Compile-Time Safety and Runtime Performance in Programming Frameworks for Distributed Systems

Total Page:16

File Type:pdf, Size:1020Kb

Compile-Time Safety and Runtime Performance in Programming Frameworks for Distributed Systems Compile-time Safety and Runtime Performance in Programming Frameworks for Distributed Systems lars kroll Doctoral Thesis in Information and Communication Technology School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm, Sweden 2020 School of Electrical Engineering and Computer Science KTH Royal Institute of Technology TRITA-EECS-AVL-2020:13 SE-164 40 Kista ISBN: 978-91-7873-445-0 SWEDEN Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan fram- lägges till offentlig granskning för avläggande av teknologie doktorsexamen i informations- och kommunikationsteknik på fredagen den 6 mars 2020 kl. 13:00 i Sal C, Electrum, Kungliga Tekniska Högskolan, Kistagången 16, Kista. © Lars Kroll, February 2020 Printed by Universitetsservice US-AB IV Abstract Distributed Systems, that is systems that must tolerate partial failures while exploiting parallelism, are a fundamental part of the software landscape today. Yet, their development and design still pose many challenges to developers when it comes to reliability and performance, and these challenges often have a negative impact on developer productivity. Distributed programming frameworks and languages attempt to provide solutions to common challenges, so that application developers can focus on business logic. However, the choice of programming model as provided by a such a framework or language will have significant impact both on the runtime performance of applications, as well as their reliability. In this thesis, we argue for programming models that are statically typed, both for reliability and performance reasons, and that provide powerful abstractions, giving developers the tools to implement fast algorithms without being constrained by the choice of the programming model. Furthermore, we show how the design of Domain Specific Languages (DSLs) for such distributed programming frameworks, as well as DSLs for testing these components written in them, can reduce the mental gap between theoretical algorithms and their implementation, in turn reducing the risk of introducing subtle bugs. Concretely, we designed and implemented two different versions of the Kompics Component Model. The first is called Kompics Scala and focuses on pattern matching of events, as well as programming ergonomics and similarity to theoretical algorithms. The second version is called Kola and is a language with a compiler of its own, focusing on compile-time safety. Finally, we present a third framework, called Kompact, implementing a hybrid Actor–Component model which is designed around runtime-performance and static typing, and is implemented in the Rust language. In order to compare our solutions to the state-of-the-art, we present the first cross-language, distributed, message-passing benchmarking suite. We evaluated the impact of network abstractions in these models on performance, and show that our approach offers between 2 and 5 improvements on throughput £ £ for certain applications. We also evaluated the performance tradeoffs of different message-passing models and different implementations of the same model. We show that all our implementations are competitive, and our hybrid model, in particular, has significant benefits in a wide range of scenarios, leading to improvements of up to 27 compared to the state-of-the-art of message-passing systems. £ V Sammanfattning Distribuerade system, det vill säga system som tolererar partiella fel medan paral- lelism utnyttjas, är en grundläggande del av landskapet för mjukvaruutveckling idag. Ändå utgör dessas utveckling och design fortfarande många utmaningar för utvecklare när det gäller tillförlitlighet och prestanda, och dessa utmaningar har ofta en negativ inverkan på utvecklarens produktivitet. Distribuerade programme- ringsramverk och -språk försöker att ge lösningar på vanliga utmaningar, så att applikationsutvecklare kan fokusera på applikationslogik. Sådant ramverk eller språk är baserad på en programmeringsmodell, vars val har en betydande inverkan både på applikationernas runtime-prestanda, liksom dessas tillförlitlighet. I den här avhandlingen argumenterar vi för programmeringsmodeller som är statiskt typade, både av tillförlitlighets- och prestandaskäl, och som ger kraftfulla abstraktioner, vilket ger utvecklarna verktyg för att implementera snabba algo- ritmer utan att begränsas av valet av programmeringsmodell. Dessutom visar vi hur utformningen av domänspecifika språk (DSL) för sådana distribuerade programmeringsramverk, liksom DSL:er för att testa dessa komponenter skrivna i dem, kan minska den mentala klyftan mellan teoretiska algoritmer och dessas implementation, vilket i följd minskar risken för introduktion av subtila buggar. Specifikt, har vi utformat och implementerat två olika versioner av Kompics Compo- nent modellen. Den första heter Kompics Scala och fokuserar på mönstermatchning av event, samt programmeringsergonomi och likhet med teoretiska algoritmer. Den andra versionen heter Kola som är ett språk och sin egen kompilator med fokus på sä- kerhet i kompileringstid. Slutligen presenterar vi ett tredje ramverk, kallad Kompact, som implementerar en hybrid Actor-Component modell. Ramverket är utformad kring runtime-prestanda och statisk typning, och är implementerad i språket Rust. För att jämföra våra lösningar med andra state-of-the-art lösningar, presenterar vi den första flerspråkiga, distribuerade, message-passing benchmarking-sviten. Vi utvärderade effekterna av nätverksabstraktioner i dessa modeller på prestanda och