from Antarctic and sub-Antarctic 215-227. [In Russian]. plankton samples. Reports B.A.N.Z.Anturctic Research Expedition, 1929-1931, B3, 1-160.

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 356 SUZANNE RAZOULS eta/.

Appendix. Taxonomic list of Antarctic copepod species. (For references see end of Appendix) Families Sampling depth References (m) C ALANOID A Acaxtiidae Acartia ensifera Brady, 1899 0-200 19/20 Paralabidocera antarchca (Thompson. 1898) 0-100 13,22,27,28,29,33,44,49,50,56,84,91/92,93,94,95,97,98,105,111,113 Paralabidocera grandispinu Waghom, 1979 70 48,103 Paralabidocera separabilis Brodsky & Zvereva, 1976 cote-glace 22 Aetideidae Aehdeopsrs antarctica (Wolfenden, 1908) 0-600-1000 14,27,40,41,104,106 Aetideopsts minor (Wolfenden 1908) 0-200-1000 13,16,23,27,40,42,43,53,61,64,89,97,98,103,105 Aetrdeopsis multrserrafa (Wolfenden, 1904) 0-1000-3000 8,26,53,64 Aehdeopsis rostrata Sars, 1903 0-300 11,53,64 Aehdeopsis tumorosa Bradford, 1969 0-1000 53,64 Aetideiis arctiatiis (Vervoort, 1949) 0-1000 55,64,112 Aetideus armatus (Boeck, 1872) 0400; 100-1000 8,19/20,24,25,26,27,36,37,74,75,83,86,98 Aetidetis australis (Vervoort, 1957) 0-3000 3,16,55,62,64,90,98,103 Aetideus bradyi A Scott, 1909 0-100 8 Aetidetis pseiidarmahis Bradford, 1971 0-200 16 Bathetichaeta antarchca Markhaseva, 1986 0-4000 53 Bathetichaeta lamellata Brodsky, 1950 0-3000 53 Bathetichaeta peciiliaris Markhaseva, 1983 300 53 Batheuchaeta piibescens Markhaseva, 1986 0-4000 53 Bradyiditis armafus Giesbrecht, 1897 3000 106 Chiiidiella megadactyla Bradford, 1971 0-1000 13 Chirrdiella siibaeqtiahs Grice & Hulsemann, 1965 600-1000 42,53 Chiriditis gractlis Farran, 1908 0-1000 5 1,53,55,64,98 Chiriditis molestiis Tanaka. 1957 0-1000 55 Chiridtiis polaris Wolfenden, 191 1 0-1000 27.53,64,98,106 Chirundrna sfreetsii Giesbrecht, 1895 0-1 000 53,64 Euchiiella latirostris Farran, 1929 0-750 16,27,98 Euchirella maxima Wolfenden, 1905 0-300 64 Euchirella rostrata (Claus, 1866) 0-1000 8,16,27,37,64,51,62.74,86,89,98,100,106 Euchirella roshomagna Wolfenden, 19 1 1 100-500-2000 8,11,16,27,40,42,43,49,50,61,64,80,89,90,97,98,103,109,111 Eiichirella simrlis Wolfenden, 1911 400-2000 8,64.98 Gaetanus antarcticiis Brady, 1918 600-1000+ 8,19/20,27,37,40,42,53.64,98,105,106 Gaetanus kruppi Giesbrecht, 1903 0-800-2000 8,64 Gaetantis lahfions Saw, 1905 0-750 8,16,53,98 Gaetanus minor Farran, 1905 0-1000 64,98 Gaetantis paractiwicornis Brodsky, 1950 3000-5000 53 Gaetaniis pileaftis Farran, 1903 0-1 000 8,53,64 Gaetanus inteimediiis Campbell, 1930/Wolfenden,19057 500-1000+ 40,42,64 Gaidiiis bievispintis (Sars, 1901) 0400; 100-1000 8,16,26,27,37,53.86,97,98,106,112 Gaidiiis piingens Giesbrecht, 1895 0-500 3,8,13,16,19120,24,25,27,37,40,42,43,53,61,62,64,79,86,89,97,98, 100,103,106 Gaidiiis tentiispintis (Sars, 1901) 100-1 ooo+ 112,111 Pseiidetichaeta brevicatida Sars, 1905 1000-2000 9,53,64,98,110 Pseiidochirella bahllipa Park, 1978 > 2000 53,64 Pseiidochirella dubia (Sars, 1905) 7000 53 Psetidochirella formosa Markhaseva, 1989 0-8000 53 Pseiidochirella hirstifa (Wolfenden, 1905) 500-1000+4000 8,27,37,40,42,53,64,98,106,110 Pseiidochirella mawsoni Vervoort, 1957 -0-1000+ 8,16,40,53,64,89,98 Psetidochireila notacantha (Sars, 1905) 0-750-1000+ 27,37,53,98 Pseiidochirella obttisa (Sars, 1905) 0-1000+ 8,42,53,64 Pseiidochirella piisftilrfera (Sars, 1905) 300-1000-5000 8,37,53,64 Pseiidochrrella spectabilis (Sars, 1900) 0-1000-5000 53,64,9 8,106 Pseiidochirella spinosa (Wolfenden, 1905) 750-1000 37 Undeiichaeta incisa Esterly, 191 1 0-1000+ 64 Undetichaeta major Giesbrecht, 1888 50-750-2000 8,27,37,98,1 I0 Undetichaeta pliimosa (Lubbock, 1856) 750-0 8,16,27,83,98 Valdiviella brevicornis Sars, 1905 0-1000-4000 64,110 Valdrviella insignis Farran, 1908 1000-2000+4000 8,62,64,98,110 Valdivielia minor Wolfenden, 1911 0-2000 64

