What Is ''Object-Oriented Programming''? (1991 Revised
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PHP Programming Cookbook I
PHP Programming Cookbook i PHP Programming Cookbook PHP Programming Cookbook ii Contents 1 PHP Tutorial for Beginners 1 1.1 Introduction......................................................1 1.1.1 Where is PHP used?.............................................1 1.1.2 Why PHP?..................................................2 1.2 XAMPP Setup....................................................3 1.3 PHP Language Basics.................................................5 1.3.1 Escaping to PHP...............................................5 1.3.2 Commenting PHP..............................................5 1.3.3 Hello World..................................................6 1.3.4 Variables in PHP...............................................6 1.3.5 Conditional Statements in PHP........................................7 1.3.6 Loops in PHP.................................................8 1.4 PHP Arrays...................................................... 10 1.5 PHP Functions.................................................... 12 1.6 Connecting to a Database............................................... 14 1.6.1 Connecting to MySQL Databases...................................... 14 1.6.2 Connecting to MySQLi Databases (Procedurial).............................. 14 1.6.3 Connecting to MySQLi databases (Object-Oriented)............................ 15 1.6.4 Connecting to PDO Databases........................................ 15 1.7 PHP Form Handling................................................. 15 1.8 PHP Include & Require Statements......................................... -
On Implementing MPEG-21 Intellectual Property Management and Protection
University of Wollongong Research Online Faculty of Engineering and Information Faculty of Informatics - Papers (Archive) Sciences 29-10-2007 On implementing MPEG-21 intellectual property management and protection N. P. Sheppard University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/infopapers Part of the Physical Sciences and Mathematics Commons Recommended Citation Sheppard, N. P.: On implementing MPEG-21 intellectual property management and protection 2007. https://ro.uow.edu.au/infopapers/580 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] On implementing MPEG-21 intellectual property management and protection Abstract The MPEG-21 Intellectual Property Management and Protection (&lquot;IPMP&rquot;) Components specify a framework for inter-operable and renewable digital rights management based on IPMP tools that implement proprietary digital rights management features. MPEG-21 defines the mechanism by which protected multimedia objects are associated with proprietary IPMP tools, but does not specify the interface through which IPMP tools and MPEG-21 terminals communicate. This paper describes an implementation of the IPMP components including an interface to IPMP tools based on the MPEG Rights Expression Language; dynamic construction of authorisation proofs that permit a principal to carry out an action; and a cryptographic architecture bound to the existence of authorisation -
Object-Oriented Programming Basics with Java
Object-Oriented Programming Object-Oriented Programming Basics With Java In his keynote address to the 11th World Computer Congress in 1989, renowned computer scientist Donald Knuth said that one of the most important lessons he had learned from his years of experience is that software is hard to write! Computer scientists have struggled for decades to design new languages and techniques for writing software. Unfortunately, experience has shown that writing large systems is virtually impossible. Small programs seem to be no problem, but scaling to large systems with large programming teams can result in $100M projects that never work and are thrown out. The only solution seems to lie in writing small software units that communicate via well-defined interfaces and protocols like computer chips. The units must be small enough that one developer can understand them entirely and, perhaps most importantly, the units must be protected from interference by other units so that programmers can code the units in isolation. The object-oriented paradigm fits these guidelines as designers represent complete concepts or real world entities as objects with approved interfaces for use by other objects. Like the outer membrane of a biological cell, the interface hides the internal implementation of the object, thus, isolating the code from interference by other objects. For many tasks, object-oriented programming has proven to be a very successful paradigm. Interestingly, the first object-oriented language (called Simula, which had even more features than C++) was designed in the 1960's, but object-oriented programming has only come into fashion in the 1990's. -
BUGS Code for Item Response Theory
