Planning for Frequency Continuity in Hf Broadcasting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kindergarten High Frequency Word List
Kindergarten High Frequency Word List The following 40 words are the high frequency Kindergarten words. They are divided according to their probability of occurring in the corresponding DRA text levels. However, many of these words can occur throughout all levels. The goal is for all students to read, write, and use these words correctly by the end of Kindergarten. Level 1 Level 2 Level 3 Level 4 Level 5 a me to yes big I go in cat for is at on dog he the you like up she mom we my with this dad it by said look can no love play went see am do was and C:\Users\metcalfr\Downloads\K_5_High_Frequency_Word_Lists (2).docx October 2014 First Grade High Frequency Word list The goal is for all students to read, write, and use these words (and words from the kindergarten word list) correctly by the end of first grade. after have please all her saw an here should are him so as his some be I’m thank because if that but into them came just then come know they could little there day make us did many very end new want from not were get of what goes one when going or where good our who had out will has over would your C:\Users\metcalfr\Downloads\K_5_High_Frequency_Word_Lists (2).docx October 2014 Second Grade High Frequency Word List The goal is for all students to read, write, and use these words (and the words from preceding grade level word lists) correctly by the end of second grade. -
High Frequency Communications – an Introductory Overview
High Frequency Communications – An Introductory Overview - Who, What, and Why? 13 August, 2012 Abstract: Over the past 60+ years the use and interest in the High Frequency (HF -> covers 1.8 – 30 MHz) band as a means to provide reliable global communications has come and gone based on the wide availability of the Internet, SATCOM communications, as well as various physical factors that impact HF propagation. As such, many people have forgotten that the HF band can be used to support point to point or even networked connectivity over 10’s to 1000’s of miles using a minimal set of infrastructure. This presentation provides a brief overview of HF, HF Communications, introduces its primary capabilities and potential applications, discusses tools which can be used to predict HF system performance, discusses key challenges when implementing HF systems, introduces Automatic Link Establishment (ALE) as a means of automating many HF systems, and lastly, where HF standards and capabilities are headed. Course Level: Entry Level with some medium complexity topics Agenda • HF Communications – Quick Summary • How does HF Propagation work? • HF - Who uses it? • HF Comms Standards – ALE and Others • HF Equipment - Who Makes it? • HF Comms System Design Considerations – General HF Radio System Block Diagram – HF Noise and Link Budgets – HF Propagation Prediction Tools – HF Antennas • Communications and Other Problems with HF Solutions • Summary and Conclusion • I‟d like to learn more = “Critical Point” 15-Aug-12 I Love HF, just about On the other hand… anybody can operate it! ? ? ? ? 15-Aug-12 HF Communications – Quick pretest • How does HF Communications work? a. -
A Brief History of Radio Broadcasting in Africa
A Brief History of Radio Broadcasting in Africa Radio is by far the dominant and most important mass medium in Africa. Its flexibility, low cost, and oral character meet Africa's situation very well. Yet radio is less developed in Africa than it is anywhere else. There are relatively few radio stations in each of Africa's 53 nations and fewer radio sets per head of population than anywhere else in the world. Radio remains the top medium in terms of the number of people that it reaches. Even though television has shown considerable growth (especially in the 1990s) and despite a widespread liberalization of the press over the same period, radio still outstrips both television and the press in reaching most people on the continent. The main exceptions to this ate in the far south, in South Africa, where television and the press are both very strong, and in the Arab north, where television is now the dominant medium. South of the Sahara and north of the Limpopo River, radio remains dominant at the start of the 21St century. The internet is developing fast, mainly in urban areas, but its growth is slowed considerably by the very low level of development of telephone systems. There is much variation between African countries in access to and use of radio. The weekly reach of radio ranges from about 50 percent of adults in the poorer countries to virtually everyone in the more developed ones. But even in some poor countries the reach of radio can be very high. In Tanzania, for example, nearly nine out of ten adults listen to radio in an average week. -
Mass Media in the USA»