356

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 BIODIVERSITY & BIOGEOGRAPHY OF ANTARCTIC COPEPODS 357

Valdiviella oligarfhra Steuer, 1904 0-2000 64 Arietellidae Arietellus simplex Sars, 1905 300400-1000 40,42,98 Augaptilidae Augaptrlus cornutris Wolfenden, 191 1 3000 106 Augaphlus glacialis Sam, 1900 500-1000 42,55,97,98 Centraiigaptihis rattrayi (T Scott, 1894) 250-750 8,37,40 Euaugaptiliis aliqtianttis Park, 1993 0-2000 70 Eiiaugaptilus angustus (Sars, 1905) 0-1000 70 Eiiaiigaptihis aiistriniis Park, 1993 0-1000-3000 70 Euaiigaptilus breviroshahts Park, 1993 0-1000-2000 70 Euaugapfikis btillrfer (Giesbrecht, 1889) 0-2000 70 Euaugaptrlus gibbus (Sars, 1905) 0-1000 70 Euaugaptilus hadrocephalus Park, 1993 0-1000 70 Euaugaptilus Iaticeps (Sars, 1905) 500-1000+ 27,40,42,70,98 Eiraugaptilus magnus (Wolfenden, 1904) 1500 8,70,98 Eicaugapfihis maxillaris Sars, 1920 0-2000 70 Euaugapfrlus nodifions (Sars, 1905) 0-1000-3000 8,70 Euaiigaptilus oblongiis Sars, 1905 0-1200 70 Eitaugaptrhis perasetosiis Park, 1993 0-3000 70 Euaiigaptilus placrtus (A Scott, 1909) 1000-2000 106 Haloptilus aciihfions (Giesbrecht, 1892) 250-100 55,8 1/82,98,100 Haloptilus fans Farran, 1908 100400 37,69 Haloptihis longicirriis Brodsky, 1950 0400 69 Haloptilus longicornis (Claus, 1863) 2000 106 Haloptiltis ocellahts Wolfenden, 1905 50-1000 11,13,19/20,27,37,40,42,45,49,50,61,62,69,79,83,89,90,91/92,97,98,105, 106,109, 11 1,112 Haloptilus oxycephalus (Giesbrecht, 1889) 0-1000 3,8,11,13,23,24,25,26,27,36,37,40,42,49,1,62,69,74,79,97,98,99,103, 109,111,112 Pachyptilus etirygnathus Sars, 1920 500-900 8,42,98 Pontophhis ovabs sars, 1907 750-500 98 Pseudaugaptihis longiremis Sars, 1907 200-1000 42,98 Bathypontiidae Temorifes brews Sars, 1900 200-1000 40,42,98,106 Calanidae Calanoides aciihcs (Giesbrect, 1902) 0- 1000 2,3,6,8,11,13,15,23,24,26,27,29,32,34,36,37,40,41,42,43,45,48,49,50,52, 57,60,61, 68,71,75,81,83,84,86,89,90,91,97,98,99,103,105,106,107,10S, 109,111,112,113 Catanordes carinahis (coyer, 1848) 50 74,90,9 1/92,98 Calanordes macrocarinahis Brodsky, 1972 0-500 15 Calanoides pafagoniensis Brady, 1883 0-200 1,19/20,5 1,5 5 Calanus aiisfralis Brodsky, 1959 0-1000 8,15,27,5 1,55,74 Calanirs propingtiiis Brady, 1883 0-1000 3,6,8,11,13,19/20,23,24,26,27,29,34,36,37,40,41,42,43,45,48,49,50,52,57, 60,61,6269,71,73,74,75,82,83,86,89,90,92,93,95,97,98,99,103,104,105, 106,108,109,111,112,113 Calantis simillrmus Giesbrecht, 1902 0-600 2,3,8,10,15,24,26,27,37,43,49,50,51,55,57,60,62,72,76,83,86,90,91i92,97, 98,103,105,106,108,109,111,112 Mesocalaniis tenuicornis (Dana, 1849) 0-50 8,15,27 Nannocalaniis minor (Claus, 1863) 0-600 8,19/20,5 1,85,91/92 Neocalaniis gracihs (Dana, 1849) 100-750 27,98 Neocalanus fonsus (Brady, 1883) 0-500 8,15,19i20,27,51,55,83,90,91/92,98,105 Candaciidae Candacia cheirtira Cleve, 1904 0-100 8,27,5 1,55,98 Candacia falcifera Farran, 1929 300-1000 27,37,40,42,89,97,98 Candacia maxima Vervoort, 1957 300400 13,26,27,40,50,62,86,89,98,103,112 Paracandacra simplex (Giesbrecht, 1889) 0-1000 8 Centropagidae Centrapages aucklandicics Kramer, 1895 0-10 27,91192 Cenfropages brachratiis (Dana, 1849) 0-200 1,8,19/20,5 1,55,74,91/92 Cenfropages bradyi Wheeler, 1901 0-100 51,55,83,98 Cenfropagesfiircaftis (Dana, 1849) 0-1200 8,27 Clausocalamdae Clausocalanus brevipes Frost & Flenunger, 1968 0400 11,15,25,26,36,5 1,55,72,74,86 Clausocalanus ingens Frost & Flerninger, 1968 0-500 8,153 1,55 Clausocalanus laticeps T Scott, 1864 500-700 3,8,11,15,24,25,26,27,36,37,50,51,55,62,74,75,83,84,86,90,91/92,98,103, 108,109,111

