An Image Processing Approach Toward a Visual Intra-Cortical Stimulator

Total Page:16

File Type:pdf, Size:1020Kb

An Image Processing Approach Toward a Visual Intra-Cortical Stimulator UNIVERSITE´ DE MONTREAL´ AN IMAGE PROCESSING APPROACH TOWARD A VISUAL INTRA-CORTICAL STIMULATOR ANTHONY GHANNOUM DEPARTEMENT´ DE GENIE´ ELECTRIQUE´ ECOLE´ POLYTECHNIQUE DE MONTREAL´ MEMOIRE´ PRESENT´ E´ EN VUE DE L'OBTENTION DU DIPLOME^ DE MA^ITRISE ES` SCIENCES APPLIQUEES´ (GENIE´ ELECTRIQUE)´ DECEMBRE´ 2012 c Anthony Ghannoum, 2012. UNIVERSITE´ DE MONTREAL´ ECOLE´ POLYTECHNIQUE DE MONTREAL´ Ce m´emoire intitul´e: AN IMAGE PROCESSING APPROACH TOWARD A VISUAL INTRA-CORTICAL STIMULATOR pr´esent´epar : GHANNOUM Anthony en vue de l'obtention du dipl^ome de : Ma^ıtrise `essciences appliqu´ees a ´et´ed^ument accept´epar le jury d'examen constitu´ede : M. BRAULT Jean-Jules, Ph.D., pr´esident M. SAWAN Mohamad, Ph.D., membre et directeur de recherche Mme CHE´RIET Farida, Ph.D., membre iii ACKNOWLEDGEMENTS I would like to start by thanking my Master thesis supervisor professor Mohamad Sawan for his support and patience as well as the Polystim Neurotechnologies Lab members who always provided a lighthearted mood and critical thinking environment. I would also like to thank my sister Roula Ghannoum for her outstanding help throughout this period. Moreover, I would like to acknowledge support from NSERC and the Canada Research Chair on Smart Medical Devices. iv RESUM´ E´ La d´eficience visuelle n'est actuellement pas m´edicalement traitable. Par contre, des ap- proches biom´edicales modernes, tel que le projet Cortivision, emploient la micro stimulation intra-corticale pour stimuler la vision ´electriquement. Cela fait apparaitre des <phosph`enes>, des points lumineux, dans le champ visuel du patient. Des constellations de ces phosph`enes peuvent ^etre utilis´ees pour reproduire une certaine vision de base. Le syst`eme comprend une cam´era, un module de traitement d'images, un lien sans fil, et des matrices de micro-´electrodes implant´ees directement dans le cortex visuel du patient. La carte phosph`ene (l'arrangement de point lumineux dans le champ de vision) est di- rectement li´ee au placement physique des ´electrodes ; elle est g´en´eralement plus dense vers le centre (plut^ot que d'^etre espac´ee uniform´ement comme dans une image num´erique). Cela veut dire qu'il n'existe pas une fonction simple pour traduire les images acquises par la cam´era sur la carte phosph`ene, d'o`ula n´ecessit´ed'avoir un module de traitement d'image. L'aide du patient est n´ecessaire pour d´eterminer sa carte phosph`ene particuli`ere et r´eelle. Une m´ethode de calibration qui expose le patient `ades combinaisons de paires de phosph`enes diff´erentes est utilis´ee avec des algorithmes de triangulation et minimisation d'erreur. Toute erreur dans la phase d'estimation induirait des distorsions dans l'image finale (dans les stimuli envoy´esau cortex du patient). N´eanmoins, la plupart des syst`emes utilisent une carte phosph`ene simplifi´ee uniform´ement r´epartie ainsi que des techniques simples de traitement d'image comme un seuillage simple ou la segmentation. Nous proposons d'utiliser un traitement d'image de plus haut niveau, comme la reconnaissance d'objets, afin d'^etre en mesure d'identifier et de <simplifier> les donn´ees avant de les envoyer au patient. Dans ce cas, nous envoyons une repr´esentation du contenu de la sc`ene au cortex du patient, et non pas une version abr´eg´eede la sc`ene { l'algorithme utilise les vraies images pour identifier les objets, tandis que dans le cas des autres syst`emes, le patient doit identifier les objets lui-m^eme `apartir d'une image tr`essimplifi´ee; une t^ache non-triviale. Une telle approche est co^uteuse en