Hawks Bay to Sandspit Beach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seed Germination of the Halophyte Anabasis Setifera (Amaranthaceae) from Saudi Arabia
Botany Seed germination of the halophyte Anabasis setifera (Amaranthaceae) from Saudi Arabia. Journal: Botany Manuscript ID cjb-2018-0053.R1 Manuscript Type: Article Date Submitted by the Author: 19-May-2018 Complete List of Authors: Basahi, Mohammed; Shaqra University College of Science and Arts Sajir, biology; Anabasis setifera,Draft halophyte, Temperature, Germination, seed germination Keyword: recovery Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 27 Botany Seed germination of the halophyte Anabasis setifera (Amaranthaceae) from Saudi Arabia. Mohammed A Basahi College of Science and Arts Sajir Shaqra University P.O. Box 33, Shaqra 11961 Saudi Arabia [email protected] Draft00966582223689 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 27 Abstract The main objective of this study was to determine the effects of temperature, light/darkness, and salinity (NaCl) on seed germination of Anabasis setifera Moq. and the effects of alleviating salinity stress using distilled water. One-hundred percent of seeds completed germination at 15/5, 20/10, and 20°C, and a higher percentage of seeds completed germinationin light than in the dark at 20/10 and 25/15°C. The percentage of seeds that completed the germination decreased as salinity increased from 0 to 700 mM NaCl. Seeds that did not complete germination in the 800 or 700 mM NaCl solutions completed its germinationDraft after being transferred to distilled water, with a recovery rate of 94.5% and 75.5%, respectively, at 25/15°C. The inhibitory effect of NaCl on the completion of germination in this species probably occurs via an osmotic effect. -
Avicennia Marina Mangrove Forest
MARINE ECOLOGY PROGRESS SERIES Published June 6 Mar Ecol Prog Ser Resource competition between macrobenthic epifauna and infauna in a Kenyan Avicennia marina mangrove forest J. Schrijvers*,H. Fermon, M. Vincx University of Gent, Department of Morphology, Systematics and Ecology, Marine Biology Section, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium ABSTRACT: A cage exclusion experiment was used to examine the interaction between the eplbenthos (permanent and vls~tlng)and the macroinfauna of a high intertidal Kenyan Avicennia marina man- grove sediment. Densities of Ollgochaeta (families Tubificidae and Enchytraeidae), Amphipoda, Insecta larvae, Polychaeta and macro-Nematoda, and a broad range of environmental factors were fol- lowed over 5 mo of caging. A significant increase of amphipod and insect larvae densities in the cages indicated a positive exclusion effect, while no such effect was observed for oligochaetes (Tubificidae in particular), polychaetes or macronematodes. Resource competitive interactions were a plausible expla- nation for the status of the amphipod community. This was supported by the parallel positive exclusion effect detected for microalgal densities. It is therelore hypothesized that competition for microalgae and deposited food sources is the determining structuring force exerted by the epibenthos on the macrobenthic infauna. However, the presence of epibenthic predation cannot be excluded. KEY WORDS: Macrobenthos . Infauna . Epibenthos - Exclusion experiment . Mangroves . Kenya INTRODUCTION tioned that these areas are intensively used by epiben- thic animals as feeding grounds, nursery areas and Exclusion experiments are a valuable tool for detect- shelters (Hutchings & Saenger 1987).In order to assess ing the influence of epibenthic animals on endobenthic the importance of the endobenthic community under communities. -
A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T. -
(Rhizophora Mucronata and Avicennia Marina): an Overview