visar att vår strategi erbjuder mellan 2 till 5 förbättringar av kapaciteten för vissa £ £ applikationer. Vi utvärderade också prestanda-tradeoffs för olika message-passing modeller och olika implementationer av samma modell. Vi visar att alla våra imple- mentationer är konkurrenskraftiga, och särskilt att vår hybridmodell har betydande fördelar i ett brett spektrum av scenarion, vilket leder till förbättringar på upp till 27 jämfört med den mest kända state-of-the-art message-passing system. £ VI Acknowledgements Like the proverbial Rome, a doctoral dissertation is not built (or written) in a day, and certainly not by a single person alone. Over the years in which the work, that finally resulted in this dissertation, took place, many people have shared ideas with me, let me bounce my own ideas off of them, pointed out challenges, fixed issues, showed me possible directions for progress or inquiry, and supported me in a myriad of other ways. First and foremost among the guides and supporters is my main advisor, Seif Haridi, who time and again has listened to all the wild ideas running around in my head and then subsequently helped me shape them into something that can actually be called “research”. Without him, I would likely still be writing lines upon lines of code in my office and this dissertation would simply be a dream for a far off future “when I am done”. In those situations when it did happen that I got badly stuck, with no clue where to go from there, it was usually the bursting fountain of ideas that is my secondary supervisor, Jim Dowling, who sparked the idea that led to the next step or goal. And, of course, it was also Jim who gave me the opportunity and convinced me to start a PhD in the first place. Thus, this dissertation would also have been equally impossible without him. For this, as well as every inspiring conversation, every boat trip, and every lunch, dinner, and beer we have shared over the past years, I am profoundly grateful. Over an even greater number of lunches, dinners, beers, coffees, whiskies, and pipes my friends, colleagues, and occasional house and office mates — Paris Carbone and Alex Ormenis, an — have acted as sounding boards for silly ideas, sources of inspiration and wild dreams, as testers, fixers, and collaborators, or simply as much needed stress relief and emotional support. Above everyone else, they helped me to get through the last few years and maintain some semblance of sanity and for that I cannot be thankful enough. Much the same holds true, of course, for my more remote friends, who have turned all my vacations from “working from a different location” to a joyful and re-energising experience and many of which share my favourite hobby of playing TTRPGs with me every single week: Chrischi, Ercan, Ivy, Jakob, Jenny, Malte, Olga, Rain, Sergio, and Teri. Of course, I could not have made it through all these years of education — or life, for that matter — without the support of my parents, grandparents, and my sister. They were always there, whether I needed advice or help, a place to stay for a few weeks, extra funds, or simply a lovely meal and a pleasant conversation. I may have spent a few more years in education than either of us bargained for, but I am immensely grateful to my family for not just putting up with it, but even encouraging me to go further. I would also like to thank all the master’s students who worked on bringing our shared ideas to life over the years: Ifeanyi Ubah has been integral in the development of the Kompics Testing framework and I have greatly enjoyed our extremely fruitful brainstorming sessions. Johan Mickos has been responsible for Kompact’s original networking implementation and his work is being continued ACKNOWLEDGEMENTS VII now by Adam Hasselberg. Both of them are smart and driven individuals, who, I can only say, are and have been a pleasure to work with. Harald Ng has put countless hours of work into the benchmarking suite, and without his invaluable help the suite would not be as large as it
Recommended publications
  • Introducing Visual Studio 2010
    INTRODUCING VISUAL STUDIO 2010 DAVID CHAPPELL MAY 2010 SPONSORED BY MICROSOFT CONTENTS Tools and Modern Software Development ............................................................................................ 3 Understanding Visual Studio 2010 ........................................................................................................ 3 The Components of Visual Studio 2010 ................................................................................................... 4 A Closer Look at Team Foundation Server............................................................................................... 5 Work Item Tracking ............................................................................................................................. 7 Version Control .................................................................................................................................... 8 Build Management: Team Foundation Build ...................................................................................... 9 Reporting and Dashboards.................................................................................................................. 9 Using Visual Studio 2010 ..................................................................................................................... 12 Managing Requirements ....................................................................................................................... 12 Architecting a Solution .........................................................................................................................