terme de calcul, et n´ecessiteraient ´egalement de rouler en temps r´eel pour notre application. Pour subvenir `aces besoins, nous proposons d'acc´el´erer les goulots d'´etranglement de l'algorithme en utilisant une approche mat´erielle parall´elisable (FPGA). L'objectif est de d´evelopper un syst`eme temps-r´eel, param´etrable, et efficace en termes de ressources mat´erielles FPGA et de bande passante. Ceci nous permettra d'effectuer des t^aches de reconnaissance d'objet robustes rapidement qui peuvent ensuite ^etre utilis´espour stimuler la carte phosph`ene d'une mani`ere plus ad´equate, plus utile, et moins exigeante du v patient. Apr`es avoir examin´eles algorithmes possibles et les approches qui peuvent ^etre utilis´ees, nous avons identifi´ele Scale Invariant Feature Transform (SIFT) comme un bon candidat pour notre syst`eme, principalement en raison du fait qu'il est tr`es robuste aux variations d'images telles que l'´eclairage, les transformations affines, et les occlusions partielles d'un objet. Le SIFT peut ^etre divis´een deux grandes parties : l'extraction et la description de carac- t´eristiques. L'´etape d'extraction est bas´eesur le calcul de la diff´erence de gaussiennes (DoG) et peut ^etre consid´er´ecomme un d´etecteur de blob invariant `al'´echelle qui permet de d´e- tecter les points <int´eressants> dans une image. La deuxi`eme partie consid`ere la r´egion qui entoure le point d'int´er^etet constitue un vecteur de description (ou une signature), qui est essentiellement une collection d'histogrammes de gradients normalis´es`ala rotation. Apr`es avoir mis en place un prototype logiciel de reconnaissance d'objet sp´ecifique, nous avons remarqu´eque le goulot d'´etranglement qui emp^eche l'algorithme SIFT de fonctionner en temps r´eel se trouve dans la partie DoG. Nous avons alors recueilli nos efforts pour migrer cette partie de l'architecture vers du mat´eriel parall´elisable d'un FPGA. La partie DoG n´ecessite le calcul d'une pyramide d'images, qui est essentiellement une r´ep´etition de filtres Gaussien 2D (pour former des ´echelles), suivi d'un sous-´echantillonnage (pour former des octaves). Les r´esultats des diff´erentes ´echelles doivent par la suite ^etre synchronis´es et soustraits, et les points d'extr^emes locaux `atravers les ´echelles sont consid´er´es comme des points d'int´er^et. Apr`es avoir examin´eles impl´ementations existantes du DoG, nous proposons une nouvelle architecture efficace capable de partager les ressources FPGA bloc RAM pour le filtrage et aussi de r´eduire la taille des FIFOs de synchronisation. Nous avons ´egalement exploit´edes concepts tels que l'entrelacement d'octaves, la s´eparabilit´edes filtres 2D, et la sym´etrie des filtres. Notre architecture utilise moins de ressources que d'autres impl´ementations dans la litt´erature, tout en ´etant comparable en terme de pr´ecision `aune impl´ementation logicielle `a virgule flottante. L'impl´ementation FPGA est capable de rouler `adeux ordres de grandeur plus vite qu'une impl´ementation logicielle ´equivalente. De plus, notre architecture est param´etrable en utilisant les g´en´eriques VHDL, et nous d´emontrons comment notre consommation de ressources est affect´eeen effectuant des ba- layages de param`etres pour : le nombre d'´echelles, le nombre d'octaves, la largeur des filtres, et la largeur maximale de l'image. Le syst`eme a ´et´evalid´esur une carte de prototypage Xilinx ML605 en utilisant MATLAB et Xilinx System Generator afin de fonctionner en mode co-simulation avec le mat´eriel dans la boucle. L'interface Ethernet est utilis´ee pour le transfert d'images. vi Afin de calculer les descripteurs de caract´eristique (deuxi`eme partie du SIFT), nous avons parfois besoin d'envoyer la pyramide d'images `al'h^ote, ou de la sauvegarder dans la m´emoire externe pour un traitement ult´erieur. Apr`esavoir remarqu´ela similitude des donn´ees (dans les sens x et y) et aussi `atravers les ´echelles adjacentes `acause du filtrage, nous sommes arriv´esavec une architecture pour un encodeur de Huffman parall`ele qui est capable de traiter plusieurs pixels `ala fois. Cet encodeur peut ^etre utilis´epour la compression sans perte des images ou des pyramides d'images. Pour les pyramides d'images, nous avons utilis´eune version modifi´ee du pr´edicteur Paeth qui tient compte de l'´echelle adjacente pour l'´etape de diff´erenciation et nous avons r´eussi `aatteindre des taux de compression de 27; 3% sur la base d'images Caltech-256. Une autre voie qui a ´et´eexplor´eeconcerne l'estimation de la carte phosph`ene. Dans la litt´erature, certains avaient sugg´erer une installation de calibration qui consiste `autiliser un ´ecran tactile et des lunettes de r´ealit´evirtuelle pour simuler le champ de vue du patient. Le patient est ensuite pr´esent´eavec des paires de phosph`enes et devra fournir de la r´etroaction en utilisant deux doigts pour toucher l'´ecran tactile et essayer d'´evoquer aussi pr´ecis´ement que possible ce qu'il per¸coit (distance et angle). Nous proposons une configuration alternative qui n'utilise pas un ´ecran tactile, mais plut^ot une installation d'une cam´era qui localise et suit plusieurs marqueurs fiduciaires qui peuvent ^etre manipul´essimultan´ement par le patient pour fournir une r´etroaction pour la calibration de la carte phosph`ene. La cam´era sera plac´ee sous une table de surface transparente et les marqueurs fiduciaires seront donc toujours visibles par la cam´era. L'image est rectifi´ee pour enlever les distorsions et les marqueurs sont suivis simultan´ement. Ceci nous donne l'avantage d'avoir une r´esolution plus ´elev´equ'un ´ecran tactile, la possibilit´ed'utiliser des constellations de phosph`enes (au lieu de seulement deux paires `ala fois) et la possibilit´e de modifier l'estimation de la carte calibr´eeen temps r´eelen utilisant la r´etroaction du patient.
Recommended publications
  • Edge Detection of an Image Based on Extended Difference of Gaussian
    American Journal of Computer Science and Technology 2019; 2(3): 35-47 http://www.sciencepublishinggroup.com/j/ajcst doi: 10.11648/j.ajcst.20190203.11 ISSN: 2640-0111 (Print); ISSN: 2640-012X (Online) Edge Detection of an Image Based on Extended Difference of Gaussian Hameda Abd El-Fattah El-Sennary1, *, Mohamed Eid Hussien1, Abd El-Mgeid Amin Ali2 1Faculty of Science, Aswan University, Aswan, Egypt 2Faculty of Computers and Information, Minia University, Minia, Egypt Email address: *Corresponding author To cite this article: Hameda Abd El-Fattah El-Sennary, Abd El-Mgeid Amin Ali, Mohamed Eid Hussien. Edge Detection of an Image Based on Extended Difference of Gaussian. American Journal of Computer Science and Technology. Vol. 2, No. 3, 2019, pp. 35-47. doi: 10.11648/j.ajcst.20190203.11 Received: November 24, 2019; Accepted: December 9, 2019; Published: December 20, 2019 Abstract: Edge detection includes a variety of mathematical methods that aim at identifying points in a digital image at which the image brightness changes sharply or, more formally, has discontinuities. The points at which image brightness changes sharply are typically organized into a set of curved line segments termed edges. The same problem of finding discontinuities in one-dimensional signals is known as step detection and the problem of finding signal discontinuities over time is known as change detection. Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction. It's also the most important parts of image processing, especially in determining the image quality.