Advances in Biological Research 11 (4): 161-170, 2017 ISSN 1992-0067 © IDOSI Publications, 2017 DOI: 10.5829/idosi.abr.2017.161.170 Antihyperglycemic Properties of Mangrove Plants (Rhizophora mucronata and Avicennia marina): An Overview O.H. Aljaghthmi, H.M. Heba and I.M. Abu Zeid Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia Abstract: The increased occurrences of diabetes have led to the utilization of the curative plants in search of the best remedies. The usage of medicinal plants has been embraced worldwide since it is a critical part of the public healthcare. Rhizophora mucronata and Avicenna marina are vulnerable plants that require protection for their continued significance in the cure of diabetes. The two plants have proved to be antiviral and antibacterial in nature. Traditionally, the Rhizophora mucronata and Avicenna marina were utilized to cure diabetes. Although there is tremendous progress in the diabetes cure through the oral hypoglycemic compounds, there is a consistent search for the newer medicines. Mostly these mangrove trees have antidiabetic activity despite the fact that they have not been accepted. However, the traditional medicine system has used such plants with success. This review showed some of the previous data on the Rhizophora mucronata and Avicenna marina that were tested on the rats in medical laboratories. Key words: Rhizophora mucronata Avicenna marina Diabetes Bioactive compounds. INTRODUCTION that the species have bioactive compounds potential for long-term treatment of diabetes and other significant The diabetes complications involve the retinal, renal disorders. The two plants are not directly consumed as and the cardiovascular complications. -
Technical Specification for Al Demer Beach
Technical Specification for Al Demer Beach TECHNICAL SPECIFICATION FOR AL DEMER BEACH 1. SITE DESCRIPTION 1.1 Location Governorate/ Region Dofar Wilayat Mirbat Distance from the Centre of This site is located 5 km west of Mirbat town. Wilayat Fame of the Site/ Distinctive N/A Features Facilities in the Site N/A Features of Surrounding Areas This site is sand dune. No mangrove tree exists. 1.2 Natural Conditions Climate Zone Dhofar Zone General Terrain Relatively flat plain Soil Proposed area locates at the beach sand area on the way to Mirbat from Taqah This area was proposed for afforestation to prevent sand shifting and for wind protection. During monsoon season in summer, the sand in this area has been blown by strong wind from beach. The area is covered by coarse sand more than 1m deep. The salinity (soil: water=1.1) of these sand soils shows low values ranging from 475 to 730μS/cm in surface soil and less than 200μS/cm in subsurface soil. The area beside the road has compact gravel soils, which were brought for road foundation. Water No data Fauna No data Flora This is an excellent example of relatively unspoilt sand dune supporting vegetation dominated at the seafront by dune grass, Halopyrum mucronatum. Other plants included Urochondra setulosa, Cyperus conglomeratus, Ipomoea pes-caprae, Polycarpae spicata, Aizoon canariense, Indigophora sp and Sporobolus spicatus. Impacts from the Surrounding None Areas 1.3 Socio-economic Situation Population of the Wilayat 14 thousand (2001) Main Economic Activities Agriculture and livestock farming Infrastructure N/A Main Usage Used for public open space for communities Community Interference with N/A the Area Cultural Significance N/A Al Demer-1 TECHNICAL SPECIFICATION FOR AL DEMER BEACH 1.4 Legal Setup and Development Plans Land Ownership and Land Use Open space Designation Development Plans in the Site N/A and the Surrounding Area Existing Conservation N/A Proposal 2. -
Manora Field Notes Naiza Khan