    [Show full text]
  • Comparative Studies of Programming Languages; Course Lecture Notes
    Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management .
    [Show full text]
  • Rexx Interview Questions That Can Help You Ace Your Rexx Interview
    By OnlineInterviewQuestions.com Rexx is the acronym for Restructured Extended Executor. It is a high-level programming language developed by Mike Cowlishaw to make learning and reading easier. There are multiple applications of Rexx. It is used as scripting and for processing data. It is also as an internal macro language in some software like THE and ZOC. Rexx is a versatile programming language and can be mixed with various commands to different host environments. It is a very useful language for beginners and the demand for experienced computer professionals is growing exponentially. This blog covers important Rexx interview questions that can help you ace your Rexx interview. If you wish to stand out from the crowd, these interview questions are your best friend. Q1. What is Uni-REXX? Uni-REXX is a UNIX implementation of Rexx programming language which offers rich sets of functions that are particularly designed for UNIX environment. Uni-REXX is now available on SUN’s Solaris 7/8/9, H/P’s HP/UX 10/11, IBM’s AIX 4/5, SGI’s IRIX 5/6, NCR UNIX, Linux Intel and S/390. It is used for several purposes such as automating system administration tasks. It also helps in development for end-user applications and rapid-prototyping of complied-language applications. Q2. Enlist the features of Rexx as a programming language. Following are the few features of Rexx- Rexx language has a very simple syntax format. Rexx can support multiple functions, procedures and route commands to several environments. It comes with very few artificial limitations and provides crash protection.
    [Show full text]
  • Porting an Interpreter and Just-In-Time Compiler to the Xscale Architecture
    Porting an Interpreter and Just-In-Time Compiler to the XScale Architecture Malte Hildingson Dept. of Informatics and Mathematics University of Trollhättan / Uddevalla, Sweden E-mail: [email protected] Abstract code conformed to the targeted environment, the makefiles had to be adjusted accordingly. This task was hugely sim- This exploratory study covers the work of porting an in- plified by tools such as autoconf and automake which per- termediate language interpreter to the ARM-based XScale formed the necessary routines for the target platform given architecture. The interpreter is part of the Mono project, an required input parameters, and created makefiles which en- open source effort to create a .NET-compatible development sured that the code was compiled properly. framework. We cover trampolines together with the proce- dure call standard, discuss memory protection and present a 2. Background complete implementation of atomic operations for the ARM architecture. The Mono [11] project, launched in July 2001 by Ximian Inc. [12], is an effort to create an open source imple- mentation of the .NET [13] development framework. The 1. Introduction project includes the Common Language Infrastucture (CLI) [14] virtual machine, a class library for any programming The biggest problem with porting software is finding language conforming to the Common Language Runtime which parts of the software reflect architectural features of (CLR) [15] and compilers that target the CLR. The virtual the hardware that it runs on [1]. The open source movement machine consists of a class loader, garbage collector and has been a benefactor in the sense that standards for porting an interpreter or a just-in-time (JIT) compiler, depending open software have been in demand and developed.