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 SUZANNE RAZOULS eta/.

Clairsocalanus pergens Farran, 1926 250-100 83,98 Ctenocalanirs crter Heron & Bowman, 1971 0-1000 11,25,26,31,32,40,42,48,50,55,56,95196 Ctenocalanirs vantis Giesbrecht, 1888 0-200 13,15,24,27,29,34,36,37,40,43,44,49,51,62,74,75,83,86,90,91192,93,98, 104,105,106,107,109,111,112,113 Drepanopus hispinosus Bayly, 1882 (lake 0-10) 5,95196,102, Drepanopus forcrpatirs Giesbrecht, 1888 (neritic) 0-250 4,5,8,23,37,46,50,5 1,55,60,74,82,103 Drepanopus pectinatus Brady, 1883 (neritic)O-250 5,15,19120,25,26,46,76,77,86,98 Farraniafrigida (Wolfenden, 1911) 500-1000 13,27,37,40,42,97,98,106,112 Microcalanus pusillus Sars, 1903 0-350 105,106 Microcalanus pygmaeris (Sars, 1900) 0-1000 10,13,15,25,26,27,34,37,40,42,43,48,55,56,57,61,72,83,89,91192,93,98, 103,109, 11 1,112,113 Eucalanidae Eiicalanits hyalinus (Claus, 1866) 100-2500 8,15,37,55,74,85,98,106 Rhincalanus gigas Brady, 1883 0-100-1000-4000 2,3,6,8,11,13,15,19120,23,24,25126,27,32,34,36,37,40,42,43,45,49,50,52, 57,60,61,62,71,72,74,75,81182,86,89,90,91192,97,98,103,105,106,107.10~, 109,110,111,112,113 Rhincalantis nasrihis Giesbrecht, 1888 0-500-4000 1,8,10,15,37,51,55,74,98,110 Sitbeticalanus longrceps (Matthews, 1925) 0-600 3,8,15,24,25,26,27,37,51,54,55,60,72,74,84,85,90,98,103,112 Strbeircalanus mucronatits (Giesbrecht, 1888) 100 98 Euchaetidae Euchaeta acuta Giesbrecht, 1892 0-1000 98 Paraeitchaeta uequatorralis Tanaka, 1958 500-1000-3000 64,110 Paraeirchaeta abbrevrata Park, 1978 0-1000+ 64 Paraeuchaeta antarctica (Giesbrecht, 1902) 0-1000+4000 3,11,13,14,18,19/20,24,26,27,28,29,34,37,40,42,43,45,49,50,51,55,61,64, 71,73,75,77,83,86,89,90,97,98,103,105,106,108,109,110,111,113 Paraeirchaeta austrina (Giesbrecht, 1902) 500-700 14,28,34,42,84,98,106 Paraeuchaeta barbata (Brady, 1883) 0-700-1000+4000 18,27,37,40,42,64,98,110 Paraeuchaeta biloba Farran, 1929 0-500-1000+4000 18,26,27,28,37,40,55,64,86,89,98,103,110,111 Paraeitchaeta calva Tanaka, 1958 2000-3000 110 Paraetichaeta