MANORA FIELD NOTES NAIZA KHAN PAVILION OF PAKISTAN CURATED BY ZAHRA KHAN MANORA FIELD NOTES NAIZA KHAN PAVILION OF PAKISTAN CURATED BY ZAHRA KHAN w CONTENTS FOREWORD – Jamal Shah 8 INTRODUCTION – Asma Rashid Khan 10 ESSAYS MANORA FIELD NOTES – Zahra Khan 15 NAIZA KHAN’S ENGAGEMENT WITH MANORA – Iftikhar Dadi 21 HUNDREDS OF BIRDS KILLED – Emilia Terracciano 27 THE TIDE MARKS A SHIFTING BOUNDARY – Aamir R. Mufti 33 MAP-MAKING PROCESS MAP-MAKING: SLOW AND FAST TECHNOLOGIES – Naiza Khan, Patrick Harvey and Arsalan Nasir 44 CONVERSATIONS WITH THE ARTIST – Naiza Khan 56 MANORA FIELD NOTES, PAVILION OF PAKISTAN 73 BIOGRAPHIES & CREDITS 125 bridge to cross the distance between ideas and artistic production, which need to be FOREWORD exchanged between artists around the world. The Ministry of Information and Broadcasting, Government of Pakistan, under its former minister Mr Fawad Chaudhry was very supportive of granting approval for the idea of this undertaking. The Pavilion of Pakistan thus garnered a great deal of attention and support from the art community as well as the entire country. Pakistan’s participation in this prestigious international art event has provided a global audience with an unforgettable introduction to Pakistani art. I congratulate Zahra Khan, for her commitment and hard work, and Naiza Khan, for being the first significant Pakistani artist to represent the country, along with everyone who played a part in this initiative’s success. I particularly thank Asma Rashid Khan, Director of Foundation Art Divvy, for partnering with the project, in addition to all our generous sponsors for their valuable support in the execution of our first-ever national pavilion. -
Spatial Structure and Genetic Variation of a Mangrove Species (Avicennia Marina (Forssk.) Vierh) in the Farasan Archipelago
Article Spatial Structure and Genetic Variation of a Mangrove Species (Avicennia marina (Forssk.) Vierh) in the Farasan Archipelago Rahmah N. Al-Qthanin 1,* and Samah A. Alharbi 2 1 Biology Department, College of Sciences, King Khalid University, Abha 61421, Saudi Arabia 2 Biology Department, College of Applied Sciences, Umm-Al-Qura University, Makkah 21421, Saudi Arabia; [email protected] * Correspondence: [email protected] Received: 12 August 2020; Accepted: 18 November 2020; Published: 30 November 2020 Abstract: Avicennia marina (Forssk.) Vierh is distributed in patches along the Farasan archipelago coast and is the most common mangrove species in the Red Sea. However, to date, no studies have been directed towards understanding its genetic variation in the Farasan archipelago. In this investigation, genetic variations within and among natural populations of Avicennia marina in the Farasan archipelago were studied using 15 microsatellite markers. The study found 142 alleles on 15 loci in nine populations. The observed (Ho) and expected (He) heterozygosity values were 0.351 and 0.391, respectively, which are much lower than those of earlier studies on A. marina in the Arabian Gulf. An inbreeding effect from self-pollination might explain its heterozygote deficiency. Population genetic differentiation (FST = 0.301) was similar to other mangrove species. Our findings suggest that the sea current direction and coastal geomorphology might affect genetic dispersal of A. marina. The more isolated populations with fewer connections by sea currents exhibited lower genetic variation and differentiation between populations. The genetic clustering of populations fell into three main groups—Group 1 (populations of Farasan Alkabir Island), Group 2 (populations of Sajid Island), and Group 3 (mix of one population of Farasan Alkabir Island and a population of Zifaf Island). -
EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal
SJIF Impact Factor: 7.001| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online) EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal CHEMICAL EVIDENCE SUPPORTING THE ICLUSION OF AMARANTHACEAE AND CHENOPODIACEAE INTO ONE FAMILY AMARANTHACEAE JUSS. (s.l.) Fatima Mubark1 1PhD Research Scholar, Medicinal and Aromatic Plants research Institute, National Council for Research, Khartom, Sudan Ikram Madani Ahmed2 2Associate Professor, Department of Botany, Faculty of Science, University of Khartoum, Sudan Corresponding author: Ikram Madani, Article DOI: https://doi.org/10.36713/epra6001 ABSTRACT In this study, separation of chemical compounds using Thin layer chromatography technique revealed close relationship between the studied members of the newly constructed family Amaranthaceae Juss. (s.l.). 