    [Show full text]
  • Scale Invariant Feature Transform - Scholarpedia 2015-04-21 15:04
    Scale Invariant Feature Transform - Scholarpedia 2015-04-21 15:04 Scale Invariant Feature Transform +11 Recommend this on Google Tony Lindeberg (2012), Scholarpedia, 7(5):10491. doi:10.4249/scholarpedia.10491 revision #149777 [link to/cite this article] Prof. Tony Lindeberg, KTH Royal Institute of Technology, Stockholm, Sweden Scale Invariant Feature Transform (SIFT) is an image descriptor for image-based matching and recognition developed by David Lowe (1999, 2004). This descriptor as well as related image descriptors are used for a large number of purposes in computer vision related to point matching between different views of a 3-D scene and view-based object recognition. The SIFT descriptor is invariant to translations, rotations and scaling transformations in the image domain and robust to moderate perspective transformations and illumination variations. Experimentally, the SIFT descriptor has been proven to be very useful in practice for image matching and object recognition under real-world conditions. In its original formulation, the SIFT descriptor comprised a method for detecting interest points from a grey- level image at which statistics of local gradient directions of image intensities were accumulated to give a summarizing description of the local image structures in a local neighbourhood around each interest point, with the intention that this descriptor should be used for matching corresponding interest points between different images. Later, the SIFT descriptor has also been applied at dense grids (dense SIFT) which have been shown to lead to better performance for tasks such as object categorization, texture classification, image alignment and biometrics . The SIFT descriptor has also been extended from grey-level to colour images and from 2-D spatial images to 2+1-D spatio-temporal video.
    [Show full text]
  • Edge Detection Low Level
    Image Processing - Lesson 10 Image Processing - Computer Vision Edge Detection Low Level • Edge detection masks Image Processing representation, compression,transmission • Gradient Detectors • Compass Detectors image enhancement • Second Derivative - Laplace detectors • Edge Linking edge/feature finding • Hough Transform image "understanding" Computer Vision High Level UFO - Unidentified Flying Object Point Detection -1 -1 -1 Convolution with: -1 8 -1 -1 -1 -1 Large Positive values = light point on dark surround Large Negative values = dark point on light surround Example: 5 5 5 5 5 -1 -1 -1 5 5 5 100 5 * -1 8 -1 5 5 5 5 5 -1 -1 -1 0 0 -95 -95 -95 = 0 0 -95 760 -95 0 0 -95 -95 -95 Edge Definition Edge Detection Line Edge Line Edge Detectors -1 -1 -1 -1 -1 2 -1 2 -1 2 -1 -1 2 2 2 -1 2 -1 -1 2 -1 -1 2 -1 -1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2 gray value gray x edge edge Step Edge Step Edge Detectors -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 -1 1 1 1 1 1 1 gray value gray -1 -1 1 1 1 -1 1 1 x edge edge Example Edge Detection by Differentiation Step Edge detection by differentiation: 1D image f(x) gray value gray x 1st derivative f'(x) threshold |f'(x)| - threshold Pixels that passed the threshold are -1 -1 1 1 -1 -1 -1 -1 Edge Pixels -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 1 -1 1 1 Gradient Edge Detection Gradient Edge - Examples ∂f ∂x ∇ f((x,y) = Gradient ∂f ∂y ∂f ∇ f((x,y) = ∂x , 0 f 2 f 2 Gradient Magnitude ∂ + ∂ √( ∂ x ) ( ∂ y ) ∂f ∂f Gradient Direction tg-1 ( / ) ∂y ∂x ∂f ∇ f((x,y) = 0 , ∂y Differentiation in Digital Images Example Edge horizontal - differentiation approximation: ∂f(x,y) Original FA = ∂x = f(x,y) - f(x-1,y) convolution with [ 1 -1 ] Gradient-X Gradient-Y vertical - differentiation approximation: ∂f(x,y) FB = ∂y = f(x,y) - f(x,y-1) convolution with 1 -1 Gradient-Magnitude Gradient-Direction Gradient (FA , FB) 2 2 1/2 Magnitude ((FA ) + (FB) ) Approx.
    [Show full text]
  • Fast Almost-Gaussian Filtering
    Fast Almost-Gaussian Filtering Peter Kovesi Centre for Exploration Targeting School of Earth and Environment The University of Western Australia 35 Stirling Highway Crawley WA 6009 Email: [email protected] Abstract—Image averaging can be performed very efficiently paper describes how the fixed low cost of averaging achieved using either separable moving average filters or by using summed through separable moving average filters, or via summed area area tables, also known as integral images. Both these methods tables, can be exploited to achieve a good approximation allow averaging to be performed at a small fixed cost per pixel, independent of the averaging filter size. Repeated filtering with to Gaussian filtering also at a small fixed cost per pixel, averaging filters can be used to approximate Gaussian filtering. independent of filter size. Thus a good approximation to Gaussian filtering can be achieved Summed area tables were devised by Crow in 1984 [12] but at a fixed cost per pixel independent of filter size. This paper only recently introduced to the computer vision community by describes how to determine the averaging filters that one needs Viola and Jones [13]. A summed area table, or integral image, to approximate a Gaussian with a specified standard deviation. The design of bandpass filters from the difference of Gaussians can be generated by computing the cumulative sums along the is also analysed. It is shown that difference of Gaussian bandpass rows of an image and then computing the cumulative sums filters share some of the attributes of log-Gabor filters in that down the columns.
