Calcium Carbonate Production, Growth, and Spatial Extent of Lithothamnion Glaciale in a Newfoundland Rhodolith Bed Along Environmental Gradients
Total Page:16
File Type:pdf, Size:1020Kb
Calcium carbonate production, growth, and spatial extent of Lithothamnion glaciale in a Newfoundland rhodolith bed along environmental gradients by Laura L. Teed © A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Biology Memorial University of Newfoundland October, 2019 St. John’s, Newfoundland, Canada ABSTRACT Rhodolith beds are highly diverse benthic ecosystems that are distributed worldwide and contribute significantly to global carbon budgets. Discovery of rhodolith beds in Newfoundland has stimulated research on Northwest Atlantic rhodolith (Lithothamnion glaciale) CaCO3 production and the factors that influence rhodolith beds. The present study estimated CaCO3 production rate in a rhodolith bed off the coast of St. Philip’s, Conception Bay, Newfoundland using compared methodological approaches of extension and weight change. This study also examined bioturbator influence on rhodolith extension and CaCO3 production rate. Applying weight change to rhodolith densities -2 yielded gross and net CaCO3 production rates of approximately 806 and 196 g CaCO3 m -1 y , respectively. Applying extension to rhodolith biomass yielded a net CaCO3 production -2 -1 rate of 163 g CaCO3 m y . Bioturbator presence did not impact extension or CaCO3 production. Regarding the spatial distribution and abundance of rhodoliths, one prevalent paradigm is that rhodoliths occur in areas where water motion is strong enough to prevent burial by sediments, but not so strong as to cause fragmentation. A drop camera survey estimated rhodolith abundance in a Newfoundland bed and estimated the influence of several environmental parameters, including water motion. Rhodoliths were found to occur further south in St. Philip’s than previously reported. Rhodolith abundance was highly influenced by slope, temperature, and light where abundance increased with light, temperature and decreasing slope. Flow acceleration (water motion) did not vary with depth and remained low, challenging the long-standing paradigm that water motion is a main factor determining rhodolith bed boundaries. ii ACKNOWLEDGEMENTS I thank my supervisors Dr. Patrick Gagnon and Dr. Evan Edinger for their continuous support and encouragement throughout every stage of this project, as well as the other member of my supervisory committee, Dr. Kirk Regular for his support in supplying multibeam bathymetry data and thesis comments. Special thanks to David Bélanger, Sean Hacker-Teper, Logan Zeinert, Anne Provencher St-Pierre, Samantha Trueman, and Julie Jacques for their assistance in field work planning and scientific diving. I would also like to acknowledge Emilie Novaczek, Nick Brown, and Christina Huchuk for their guidance in mapping, URSKI data analyses, and ADCP analyses, respectively. I am also grateful for the support and encouragement of my family and friends. This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grants awarded to P. Gagnon and E. Edinger), the Canada Foundation for Innovation (Leaders Opportunity Fund to P. Gagnon), and the Research & Development Corporation of Newfoundland and Labrador (Ignite R&D Grant to P. Gagnon). iii TABLE OF CONTENTS ABSTRACT ..................................................................................................................................... ii ACKNOWLEDGEMENTS........................................................................................................... iii TABLE OF CONTENTS............................................................................................................... iv LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ...................................................................................................................... vii LIST OF APPENDICES .............................................................................................................. ix CO-AUTHORSHIP STATEMENT ............................................................................................. x CHAPTER I ................................................................................................................................... 1 1.1 Calcareous algae and rhodoliths ...................................................................................... 2 1.2 Cold-water carbonate production ...................................................................................... 4 1.3 Spatial variation of rhodoliths and rhodolith beds ........................................................... 6 1.4 Thesis structure .................................................................................................................... 8 1.5 LITERATURE CITED ...................................................................................................... 11 CHAPTER II ................................................................................................................................ 18 ABSTRACT .............................................................................................................................. 19 2.1 INTRODUCTION .............................................................................................................. 20 2.2 MATERIALS AND METHODS ...................................................................................... 26 2.2.1 Study site ...................................................................................................................... 26 2.2.2 Rhodolith collection and staining .............................................................................. 29 2.2.3 Field experiment .......................................................................................................... 30 2.2.4 Temperature and light environment ......................................................................... 33 2.2.5 Rhodolith apical extension ......................................................................................... 35 2.2.6 Calcium carbonate production rate .......................................................................... 35 2.2.7 Statistical analysis ....................................................................................................... 41 2.3 RESULTS ........................................................................................................................... 42 2.3.1 Bioturbation and CaCO3 production rate ................................................................ 42 2.3.2 Apical extension rate ................................................................................................... 45 2.3.3 Carbonate production rate estimates ........................................................................ 45 2.4 DISCUSSION ..................................................................................................................... 50 2.4.1 Bioturbation effects, rhodolith extension rate, and weight change ........................ 51 iv 2.4.2 Comparing CaCO3 production of St. Philip’s rhodoliths to worldwide estimates 53 2.4.3 Rhodolith importance as CaCO3 bio-factories, and conservation implications .... 59 2.5 LITERATURE CITED...................................................................................................... 61 CHAPTER III .............................................................................................................................. 71 ABSTRACT .............................................................................................................................. 72 3.1 INTRODUCTION .............................................................................................................. 73 3.2 MATERIALS AND METHODS ...................................................................................... 78 3.2.1 Study Site ..................................................................................................................... 78 3.2.2 Factors driving rhodolith abundance ........................................................................ 81 3.2.3 Statistical analysis ....................................................................................................... 91 3.3 RESULTS ........................................................................................................................... 93 3.3.1 Characterization of benthic habitats ......................................................................... 93 3.3.2 Waves and currents .................................................................................................. 102 3.4 DISCUSSION ................................................................................................................... 106 3.4.1 Factors driving rhodolith abundance in St. Philip’s .............................................. 106 3.4.2 Challenging rhodolith bed driver paradigms ......................................................... 113 3.4.3 Conclusions ................................................................................................................ 114 3.5 LITERATURE CITED.................................................................................................... 115 CHAPTER IV ............................................................................................................................. 125 4.1 Overall objective of the study ........................................................................................