comosa Tanaka, 1958 0-1000+ 64 Paraeitchaeta confiisa Tanaka, 1958 2000-3000 110 Paraeuchaeta dactylifira (Park, 1978) 0-1200+ 18,64 Paraeuchaeta eltaninae (Park, 1978) 0-1000 18,64 Paraemhaeta erebi Farran, 1929 0-800 14,27,28,40 Paraeuchaeta exrgita (Wolfenden, 1911) 0-3000 25,26,49,62,64,98 Paraeirchaeta hansenii (With, 1915) 0-2000 64 Paraeuchaeta hwrlensrs Hepner, 197 1 0-1000+ 18,154 Paraeuchaeta malayensis Sewell, 1929 600-1000-4000 I. 10 Paraetrchaeta parvula (Park, 1978) 0-1000+ 18,64,89 Paraeuchaeta pseiidotonsa (Fontame, 1967) 0-20004000 18,64,110 Paraemhaeta rasa Farra~1929 0-600-4000 18,26,40,42,64,89,98,110 Paraeiichaeta regalis (Grice &Hulsemann, 1968) 0-1000+ 18,64 Paraeuchaeta sarsi (Farran, 1908) 0-600-4000 18,64,110 Paraeitchaeta scotti (Farran, 1908) 0-600-4000 37,64,110 Paraeuchaeta srmrlis (Wolfenden, 1908) 700-2000 13,14,27,28,40,64,98,105,106,110 Paraeuchaeta tiimrdula (Sars, 1905) 0-2000 18,64 Paraeuchaeta tycodesma (Park, 1978) 0-2000 14,28,64 Heterorhabdidae Disseta pahmboi Giesbrecht, 1889 500-1000 37 Heterorhabdus abyssahs (Giesbrecht, 1889) 500-250 98 Heterorhabdus austrrnus Giesbrecht, 1902 0-100-1000 8,13,19120,24,26,27,34,36.37,40,42,43,50,49,6 1,74,79,81182,86,89,97,98, 103,104,109,111,112,113 Heterorhabdus claw (Giesbrecht, 1889) 750-0 98 Heterorhabdus compactus (Sars, 1900) 250-1 000 27,37,40 Heterorhabdus farrani Brady, 1918 200-1000 8,13,19/20,26,27,40,42,43,61,62,83,86,90,9 ll92,97,98,106,112,111 Heterorhabdus nigrotrnctirs Brady, 19 18 0-200 19120 Heterorhabdus paprllrger (Claus, 1863) 0-300 839 Heterorhabdus pitstiilfer Farran, 1929 0400 8,13,27,86,97,98,112 Heterorhabdus spinifions (Claus, 1863) 0-600 1,8,19/20,55 Heterostylites longicornrs (Giesbrecht, 1889) 1000 98,105 Heterostylites major (F Dahl, 1894) 200-600 13,27,40,42,97,98,106,112 Lucicutiidae Lucrc~ttraclausr (Giesbrecht, 1889) 700-800 40,55 Lircictttra cirrta Farran, 1905 500-1000 27,40,42,98,112 Lltcrcuha $avrcornrs (Claus, 1863) 0-300 19/20,89 Liicicirha macrocera Sars, 1920 500-1000 13,40,42,86,98