    [Show full text]
  • Lecture 10 Detectors and Descriptors
    This lecture is about detectors and descriptors, which are the basic building blocks for many tasks in 3D vision and recognition. We’ll discuss Lecture 10 some of the properties of detectors and descriptors and walk through examples. Detectors and descriptors • Properties of detectors • Edge detectors • Harris • DoG • Properties of descriptors • SIFT • HOG • Shape context Silvio Savarese Lecture 10 - 16-Feb-15 Previous lectures have been dedicated to characterizing the mapping between 2D images and the 3D world. Now, we’re going to put more focus From the 3D to 2D & vice versa on inferring the visual content in images. P = [x,y,z] p = [x,y] 3D world •Let’s now focus on 2D Image The question we will be asking in this lecture is - how do we represent images? There are many basic ways to do this. We can just characterize How to represent images? them as a collection of pixels with their intensity values. Another, more practical, option is to describe them as a collection of components or features which correspond to “interesting” regions in the image such as corners, edges, and blobs. Each of these regions is characterized by a descriptor which captures the local distribution of certain photometric properties such as intensities, gradients, etc. Feature extraction and description is the first step in many recent vision algorithms. They can be considered as building blocks in many scenarios The big picture… where it is critical to: 1) Fit or estimate a model that describes an image or a portion of it 2) Match or index images 3) Detect objects or actions form images Feature e.g.
    [Show full text]
  • Anatomy of the SIFT Method Ives Rey Otero
    Anatomy of the SIFT method Ives Rey Otero To cite this version: Ives Rey Otero. Anatomy of the SIFT method. General Mathematics [math.GM]. École normale supérieure de Cachan - ENS Cachan, 2015. English. NNT : 2015DENS0044. tel-01226489 HAL Id: tel-01226489 https://tel.archives-ouvertes.fr/tel-01226489 Submitted on 9 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole´ Normale Sup´erieure de Cachan, France Anatomy of the SIFT method A dissertation presented by Ives Rey-Otero in fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Applied Mathematics Committee in charge Referees Coloma Ballester - Universitat Pompeu Fabra, ES Pablo Muse´ - Universidad de la Rep´ublica, UY Joachim Weickert - Universit¨at des Saarlandes, DE Advisors Jean-Michel Morel - ENS de Cachan, FR Mauricio Delbracio - Duke University, USA Examiners Patrick Perez´ - Technicolor Research, FR Fr´ed´eric Sur - Loria, FR ENSC-2015 603 September 2015 Version of November 5, 2015 at 12:27. Abstract of the Dissertation Ives Rey-Otero Anatomy of the SIFT method Under the direction of: Jean-Michel Morel and Mauricio Delbracio This dissertation contributes to an in-depth analysis of the SIFT method.
    [Show full text]
  • Efficient Construction of SIFT Multi-Scale Image Pyramids For
    Efficient Construction of SIFT Multi-Scale Image Pyramids for Embedded Robot Vision Peter Andreas Entschev and Hugo Vieira Neto Graduate School of Electrical Engineering and Applied Computer Science Federal University of Technology { Paran´a,Curitiba, Brazil [email protected], [email protected], http://www.cpgei.ct.utfpr.edu.br The original publication is available at www.springerlink.com. DOI 10.1007/978-3-662-43645-5 14 Abstract. Multi-scale interest point detectors such as the one used in the SIFT object recognition framework have been of interest for robot vi- sion applications for a long time. However, the computationally intensive algorithms used for the construction of multi-scale image pyramids make real-time operation very difficult to be achieved, especially when a low- power embedded system is considered as platform for implementation. In this work an efficient method for SIFT image pyramid construction is presented, aiming at near real-time operation in embedded systems. For that purpose, separable binomial kernels for image pyramid construction, rather than conventional Gaussian kernels, are used. Also, conveniently fixed input image sizes of 2N + 1 pixels in each dimension are used, in order to obtain fast and accurate resampling of image pyramid levels. Experiments comparing the construction time of both the conventional SIFT pyramid building scheme and the method suggested here show that the latter is almost four times faster than the former when running in the ARM Cortex-A8 core of a BeagleBoard-xM system. Keywords: multi-scale image pyramid, binomial filtering kernel, em- bedded robot vision 1 Introduction The design of autonomous mobile robots will benefit immensely from the use of physically small, low-power embedded systems that have recently become available, such as the BeagleBoard-xM [1] and the Raspberry Pi [2] boards.