    [Show full text]
  • Specialising Dynamic Techniques for Implementing the Ruby Programming Language
    SPECIALISING DYNAMIC TECHNIQUES FOR IMPLEMENTING THE RUBY PROGRAMMING LANGUAGE A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2015 By Chris Seaton School of Computer Science This published copy of the thesis contains a couple of minor typographical corrections from the version deposited in the University of Manchester Library. [email protected] chrisseaton.com/phd 2 Contents List of Listings7 List of Tables9 List of Figures 11 Abstract 15 Declaration 17 Copyright 19 Acknowledgements 21 1 Introduction 23 1.1 Dynamic Programming Languages.................. 23 1.2 Idiomatic Ruby............................ 25 1.3 Research Questions.......................... 27 1.4 Implementation Work......................... 27 1.5 Contributions............................. 28 1.6 Publications.............................. 29 1.7 Thesis Structure............................ 31 2 Characteristics of Dynamic Languages 35 2.1 Ruby.................................. 35 2.2 Ruby on Rails............................. 36 2.3 Case Study: Idiomatic Ruby..................... 37 2.4 Summary............................... 49 3 3 Implementation of Dynamic Languages 51 3.1 Foundational Techniques....................... 51 3.2 Applied Techniques.......................... 59 3.3 Implementations of Ruby....................... 65 3.4 Parallelism and Concurrency..................... 72 3.5 Summary............................... 73 4 Evaluation Methodology 75 4.1 Evaluation Philosophy
    [Show full text]
  • CS 6311 – Programming Languages I – Fall 2006 Assignment #1 (100 Pts) Due: 7:00Pm, Monday 9/25/6
    Most of the solutions are from Edwin Rudolph (who did an outstanding job on the assignment) with a few modifications. CS 6311 – Programming Languages I – Fall 2006 Assignment #1 (100 pts) Due: 7:00pm, Monday 9/25/6 Directions: The answers to the following questions must be typed in Microsoft Word and submitted as a Word document by the due date. There are a total of 40 questions. 1. A system of instructions and data directly understandable by a computer’s central processing unit is known as what? (1 pt) Machine language. 2. What is the name of the category of programming languages whose structure is dictated by the von Neumann computer architecture? (1 pt) Imperative. 3. Although PL/I and Ada were designed to be multi-purpose languages, in fact PL/I was considered to be the “language to end all languages”, why is there such difficulty in creating a general purpose programming language applicable to a wide range of areas? (3 pts) The difficulty in creating an all purpose language lies in the fact that the variety of problems that we ask computers to solve do not all lend themselves to being easily or conveniently expressed in the same way. Numerical processing involves different types of tasks than string processing; a program which computes trajectories of a spacecraft probably does not require extensive string processing facilities, just as a program to search for patterns in news feeds does not require extensive mathematical facilities. Attempting to create languages which provide facilities for solving all types of problems is that the language suffers from a feature bloat, not only making it difficult for programmers to effectively use it, but also making it more difficult to implement compilers and/or translators for.
    [Show full text]
  • Characteristics of Java (Optional)
    Characteristics of Java (Optional) Y. Daniel Liang Supplement for Introduction to Java Programming Java has become enormously popular. Java’s rapid rise and wide acceptance can be traced to its design and programming features, particularly its promise that you can write a program once and run it anywhere. As stated in the Java language white paper by Sun, Java is simple, object- oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance, multithreaded, and dynamic. Let’s analyze these often-used buzzwords. 1 Java Is Simple No language is simple, but Java is a bit easier than the popular object-oriented programming language C++, which was the dominant software-development language before Java. Java is partially modeled on C++, but greatly simplified and improved. For instance, pointers and multiple inheritance often make programming complicated. Java replaces the multiple inheritance in C++ with a simple language construct called an interface, and eliminates pointers. Java uses automatic memory allocation and garbage collection, whereas C++ requires the programmer to allocate memory and collect garbage. Also, the number of language constructs is small for such a powerful language. The clean syntax makes Java programs easy to write and read. Some people refer to Java as "C++--" because it is like C++ but with more functionality and fewer negative aspects. 2 Java Is Object-Oriented Java is inherently object-oriented. Although many object- oriented languages began strictly as procedural languages, Java was designed from the start to be object-oriented. Object-oriented programming (OOP) is a popular programming approach that is replacing traditional procedural programming techniques.