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 BIODIVERSITY & BIOGEOGRAPHY OF ANTARCTIC COPEPODS 359

Lucrcutra magna Wolfenden, 1903 500-1000 27,37,106 Lucrcufia ovalis (Giesbrecht, 1889) 500-1000-2000 3,13,37,40,42,98,106,112 Llicrcuha rara Hulsemann, 1966 0-1000 8 Lucrcutra wo(fenden1 Sewell, 1932 500-1000-3000 8,27,40,42,86,89,98,106 Mecynoceridae Mecynocera claiisi I C Thomson, 1888 0400 15,83,90,98 Megacalanidae Bathycalanus bradyi (Wolfenden, 1905) 0-1000 8,40,42,98,106 Bathycalanus eltanrnae Bjornberg, 1968 1000-2000 7,8 Bafhycalantis inflatus Bjornberg, 1968 1000-2000 7.8 Bafhycalanris prrnceps (Brady, 1883) 3000 8,59 Bathycalantis rrchardr Sars, 1905 1000-2000 59 Bradycalanus grgas Sewell, 1947 1000-2000 59 Bradycalaniis pseudotypicus Bjornberg, 1968 1000-2000 7,8 Bradycalaniis fyprcus AScott, 1909 1000-2000 59 Bradycalanus sarsi (Fman, 1939) 1000-2000 59 Megacalanus pnnceps Wolfenden, 1904 2000 15,59,98,106 Metridinidae Gaussra prrnceps (T Scott, 1894) 0-1 200 9 Mefrrdra andraeana Brady, 1918 0-200 19/20 Metridra brevrcauda Giesbrecht, 1889 500-1000 8,37,98 Mefrrdra cnrhcauda Giesbrecht, 1889 200-1000 3,8,13,23,26,27,40,43,6 1,89,97,98,106,111,112 Metrrdra gerlacher Giesbrecht, 1902 0-1000 3,6,8,11,13,19/20,23,24,26,27,29,32,34,37,40,42,43,45,48,49,50,57,61,62, 71,72,73,81/82,83,89,90,91/92,93,95/96,97,98,99,103,104,105,107,108, 109,111,112,113 Metrrdra longa (Lubbock, 1854) 0-200 23 Metrrdra lucens Boeck, 1864 0-1000 3,8,23,25,26,27,37,43,50,51,55,57,74,83,86,89,98,103,108,109,111, 112,113 Metrrdra macrura Sars, 1905 0-100 86 Mefrrdra prrnceps Giesbrecht, 1889 0-1000 8,27,37,42,98,104,105,106 Mefridra frrsprnosa Brady, 1918 0-200 19/20 Metrrdra venitsta Giesbrecht, 1889 500-750 98 Pleuromamma abdomrnalts (Lubbock, 1856) 0-100 8,19120,27,36,37,98 Pleuromamma borealis (F Dahl, 1893) 0400 8,27 Pleuromamma gracrhs (Claus, 1863) 0400 27,37,74,104 Pleuromamma pisekr Farran, 1929 250-1 00 8,98 Pleriromamma quadrungulata (F Dahl, 1893) 750-0 8,98 Pleuromamma robusta (F Dahl, 1893) 200-1000 3,24,25,26,27,37,43,50,55,62,74,86,89,97,98,103,112,111 Pleuromamma xiphias (Giesbrecht, 1889) 0-50-750 8,37,98 Paracalanidae Calocalantis antarchctis Shmeleva, 1978 0-100 88 Calocalantis contrachis Farran, 1926 0-100 88 Calocalantis elegans Shmeleva, 1965 0-100 88 Calocalanus elongatus Shmeleva, 1968 0-100 88 Calocalanus fiolenltis Shmeleva, 1978 0-100 88 Calocalanus gracibs Tanaka, 195 6 0-600 26,88 Calocalanzrs greser Shmeleva, 1973 0-100 88 Calocalantis longrsetostis Shmeleva, 1965 0-100 88 Calocalaniis longrsprnus Shmeleva, 1978 0-100 88 Calocalantis ovahs Shmeleva, 1965 0-100 88 Calocalanus pavo (Dana, 1849) 0-100 83,88 Calocalanus pavanintis Farran, 1936 0-50 59 Calocalantis plumattis Shmeleva, 1965 0-100 88 Calocalanus plumulosus (Claus, 1863) 0-150 85,88 Calocalanus stylrremrs Giesbrecht, 1888 0-50 8,37,85,88 Paracalanus aculeahis Giesbrecht, 1888 100 85,98 Paracalanus rndrcus Wolfenden, 1905 150 8 Paracalanus pamrs (Claus, 1863) 100 19/20,55,74,85,98 Phaennidae Cephalophanesfirgrdus Wolfenden, 191 1 500-2000 40,68,27,37,42,98,86,106 Cornucalanus chelrfir (Thompson, 1903) 0-2000 8,37,68,106 Cornucalanus robushis Vervoort, 1957 500-1000 8,22,40,42,68,97 Cornucalanus simplex Wolfenden, 1905 0-2000 68,98 Onchocalanus crrstatzis (Wolfenden, 1904) 0-2000 37,68 Onchocalanus hrrtrpes Sars, 1905 0-1000 68 Onchocalanus magnus (Wolfenden, 1906) 0-2000 13,37,40,42,68,97,98,106

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 360 SUZANNE RAZOULS et al.