    [Show full text]
  • Edge Detection
    Edge detection Digital Image Processing, K. Pratt, Chapter 15 Edge detection • Goal: identify objects in images – but also feature extraction, multiscale analysis, 3D reconstruction, motion recognition, image restoration, registration • Classical definition of the edge detection problem: localization of large local changes in the grey level image → large graylevel gradients – This definition does not apply to apparent edges, which require a more complex definition – Extension to color images • Contours are very important perceptual cues! – They provide a first saliency map for the interpretation of image semantics Contours as perceptual cues Contours as perceptual cues What do we detect? • Depending on the impulse response of the filter, we can detect different types of graylevel discontinuities – Isolate points (pixels) – Lines with a predefined slope – Generic contours • However, edge detection implies the evaluation of the local gradient and corresponds to a (directional) derivative Detection of Discontinuities • Point Detection Detected point Detection of Discontinuities • Line detection R1 R2 R3 R4 Detection of Discontinuities • Line Detection Example: Edge detection • mage locations with abrupt I changes → differentiation → high pass filtering f[,] m n Intensity profile n m ∂ f[,] m n ∂n n Types of edges Continuous domain edge models 2D discrete domain single pixel spot models Discrete domain edge models b a Profiles of image intensity edges Types of edge detectors • Unsupervised or autonomous: only rely on local image features
    [Show full text]
  • SIFTSIFT -- Thethe Scalescale Invariantinvariant Featurefeature Transformtransform
    SIFTSIFT -- TheThe ScaleScale InvariantInvariant FeatureFeature TransformTransform Distinctive image features from scale-invariant keypoints. David G. Lowe, International Journal of Computer Vision, 60, 2 (2004), pp. 91-110 Presented by Ofir Pele. Based upon slides from: - Sebastian Thrun and Jana Košecká - Neeraj Kumar Correspondence ■ Fundamental to many of the core vision problems – Recognition – Motion tracking – Multiview geometry ■ Local features are the key Images from: M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the the International Conference on Computer Vision (ICCV2003 ( Local Features: Detectors & Descriptors Detected Descriptors Interest Points/Regions <0 12 31 0 0 23 …> <5 0 0 11 37 15 …> <14 21 10 0 3 22 …> Ideal Interest Points/Regions ■ Lots of them ■ Repeatable ■ Representative orientation/scale ■ Fast to extract and match SIFT Overview Detector 1. Find Scale-Space Extrema 2. Keypoint Localization & Filtering – Improve keypoints and throw out bad ones 3. Orientation Assignment – Remove effects of rotation and scale 4. Create descriptor – Using histograms of orientations Descriptor SIFT Overview Detector 1.1. FindFind Scale-SpaceScale-Space ExtremaExtrema 2. Keypoint Localization & Filtering – Improve keypoints and throw out bad ones 3. Orientation Assignment – Remove effects of rotation and scale 4. Create descriptor – Using histograms of orientations Descriptor Scale Space ■ Need to find ‘characteristic scale’ for feature ■ Scale-Space: Continuous function of scale σ – Only reasonable kernel is
    [Show full text]
  • CSE 473/573 Computer Vision and Image Processing (CVIP)
    CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu [email protected] Lecture 11 – Local Features 1 Schedule • Last class – We started local features • Today – More on local features • Readings for today: Forsyth and Ponce Chapter 5 2 A hard feature matching problem NASA Mars Rover images Overview • Corners (Harris Detector) • Blobs • Descriptors Harris corner detector summary • Good corners – High contrast – Sharp change in edge orientation • Image features at good corners – Large gradients that change direction sharply • Will have 2 large eigenvalues • Compute matrix H by summing over window Overview • Corners (Harris Detector) • Blobs • Descriptors Blob detection with scale selection Achieving scale covariance • Goal: independently detect corresponding regions in scaled versions of the same image • Need scale selection mechanism for finding characteristic region size that is covariant with the image transformation Recall: Edge detection Edge f d Derivative g of Gaussian dx d Edge = maximum f ∗ g of derivative dx Source: S. Seitz Edge detection, Take 2 f Edge Second derivative d 2 g of Gaussian dx2 (Laplacian) d 2 f ∗ g Edge = zero crossing dx2 of second derivative Source: S. Seitz From edges to blobs • Edge = ripple • Blob = superposition of two ripples maximum Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is “matched” to the scale of the blob Estimating scale - I • Assume we have detected a corner • How big is the neighborhood?