    [Show full text]
  • Programming Languages and Translators
    Programming Languages and Translators Ronghui Gu Spring 2019 Columbia University 1 Instructor Prof. Ronghui Gu 515 Computer Science Building [email protected] Oce hours: Thursdays 1:30 - 2:30 PM / by appointment Prof. Stephen A. Edwards and Prof. Baishakhi Rey also teach 4115. ∗These slides are borrowed from Prof. Edwards. 2 What is a Programming Language? A programming language is a notation that a person and a computer can both understand. • It allows you to express what is the task to compute • It allows a computer to execute the computation task Every programming language has a syntax and semantics. • Syntax: how characters combine to form a program • Semantics: what the program means 3 Components of a language: Syntax How characters combine to form a program. Calculate the n-th Fibonacci number. is syntactically correct English, but isn’t a Java program. c l a s s Foo { p u b l i c int j; p u b l i c int foo(int k){ return j+k;} } is syntactically correct Java, but isn’t C. 4 Specifying Syntax Usually done with a context-free grammar. Typical syntax for algebraic expressions: expr ! expr + expr j expr − expr j expr ∗ expr j expr = expr j ( expr ) j digits 5 Components of a language: Semantics What a well-formed program “means.” The semantics of C says this computes the nth Fibonacci number. i n t fib(int n) { i n t a=0,b=1; i n t i; f o r (i=1 ; i<n ; i++){ i n t c=a+b; a = b ; b = c ; } return b; } 6 Semantics Something may be syntactically correct but semantically nonsensical The rock jumped through the hairy planet.
    [Show full text]
  • Security and Cryptography in GO
    Masaryk University Faculty of Informatics Security and cryptography in GO Bachelor’s Thesis Lenka Svetlovská Brno, Spring 2017 Masaryk University Faculty of Informatics Security and cryptography in GO Bachelor’s Thesis Lenka Svetlovská Brno, Spring 2017 This is where a copy of the official signed thesis assignment and a copy ofthe Statement of an Author is located in the printed version of the document. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Lenka Svetlovská Advisor: RNDr. Andriy Stetsko, Ph.D. i Acknowledgement I would like to thank RNDr. Andriy Stetsko, Ph.D. for the manage- ment of the bachelor thesis, valuable advice, and comments. I would also like to thank the consultant from Y Soft Corporation a.s., Mgr. Lenka Bačinská, for useful advice, dedicated time and patience in consultations and application development. Likewise, I thank my family and friends for their support through- out my studies and writing this thesis. iii Abstract The main goal of this bachelor thesis is an implementation of an ap- plication able to connect to a server using pre-shared key cipher suite, communicate with server and support of X.509 certificates, such as generation of asymmetric keys, certificate signing request and different formats. The application is implemented in language Go. The very first step involves looking for suitable Go library which can connect to a server using pre-shared key cipher suite, and work with cryptography and X.509 certificates.