Onchocalaniis paratrrgoniceps Park, 1983 0-2000 68 Onchocalanus trigoniceps Sars, 1905 0-2000 8,68,100 Onchocalaniis wolfendeni Vervoort, 1950 200-1000 13,40,42,68,97,105,106 Phaenna spinfera Claus, 1863 250 55 Talacalaniis greeni (Farran, 1905) 0-2000 8,68 Xanthocalanus antarcticiis Wolfenden, 1908 surface 105 Xanthocalanus gracilis Wolfenden, 19 11 100-1000-2000 37,40?,106 Xanthocalanus haipagatiis Bradford & Wells, 1983 seafloor-ice 17 Xanthocalantis tentiiserrahis Wolfenden, 191 1 0-400 106 Phyllopodidae Phyllopus bidentatus Brady, 1883 500-750 37,98 Pontellidae Labidocera aciitrf7ons (Dana, 1849) 2000 8.106 Pseudocyclopiidae Frigocalaniis raiischerti Schulz, 1996 hyperbenthic 80 Scolecitrichidae Amallophora obtiisfrons Sars, 1905 0-2500 67 Amallothrix dentipes (Vervoort, 195 1) 0-200-1000 8,13,18,23,26,40,42,67,83,97,98,112 Amallothrix emarginata (Farran, 1905) 500-1000 18,27,37,40,42,67,86,98,106 Amallothrix hadrosoma (Park, 1980) 1000 42,67 Amallothrix parafalcrfer (Park, 1980) 0-2500 18,67,100 Amallothrix psetidopropinqtia (Park, 1980) 0-2000 18,67 Amallothrix robusta (T Scott, 1894) 500-200 8,27,86,98 Archescolecrthrix aiiropecten (Giesbrecht, 1892) 1000 97,112 Landrumitis antarcticiis Park, 1983 0-3000 67 Landrumitis gigas (A Scott, 1909) 0-2500 67 Lophothrix frontalis Giesbrecht, 1895 0-2000 67 Mixtocalanus alter (Farran, 1929) 100-1000 27?40,67,98 Mrxfocalaniis vervoorti (Park, 1980) 0-600 26,67 Racovitzanzis antai cticirs Giesbrecht, 1902 0-800 3,8,11,13,18,19/20,23,25,26,27,34,37,40,42,43,48,49,50,61,62,67,81/82, 83,90,91/92,97,98,106,108,109,112,111,113 Scaphocalaniis afinrs (Sars, 1905) 500-2000 8,18,27,37,86,98, 100 Scaphocalaniis antaicticiis Park 1882 500-1000 40,42,66 Scaphocalaniis ciirtiis (Farran, 1926) 100-500 55 Scaphocalaniis echinatiis (Farran, 1905) 100-1 000 18,27,37,66 Scaphocalaniis elongattts A Scott, 1909 0-3000 66 Scaphocalaniis farrani Park, 1982 200-1000 8,13,25,26,27,37,40,42,55,66,91/92,97,98,106,112,113 Scaphocalaniis rmpar (Wolfenden, 191 1) 1200 106 Scaphocalaniis magnits (T Scott, 1894) 700-1000 8,10,18,86,98,100 Scaphocalaniis major (T Scott, 1894) 0-1000-3000 66 Scaphocalaniis medius (Sars, 1907) 0-2000 66 Scaphocalantis parantarctrctis Park, 1982 0-1000 40,42,66,89 Scaphocalaniis siibbrevicornis (Wolfenden, 191 1) 0-1000 18,27,66,84,97,98,100,106 Scaphocalanirs vervoorti Park, 1982 0-100-1000 11,18,25,26,40,42,43,49,66,100, Scolecithricella cenofelis Park, 1980 500-1000 40,42,43,65 Scolecrthrrcella dentata (Giesbrecht, 1892) 0-2500 55,65,100 Scolecrthrrcella minor (Brady, 1883) ubiq 3,8,11,18,18,19120,23,24,25,26,27,34,36,37,40,42,43,49,50,55,61,62,65, 75,81182,83,86,90,91/92,93,97,98,103,106,108,109112,111,113, Scolecirhrrcella ovata (Farran, 1905) 250-1 000 18,26,27,37,42,65,97,98 Scolecithricella proj5inda (Giesbrecht, 1892) 0-500 65 Scolecithricella schrzosoma Park, 1980 0-1200 18,65 Scolecithricella vitrata (Giesbrecht, 1892) 0-1200 65 Scolecithrix danae (Lubbock, 1856) 0-1000 19/20,75 Scolecrthrrx incisa Farran, 1929 0-100 27 Scolecrthrrx valrda Farran, 1908 500-2000 18,27,37,67,86,98 Scottocalanus secitr@ons (T Scott, 1894) bathy 18,67 Scottocalaniis thon With, 19 15 0-1200 67 Spinocalanidae Mimocalaniis cirltrifer Farran, 1908 0-1000 40,98,100 Mospicalaniis schielae Schulz, 1996 1000-3000 79 S'rnocalananlrs abyssabs Giesbrecht, 1888 300-1000-2000 8,13,26,27,37,40,42,43,91/92,98,106 Sprnocalantis antarclrctis Wolfenden, 1906 1200 100,106 Spinocalaniis brevicaudatiis Brodsky, 1950 5004000 55 Spinocalaniis horridzis Wolfenden, 191 1 2000-1000 27,37 Sprnocalantis longicornis Sars, 1900 0-1000 15,40 Spinocalaniis magnus Wolfenden, 1904 400-1000 8,13,27,37,40,42,97,98,106