    [Show full text]
  • University of Cambridge Engineering Part IB Paper 8 Information Engineering Handout 2: Feature Extraction Roberto Cipolla May 20
    University of Cambridge Engineering Part IB Paper 8 Information Engineering Handout 2: Feature Extraction Roberto Cipolla May 2018 2 Engineering Part IB: Paper 8 Image Matching Image Intensities We can represent a monochrome image as a matrix I(x, y) of intensity values. The size of the matrix is typically 320 240 × (QVGA), 640 480 (VGA) or 1280 720 (HD) and the × × intensity values are usually sampled to an accuracy of 8 bits (256 grey levels). For colour images each colour channel (e.g. RGB) is stored separately. If a point on an object is visible in view, the corresponding pixel intensity, I(x, y) is a function of many geometric and photometric variables, including: 1. The position and orientation of the camera; 2. The geometry of the scene (3D shapes and layout); 3. The nature and distribution of light sources; 4. The reflectance properties of the surfaces: specular ↔ Lambertian, albedo 0 (black) 1 (white); ↔ 5. The properties of the lens and the CCD. In practice the point may also only be partially visible or its appearance may be also be affected by occlusion. Feature Extraction 3 Data reduction With current computer technology, it is necessary to discard most of the data coming from the camera before any attempt is made at real-time image interpretation. images generic salient features → 10 MBytes/s 10 KBytes/s (mono CCD) All subsequent interpretation is performed on the generic rep- resentation, not the original image. We aim to: Dramatically reduce the amount of data. • Preserve the useful information in the images (such as the • albedo changes and 3D shape of objects in the scene).
    [Show full text]
  • Orientation Assignment − Extraction of Descriptor Components Orientation Assignment
    SIFT, SURF GLOH descriptors Dipartimento di Sistemi e Informatica SIFT Scale Invariant Feature Transform • SIFT method has been introduced by D. Lowe in 2004 to represent visual entities according to their local properties. The method employs local features taken in correspondence of salient points (referred to as keypoints or SIFT points) • The original Lowe’s algorithm: Given a grey-scale image: - Build a Gaussian-blurred image pyramid - Subtract adjacent levels to obtain a Difference of Gaussians (DoG) pyramid (so approximating the Laplacian of Gaussians) - Take local extrema of the DoG filters at different scales as keypoints For each keypoint: - Evaluate local gradients in a neighbourhood of the keypoint with orientations relative to the keypoint orientation and normalize - Build a descriptor as a feature vector with the salient keypoint information • SIFT descriptors are therefore obtained in the following three steps: A. Keypoint detection using local extrema of DoG filters B. Computation of keypoint descriptor C. SIFT descriptor derivation • Keypoints (their SIFT descriptors) are used to characterize shapes with invariant properties • Image points selected as keypoints and their SIFT descriptors are robust under: - Luminance change (due to difference-based metrics) - Rotation (due to local orientations wrt the keypoint canonical) - Scale change (due to scale-space) SIFT Keypoint detection Keypoints are local scale-space maxima of the Differences of Gaussians. They correspond to local min/max points in image I(x,y) that keep stable at different scales σ A1. Obtain a Difference of Gaussians pyramid Resample Blur Blur: is doubled from the bottom to top of each pyramid Resample: pyramid images are sub-sampled from scale to scale Subtract: adjacent levels of pyramid images are subtracted • In order to build the pyramids, the original image is convoluted with a set of Gaussians, so as to obtain a set of images that differ by k in the scale space.
    [Show full text]