    [Show full text]
  • The Go Language Guide Web Application Secure Coding Practices
    The Go Language Guide Web Application Secure Coding Practices www.checkmarx.com Contents Introduction 4 About Checkmarx 4 About OWASP Secure Coding Practices 4 Input Validation 5 Validation 6 User Interactivity 6 File Manipulation 8 Data Sources 8 Post Validation Actions 8 Sanitization 8 Output Encoding 10 XSS - Cross Site Scripting 10 SQL Injection 14 Authentication and Password Management 15 Rules of Thumb 15 Communicating authentication data 15 Validation and Storing Authentication Data 17 Storing Password Securely: The Theory 17 Storing Password Securely: The Practice 19 Password Policies 20 Reset 20 Other Guidelines 21 Session Management 21 Access Control 23 Cryptographic Practices 24 Pseudo-Random Generators 26 Error Handling and Logging 27 Error Handling 27 Logging 29 Data Protection 31 Remove Sensitive Information 32 Comments 32 URL 32 www.checkmarx.com 2 Information is Power 32 Encryption is the Key 33 Disable what you don’t need 34 Autocomplete 34 Cache 34 Communication Security 34 HTTP/TLS 34 WEBSOCKETS 38 Origin Header 38 Confidentiality and Integrity 38 Authentication and Authorization 39 Input Sanitization 39 System Configuration 39 Directory Listings 39 Remove / Disable What You Don’t Need 40 Implement Better Security 41 Asset Management System 41 Database Security 42 The Best Practice 42 Database Connections 43 Connection String Protection 43 Database Credentials 44 Database Authentication 44 Parameterized Queries 44 Flow 45 Stored Procedures 45 File Management 46 Memory Management 47 General Coding Practices 48 How to Contribute 52 Environment Setup 52 How to Start 52 www.checkmarx.com 3 Introduction Go Language – Web Application Secure Coding Practices is a guide written for anyone who is using the Go Programming Language and aims to use it for web development.
    [Show full text]
  • Object-Oriented Programming in the Beta Programming Language
    OBJECT-ORIENTED PROGRAMMING IN THE BETA PROGRAMMING LANGUAGE OLE LEHRMANN MADSEN Aarhus University BIRGER MØLLER-PEDERSEN Ericsson Research, Applied Research Center, Oslo KRISTEN NYGAARD University of Oslo Copyright c 1993 by Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. All rights reserved. No part of this book may be copied or distributed without the prior written permission of the authors Preface This is a book on object-oriented programming and the BETA programming language. Object-oriented programming originated with the Simula languages developed at the Norwegian Computing Center, Oslo, in the 1960s. The first Simula language, Simula I, was intended for writing simulation programs. Si- mula I was later used as a basis for defining a general purpose programming language, Simula 67. In addition to being a programming language, Simula1 was also designed as a language for describing and communicating about sys- tems in general. Simula has been used by a relatively small community for many years, although it has had a major impact on research in computer sci- ence. The real breakthrough for object-oriented programming came with the development of Smalltalk. Since then, a large number of programming lan- guages based on Simula concepts have appeared. C++ is the language that has had the greatest influence on the use of object-oriented programming in industry. Object-oriented programming has also been the subject of intensive research, resulting in a large number of important contributions. The authors of this book, together with Bent Bruun Kristensen, have been involved in the BETA project since 1975, the aim of which is to develop con- cepts, constructs and tools for programming.
    [Show full text]
  • Programming Languages: Classification, Execution Model, and Errors
    Programming Fundamentals Dr. Raaid Alubady –4th Lecture Programming Languages: Classification, Execution Model, and Errors 4th Lecture 1. Introduction As the involvement of computer, automation and robotics growing in our daily life, programming becomes highly required to control all of them. To control all of these systems and machines and take desired output by them skilled programming languages is necessary. However, the area of programming language becomes how much wide but it will be under one of the two categories of programming languages (i.e., Low-level language and High-level language). In the early days of computing, language design was heavily influenced by the decision to use compiling or interpreting as a mode of execution. Depending on tools such as compilation and interpretation in order to get our written code into a form that the computer can execute. Code can either be executed natively through the operating system after it is converted to machine code (via compilation) or can be evaluated line by line through another program which handles executing the code instead of the operating system itself (via interpretation). 2. Classification of Programming Languages Programming languages are basically classified into two main categories – Low- level language and High-level language. Every programming language belongs to one of these categories and sub-category. 2.1. Low level languages Low-level languages are used to write programs that relate to the specific architecture and hardware of a particular type of computer. They are closer to the native language of a computer (binary), making them harder for programmers to understand. Programs written in low-level languages are fast and memory efficient.
    [Show full text]