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 BIODIVERSITY & BIOGEOGRAPHY OF ANTARCTIC COPEPODS 36 1

Spmocalaniis terranovae Damkaer, 1975 0-1700 27,55,97,98 Tenerforma naso Farran, 1936 500-1000 42 Stephidae Stephos antarcfrciis Wolfenden, 1908 100 95/96,105,106 Stephos longrpes Giesbrecht, 1902 0-1000 11,27,29,34,40,42,48,49,56,61,83,93,113,91/92,95/96,105,106,112,111, 113 Temoridae Temora kergiielensrs Wolfenden, 191 1 0-200 106 Temora furbmata (Dana, 1849) 0-50 27 Tharybidae Neoscolecrthrrx anfarcbca Hulsemann, 1985 200-1000 47 Tharybis magna Bradford &Wells, 1983 sea floor-ice 17 Undinetla brevrpes Farran, 1908 300-1000 8,26,40,42,98

MORMONILLOIDA Mormonollidae Mormoniflaphasma Giesbrecht, 1891 100-1000 37,42

CYCLOPOIDA Oithonidae Orthonu atlanhca Farrq 1908 0-1000 8,24,5 1,55,63,74,78 Orthona fallax Farran, 1913 0-1000 78 Orthonu f"grda Giesbrecht, 1902 0-1000 13,19/20,23,25,26,27,32,34,36,37,40,42,43,44,58,35,56,57,60,77,78,83, 91/92,93,97,98,105,106,109,111,112,113 Orthona phimfera Baud, 1843 0-1000 24,27,78,83,86 Orthonu simrhs Claus, 1866 0-1000 8,13,23,24,25,26,27,29,31,32,34,35,36,40,42,43,44,48,55,56,57,58,63, 77,78,81/82,83, 86, 91/92,93,95,104,105,106,108,109,111,112,113 Oithona simplex Farran, 1913 78

POECILOSTOMATOIDA Corycaeus (Onychocorycaetis) pucrfczis F. Dahl, 1894 0-1000 85 Coiycaeiis (Agetiis) flacciis Giesbrecht, 189 1 0-1000 27 Cojycaetis (Urocorycaeiis) fiircfer Claus, 1863 0-1000 27 Fairaniila gracrlrs (Dana, 1849) 0450 27 Lubbockiidae Ltibbockra actileafa Giesbrecht, 189 1 100-1000 42,55,97,98,111 Liibbockra carrnata Heron & Damkaer, 1978 1000-2000 39 Liibbockraflemrngerr Heron & Damkaer, 1978 1000-2000 39 Ltibbockra forcrpiila Heron & Damkaer, 1978 1000-2000 39 Liibbockra rnrniifa Wolfenden, 1905 500 55 Liibbockra wilsonae Heron & Damkaer, 1969 1000-2000 39,98 Oncaeidae Conaea siicciirva Heron, 1977 1000-2000 38 Conaea hrsprda Heron, 1977 1000-2000 38 Conaea rapax Giesbrecht, 189 1 0-600; 750-2000 37,38,42 Eprcalymma schmrttr Heron, 1977 500-1000-2000 38,42 Eprcalymma iimbonata Heron, 1977 1000-2000 38 Oncaea antarchca Heron, 1977 0-1000-2000 3,25,26,32,38,40,42,43,91/92 Oncaea bowmanr Heron, 1977 1000-2000 38 Oncaea brocha Heron, 1977 1000-2000 38 Oncaea compacta Heron, 1977 1000-2000 38 Oncaea confera Giesbrecht, 189 1 0-1000 8,13,19/20,24,27,34,35,37,51,55,56,57,83,90,97,98,100,104,106,111, 112,113 Oncaea convexa Heron, 1977 200-1000-2000 38,42 Oncaea ctirvata Giesbrecht, 1902 0-1000 13,25,26,27,29,31,34,37,38,40,42,43,44,48,55,56,57,58,60,85,90,91/92, 93,95,97,98,104,105,106,111,112,113 Oncaea damkaerr Heron, 1917 1000-2000 38 Oncaea englrshi Heron, 1977 0-1000-2000 38,42,43,55,58 Oncaea illgi Heron, 1977 0-1000-2000 38 Oncaea rnflexa Heron, 1977 0-500-1000 26,38 Oncaea lacrnra Heron, English & Damkaer, 1984 0-125 38 Oncaea macrlenta Heron, 1977 0-1000-2000 38 Oncaea mediterranea (Claus, 1863) 0-1000 27,38,98 Oncaea olsonr Heron, 1977 1000-2000 38

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407 SUZANNE RAZOULS et al.