68% of the calculated affinities between the studied species are above 50% which is an indication for close relationships. 90% is the chemical affinities reported between Chenopodium murale and three species of the genus Amaranthus despite of their great morphological diversity. Among the selected members of the chenopodiaceae, Chenopodium murale and Suaeda monoica are the most closely related species to all of the studied Amaranthaceae . 60%-88% and 54%-88% chemical affinities were reported for the two species with the Amaranthaceae members respectively. GC-Mass analysis of methanolic extracts of the studied species identified 20 compounds common between different species. 9,12- Octadecadienoic acid (Z,Z)-,2-hydroxy-1 and 7-Hexadecenal,(Z)- are the major components common between Amaranthus graecizans, Digera muricata Aerva javanica Gomphrena celosioides of the historical family Amaranthaceae and Suaeda monoica Salsola vermiculata Chenopodium murale Cornulaca monocantha of the historical family Chenopodiaceae, Most of the identified compounds are of pharmaceutical importance such as antioxidants, anti-inflammatory , and Anti-cancerous. -
Extensive Cross-Reactivity Between Salsola Kali and Salsola Imbricata Al-Ahmad M1, Rodriguez-Bouza T2, Fakim N2, Pineda F3
ORIGINAL ARTICLE Extensive Cross-reactivity Between Salsola kali and Salsola imbricata Al-Ahmad M1, Rodriguez-Bouza T2, Fakim N2, Pineda F3 1Microbiology Department, Faculty of Medicine, Kuwait University, Kuwait 2Al-Rashed Allergy Center, Ministry of Health, Kuwait 3Diater Laboratories, Madrid, Spain J Investig Allergol Clin Immunol 2018; Vol. 28(1): 29-36 doi: 10.18176/jiaci.0204 Abstract Background: There are no studies on cross-reactivity between Salsola kali and Salsola imbricata pollens. The main goals of the present study were to compare the degree of the cross-reactivity between S kali and S imbricata and to compare the various allergenic components shared by S kali and S imbricata. Methods: Serum samples were obtained from rhinitis patients with or without asthma living in Kuwait and presenting with a positive skin test result to S kali. SDS-PAGE/IgE Western blot and ELISA inhibition assay were performed. Results: The study population comprised 37 patients. The most frequent IgE proteins against S imbricata weighed around 12, 15, 18, 37, and 50+55 kDa. 2D electrophoresis revealed a correlation between S kali and S imbricata at 40, 60, and 75 kDa, with similar isoelectric points. ELISA inhibition revealed an Ag50 value of 1.7 μg/mL for S kali and 500.5 μg/mL for S imbricata when the solid phase was S kali and an Ag50 value of 1.4 μg/mL for S kali and 3.0 μg/mL for S imbricata when the solid phase was S imbricata. Conclusions: ELISA inhibition revealed strong cross-reactivity between S kali and S imbricata. -
Chenopodiaceae)
Ann. Bot. Fennici 45: 241–254 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 29 August 2008 © Finnish Zoological and Botanical Publishing Board 2008 Taxonomic and nomenclatural notes on South American taxa of Sarcocornia (Chenopodiaceae) M. Ángeles Alonso & Manuel B. Crespo* CIBIO, Instituto de la Biodiversidad, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain (*corresponding author’s e-mail: [email protected]) Received 3 Apr. 2007, revised version received 31 May 2007, accepted 8 June 2007 Alonso, M. Á. & Crespo, M. B. 2008: Taxonomic and nomenclatural notes on South American taxa of Sarcocornia (Chenopodiaceae). — Ann. Bot. Fennici 45: 241–254. Five South American species of Sarcocornia (Chenopodiaceae) are accepted, four of which are new combinations in that genus: S. ambigua (Michx.) M.A. Alonso & M.B. Crespo, S. andina (Phil.) Freitag, M.A. Alonso & M.B. Crespo, S. magellanica (Phil.) M.A. Alonso & M.B. Crespo, and S. neei (Lag.) M.A. Alonso & M.B. Crespo. Synonyms and types are cited for the accepted taxa, and three lectotypes, an epitype and a neotype are designated to establish a correct usage of the names. Main diagnostic characters, ecological features and distributions are also reported for each taxon, and a key is provided to facilitate identification. Key words: Chenopodiaceae, nomenclature, Salicornioideae, Sarcocornia, taxonomy Introduction the world (except in eastern Asia), though a few are restricted to arid continental areas where they Sarcocornia (subfamily Salicornioideae, occur on the shores of salt lakes and marshes, and Chenopodiaceae) includes erect to prostrate even in basins between high mountain ranges (cf. dwarf shrubs, sometimes creeping and rooting at Kadereit et al. -