JSS Journal of Statistical Software August 2010, Volume 36, Code Snippet 1. http://www.jstatsoft.org/ BUGS Code for Item Response Theory S. McKay Curtis University of Washington Abstract I present BUGS code to fit common models from item response theory (IRT), such as the two parameter logistic model, three parameter logisitic model, graded response model, generalized partial credit model, testlet model, and generalized testlet models. I demonstrate how the code in this article can easily be extended to fit more complicated IRT models, when the data at hand require a more sophisticated approach. Specifically, I describe modifications to the BUGS code that accommodate longitudinal item response data. Keywords: education, psychometrics, latent variable model, measurement model, Bayesian inference, Markov chain Monte Carlo, longitudinal data. 1. Introduction In this paper, I present BUGS (Gilks, Thomas, and Spiegelhalter 1994) code to fit several models from item response theory (IRT). Several different software packages are available for fitting IRT models. These programs include packages from Scientific Software International (du Toit 2003), such as PARSCALE (Muraki and Bock 2005), BILOG-MG (Zimowski, Mu- raki, Mislevy, and Bock 2005), MULTILOG (Thissen, Chen, and Bock 2003), and TESTFACT (Wood, Wilson, Gibbons, Schilling, Muraki, and Bock 2003). The Comprehensive R Archive Network (CRAN) task view \Psychometric Models and Methods" (Mair and Hatzinger 2010) contains a description of many different R packages that can be used to fit IRT models in the R computing environment (R Development Core Team 2010). Among these R packages are ltm (Rizopoulos 2006) and gpcm (Johnson 2007), which contain several functions to fit IRT models using marginal maximum likelihood methods, and eRm (Mair and Hatzinger 2007), which contains functions to fit several variations of the Rasch model (Fischer and Molenaar 1995). -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
Compile-Time Safety and Runtime Performance in Programming Frameworks for Distributed Systems
Compile-time Safety and Runtime Performance in Programming Frameworks for Distributed Systems lars kroll Doctoral Thesis in Information and Communication Technology School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm, Sweden 2020 School of Electrical Engineering and Computer Science KTH Royal Institute of Technology TRITA-EECS-AVL-2020:13 SE-164 40 Kista ISBN: 978-91-7873-445-0 SWEDEN Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan fram- lägges till offentlig granskning för avläggande av teknologie doktorsexamen i informations- och kommunikationsteknik på fredagen den 6 mars 2020 kl. 13:00 i Sal C, Electrum, Kungliga Tekniska Högskolan, Kistagången 16, Kista. © Lars Kroll, February 2020 Printed by Universitetsservice US-AB IV Abstract Distributed Systems, that is systems that must tolerate partial failures while exploiting parallelism, are a fundamental part of the software landscape today. Yet, their development and design still pose many challenges to developers when it comes to reliability and performance, and these challenges often have a negative impact on developer productivity. Distributed programming frameworks and languages attempt to provide solutions to common challenges, so that application developers can focus on business logic. However, the choice of programming model as provided by a such a framework or language will have significant impact both on the runtime performance of applications, as well as their reliability. In this thesis, we argue for programming models that are statically typed, both for reliability and performance reasons, and that provide powerful abstractions, giving developers the tools to implement fast algorithms without being constrained by the choice of the programming model. -
Preview Fortran Tutorial (PDF Version)
Fortran i Fortran About the Tutorial Fortran was originally developed by a team at IBM in 1957 for scientific calculations. Later developments made it into a high level programming language. In this tutorial, we will learn the basic concepts of Fortran and its programming code. Audience This tutorial is designed for the readers who wish to learn the basics of Fortran. Prerequisites This tutorial is designed for beginners. A general awareness of computer programming languages is the only prerequisite to make the most of this tutorial. Copyright & Disclaimer Copyright 2017 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] i Fortran Table of Contents About the Tutorial ····································································································································i Audience ··················································································································································i -
A Quick Reference to C Programming Language
A Quick Reference to C Programming Language Structure of a C Program #include(stdio.h) /* include IO library */ #include... /* include other files */ #define.. /* define constants */ /* Declare global variables*/) (variable type)(variable list); /* Define program functions */ (type returned)(function name)(parameter list) (declaration of parameter types) { (declaration of local variables); (body of function code); } /* Define main function*/ main ((optional argc and argv arguments)) (optional declaration parameters) { (declaration of local variables); (body of main function code); } Comments Format: /*(body of comment) */ Example: /*This is a comment in C*/ Constant Declarations Format: #define(constant name)(constant value) Example: #define MAXIMUM 1000 Type Definitions Format: typedef(datatype)(symbolic name); Example: typedef int KILOGRAMS; Variables Declarations: Format: (variable type)(name 1)(name 2),...; Example: int firstnum, secondnum; char alpha; int firstarray[10]; int doublearray[2][5]; char firststring[1O]; Initializing: Format: (variable type)(name)=(value); Example: int firstnum=5; Assignments: Format: (name)=(value); Example: firstnum=5; Alpha='a'; Unions Declarations: Format: union(tag) {(type)(member name); (type)(member name); ... }(variable name); Example: union demotagname {int a; float b; }demovarname; Assignment: Format: (tag).(member name)=(value); demovarname.a=1; demovarname.b=4.6; Structures Declarations: Format: struct(tag) {(type)(variable); (type)(variable); ... }(variable list); Example: struct student {int -