Oncaea panla Heron, 1977 0-400-1000-2000 38,58,9 1/92 Oncaea petrla Heron, 1977 1000-2000 38 Oncaea prolata Heron, 1977 0-1000-2000 38,42,43 Oncaea pirmilrs Heron, 1977 1000-2000 38 Oncaea roiunda Heron, 1977 0-600-1000-2000 26,38 Oncaea setosa Heron, 1977 ILOOO-2000 38 Oncaea srmrlis Sars, 1918 0-500-1000 38 Oncaea venusta Philippi, 1843 400 19/20,36,85,9 1/92,100,106 Oncaea walleni Heron, 1977 1000-2000 38 Sapphirinidae Sapphirrna angusta Dana, 1849 lOOO? doubtful record Sapphrrrna metallrna Dana, 1849 1200 106

SIPHONOSTOMATOIDA Rataniidae Ratania atlantrca Farran, 1926 600-900 27,42,98

HARPACTICOIDA Aegisthidae Aegisthus mucronatus Giesbrecht, 1891 500-750 98 Clytemnestridae Clytemnestra rostrata (Brady, 1883) 50-250 37,83 Ectinosomatidae Microsetella norvegrca (Boeck, 1864) 0-600 19/20,25,26,27,34,60,84 Microsetella rosea (Dana, 1848) 0-2 50-5 00 36,83,85,91/92,98 Miracidae Macrosetella gracilrs (Dana, 1848) 400-3000 106 Oculosetella gracrlrs (Dana, 1852) 0400 26,98

MONSTRILLOIDA Monstrilloidae Monstrrlla conjunctiva Giesbrecht, 1902 0-500 34

References

1. Arcos 1974 30. Foster 1989 58. Metz 1995 87 Shmeleva 1978 2. Arcos & Bonilla 1989 31. Fransz 1988 59. Michel 1994 88 Shmeleva 1979 3. Atkinson & Peck 1988 32. Freire et al. 1993 60. Minoda & Hoshiai 1982 89 Siege1 et a1 1992 4. Atkinson et al. 1990 33. Fukuchi et al. 1985 61. Mizdalski 1988 90 Takeda-Akiyama & Arai 5. Bayly 1982 34. Giesbrecht 1902 62. Nakamura et al. 1982 1968 6. Beaumont & Hosie 1997 35. Gonzalez et al. 1994 63. Nishida 1985 91 Tanaka 1960 7. Bjomberg 1968 36. Grindley & Lane 1979 64. Park 1978 92 Tanaka 1964 8. Bjomberg 1973 37. Hardy & Gunther 1935 65. Park 1980 93 Tanimura et a1 1986 9. Bjornberg & Campaner 1988 38. Heron 1977 66. Park 1982 94 Thompson 1898 10. Boden & Parker 1986 39. Heron & Damkaer 1978 67. Park 1983a 95 Tucker & Burton 1988 11. Boysen-Ennen 1987 40. Hopkins 1985 68. Park 1983b 96 Tucker & Burton 1990 12. Bradford 1971a 41. Hopkins 1987 69. Park 1988 97 Vervoort 1951 13. Bradford 1971b 42. Hopkins & Torres 1988 70. Park 1993 98 Vervoort 1957 14. Bradford 1981 43. Hopkins et al. 1993 71. Park & Wormuth 1993 99 Vervoort 1972 15. Bradford-Grieve 1994 44. Hoshiai et al. 1991 72. Perissinotto 1989 100 Voronina & Kolosova 1999 16 Bradford & Jillett 1980 45. Hosie & Cochran 1994 73. Quidor 1908 101 Waghorn 1979 17. Bradford & Wells 1983 46. Hulsemann 1985a 74. Ramirez 1970 102 Wang et a1 1990 18 Bradford et al. 1983 47. Hulsemann 1985b 75. Ramirez & Dinofrio 1976 103 Ward 1989 19. Brady 1883 48. Knoxetal. 1996 76. Razouls & Razouls 1990 104 Wilson 1938 20. Brady 1918 49. Kurbjeweit & Ali-Khan 1990 77. Razouls et al. 1996 105 Wolfenden 1908 21. Brodsky & Zvereva 1976a 50. Marin 1987 78. Rosendorn 1917 106 Wolfenden 1911 22. Brodsky & Zvereva 1976b 51. Marin & Antezana 1985 79. Schulz 1996a 107 Yamada et a1 1986 23. Chojnacki & Weglenska 1984 52. Marin & Schnack-Schiel 1993 80. Schulz 1996b 108 Yamadaetal 1991 24. Dinofiio 1983 53. Markhaseva 1996 81. Scott 1912 109 Yamadaetal 1992 25. Errhif 1998 54. Matthews 1925 82. Scott 1914 110 Yamanaka 1976 26. Errhif et al. 1997 55. Mazzochi et al. 1995 83. Sen0 et al. 1963a 111 Zmijewska 1987 27. Farran 1929 56. Menshenina & Melnikov 1995 84. Seno et al. 1963b 112 Zmijewska 1988 28. Fontaine 1988 57. Menshenina & Rakusa- 85. Seno etal. 1966 1 13 Zvereva 1972 29. Foster 1987 Suszczewski 1992 86. Seret 1979

Downloaded from https://www.cambridge.org/core. University of Athens, on 01 Oct 2021 at 05:18:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954102000000407