Distribution and Diversity of Grass Species in Banni Grassland, Kachchh District, Gujarat, India
Patel Yatin et al. IJSRR 2012, 1(1), 43-56 Research article Available online www.ijsrr.org ISSN: 2279-0543 International Journal of Scientific Research and Reviews Distribution and Diversity of Grass Species in Banni Grassland, Kachchh District, Gujarat, India 1* 2 3 Patel Yatin , Dabgar YB , and Joshi PN 1Shri Jagdish Prasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan 2R.R. Mehta Colg. of Sci. and C.L. Parikh College of Commerce, Palanpur, Banaskantha, Gujarat. 3Sahjeevan, 175-Jalaram Society, Vijay Nagar, Bhuj- Kachchh, Gujarat ABSTRACT: Banni, an internationally recognized unique grassland stretch of Western India. It is a predominantly flat land with several shallow depressions, which act as seasonal wetlands after monsoon and during winter its converts into sedge mixed grassland, an ideal dual ecosystem. An attempt was made to document ecology, biomass and community based assessment of grasses in Banni, we surveyed systematically and recorded a total of 49 herbaceous plant species, being used as fodder by livestock. In which, the maximum numbers of species (21 Nos.) were recorded in Echinocloa and Cressa habitat; followed by Sporobolus and Elussine habitat (20 species); and Desmostechia-Aeluropus and Cressa habiat (19 species). A total of 21 highest palatable species were recorded in Echinocloa-Cressa communities followed by Sporobolus-Elussine–Desmostechia (20 species and 18 palatable species) and Aeluropus–Cressa (19 species and 17 palatable species). For long-term conservation of Banni grassland, we also suggest a participatory co-management plan. KEY WORDS: Banni, Grassland, Palatability, Communities, Conservation. *Corresponding Author: Yatin Patel Research Scholar, Shri Jagdish Prasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan E-mail: [email protected] IJSRR 1(1) APRIL-JUNE 2012 Page 43 Patel Yatin et al. -
Sindh Coast: a Marvel of Nature
Disclaimer: This ‘Sindh Coast: A marvel of nature – An Ecotourism Guidebook’ was made possible with support from the American people delivered through the United States Agency for International Development (USAID). The contents are the responsibility of IUCN Pakistan and do not necessarily reflect the opinion of USAID or the U.S. Government. Published by IUCN Pakistan Copyright © 2017 International Union for Conservation of Nature. Citation is encouraged. Reproduction and/or translation of this publication for educational or other non-commercial purposes is authorised without prior written permission from IUCN Pakistan, provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission from IUCN Pakistan. Author Nadir Ali Shah Co-Author and Technical Review Naveed Ali Soomro Review and Editing Ruxshin Dinshaw, IUCN Pakistan Danish Rashdi, IUCN Pakistan Photographs IUCN, Zahoor Salmi Naveed Ali Soomro, IUCN Pakistan Designe Azhar Saeed, IUCN Pakistan Printed VM Printer (Pvt.) Ltd. Table of Contents Chapter-1: Overview of Ecotourism and Chapter-4: Ecotourism at Cape Monze ....... 18 Sindh Coast .................................................... 02 4.1 Overview of Cape Monze ........................ 18 1.1 Understanding ecotourism...................... 02 4.2 Accessibility and key ecotourism 1.2 Key principles of ecotourism................... 03 destinations ............................................. 18 1.3 Main concepts in ecotourism .................