Lecture 2: Introduction to C Programming Language [email protected]
CSCI-UA 201 Joanna Klukowska Lecture 2: Introduction to C Programming Language [email protected] Lecture 2: Introduction to C Programming Language Notes include some materials provided by Andrew Case, Jinyang Li, Mohamed Zahran, and the textbooks. Reading materials Chapters 1-6 in The C Programming Language, by B.W. Kernighan and Dennis M. Ritchie Section 1.2 and Aside on page 4 in Computer Systems, A Programmer’s Perspective by R.E. Bryant and D.R. O’Hallaron Contents 1 Intro to C and Unix/Linux 3 1.1 Why C?............................................................3 1.2 C vs. Java...........................................................3 1.3 Code Development Process (Not Only in C).........................................4 1.4 Basic Unix Commands....................................................4 2 First C Program and Stages of Compilation 6 2.1 Writing and running hello world in C.............................................6 2.2 Hello world line by line....................................................7 2.3 What really happens when we compile a program?.....................................8 3 Basics of C 9 3.1 Data types (primitive types)..................................................9 3.2 Using printf to print different data types.........................................9 3.3 Control flow.......................................................... 10 3.4 Functions........................................................... 11 3.5 Variable scope........................................................ 12 3.6 Header files......................................................... -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
A Tutorial Introduction to the Language B
A TUTORIAL INTRODUCTION TO THE LANGUAGE B B. W. Kernighan Bell Laboratories Murray Hill, New Jersey 1. Introduction B is a new computer language designed and implemented at Murray Hill. It runs and is actively supported and documented on the H6070 TSS system at Murray Hill. B is particularly suited for non-numeric computations, typified by system programming. These usually involve many complex logical decisions, computations on integers and fields of words, especially charac- ters and bit strings, and no floating point. B programs for such operations are substantially easier to write and understand than GMAP programs. The generated code is quite good. Implementation of simple TSS subsystems is an especially good use for B. B is reminiscent of BCPL [2] , for those who can remember. The original design and implementation are the work of K. L. Thompson and D. M. Ritchie; their original 6070 version has been substantially improved by S. C. Johnson, who also wrote the runtime library. This memo is a tutorial to make learning B as painless as possible. Most of the features of the language are mentioned in passing, but only the most important are stressed. Users who would like the full story should consult A User’s Reference to B on MH-TSS, by S. C. Johnson [1], which should be read for details any- way. We will assume that the user is familiar with the mysteries of TSS, such as creating files, text editing, and the like, and has programmed in some language before. Throughout, the symbolism (->n) implies that a topic will be expanded upon in section n of this manual. -
Rexx Interview Questions That Can Help You Ace Your Rexx Interview
By OnlineInterviewQuestions.com Rexx is the acronym for Restructured Extended Executor. It is a high-level programming language developed by Mike Cowlishaw to make learning and reading easier. There are multiple applications of Rexx. It is used as scripting and for processing data. It is also as an internal macro language in some software like THE and ZOC. Rexx is a versatile programming language and can be mixed with various commands to different host environments. It is a very useful language for beginners and the demand for experienced computer professionals is growing exponentially. This blog covers important Rexx interview questions that can help you ace your Rexx interview. If you wish to stand out from the crowd, these interview questions are your best friend. Q1. What is Uni-REXX? Uni-REXX is a UNIX implementation of Rexx programming language which offers rich sets of functions that are particularly designed for UNIX environment. Uni-REXX is now available on SUN’s Solaris 7/8/9, H/P’s HP/UX 10/11, IBM’s AIX 4/5, SGI’s IRIX 5/6, NCR UNIX, Linux Intel and S/390. It is used for several purposes such as automating system administration tasks. It also helps in development for end-user applications and rapid-prototyping of complied-language applications. Q2. Enlist the features of Rexx as a programming language. Following are the few features of Rexx- Rexx language has a very simple syntax format. Rexx can support multiple functions, procedures and route commands to several environments. It comes with very few artificial limitations and provides crash protection.