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by BSU Digital Library Mass Media In The USA K. Khomtsova, V. Zavatskaya The topic of the research is «Mass media in the USA». It is topical because mass media of the United States are world-known and a lot of people use American mass media, especially internet resources. The subject matter is peculiarities of different types of mass media in the USA. The aim of the survey is to study the types of mass media that are popular in the USA nowadays. To achieve the aim the authors fulfill the following tasks: 1. to define the main types of mass media in the USA; 2. to analyze the popularity of different kinds of mass media in the USA; 3. to mark out the peculiarities of American mass media. The mass media are diversified media technologies that are intended to reach a large audience by mass communication. There are several types of mass media: the broadcast media such as radio, recorded music, film and tel- evision; the print media include newspapers, books and magazines; the out- door media comprise billboards, signs or placards; the digital media include both Internet and mobile mass communication. [4]. In the USA the main types of mass media today are: newspapers; magazines; radio; television; Internet. NEWSPAPERS The history of American newspapers goes back to the 17th century with the publication of the first colonial newspapers. It was James Franklin, Benjamin Franklin’s older brother, who first made a news sheet. -
Research on the Safe Broadcasting of Television Program
MATEC Web of Conferences 63, 04002 (2016) DOI: 10.1051/matecconf/20166304002 MMME 2016 Research on the Safe Broadcasting of Television Program Jin Bao SONG1,a, Jin Hong SONG2 and Jian Ping CHAI1 1Information Engineering School, Communication University of China, Beijing, China 2Shandong Gold Mining Jiaojia Gold Mine (Laizhou) co.,LTD Abstract. The existing way of broadcasting and television monitoring has a lot of problems in China. On the basis of the signal technical indicators monitoring in the present broadcasting and television monitoring system, this paper further extends the function of the monitoring network in order to broaden the services of monitoring business and improve the effect and efficiency of monitoring work. The problem of identifying video content and channel in television and related electronic media is conquered at a low cost implementation way and the flexible technology mechanism. The coverage for video content and identification of the channel is expanded. The informative broadcast entries are generated after a series of video processing. The value of the numerous broadcast data is deeply excavated by using big data processing in order to realize a comprehensive, objective and accurate information monitoring for the safe broadcasting of television program. 1 Introduction paper is the development of cheap monitoring hardware devices which can be widely deployed to the village, so The existing way of broadcasting and television the actual situation of the user terminal broadcasting can monitoring has a lot of problems in China. Firstly, the be monitored by the administration of radio, film and existing way of monitoring is the front-end monitoring television. -
History of Radio Broadcasting in Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1963 History of radio broadcasting in Montana Ron P. Richards The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Richards, Ron P., "History of radio broadcasting in Montana" (1963). Graduate Student Theses, Dissertations, & Professional Papers. 5869. https://scholarworks.umt.edu/etd/5869 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE HISTORY OF RADIO BROADCASTING IN MONTANA ty RON P. RICHARDS B. A. in Journalism Montana State University, 1959 Presented in partial fulfillment of the requirements for the degree of Master of Arts in Journalism MONTANA STATE UNIVERSITY 1963 Approved by: Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number; EP36670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiuartation PVUithing UMI EP36670 Published by ProQuest LLC (2013). -
High-Frequency Radiowa Ve Probing of the High-Latitude Ionosphere
RAYMOND A. GREENWALD HIGH-FREQUENCY RADIOWAVE PROBING OF THE HIGH-LATITUDE IONOSPHERE During the past several years, a program of high-frequency radiowave studies of the high-latitude ionosphere has been developed in the APL Space Department. Studies are now being conducted on the formation and motion of high-latitude ionospheric electron density irregularities, using a sophisti cated high-frequency radar system installed at Goose Bay, .Labrador. The radar antenna is also being used to receive signals from a beacon transmitter located at Thule, Greenland. This information is providing a better understanding of the spatial and temporal variability of high-latitude propagation channels and their relationship to disturbances in the magnetosphere-ionosphere system . INTRODUCTION turbances prior to their impingement on the magneto At altitudes above 100 kilometers, the atmosphere sphere is quite limited. Therefore, we still have only of the earth gradually changes from a predominantly limited success in forecasting sudden changes in the neutral medium to an increasingly ionized gas or plas high-latitude ionosphere and consequently in high ma. The ionization is caused chiefly by a combination latitude radiowave propagation. of solar extreme ultraviolet radiation and, at high lati In order for space scientists to obtain a better un tudes, particle precipitation from the earth's magne derstanding of the various interactions occurring tosphere. Because of its ionized nature between 100 among the solar wind, the magnetosphere, and the ion and 1000 kilometers, this part of the atmosphere is osphere, active measurement programs are conduct commonly referred to as the ionosphere. In this re ed in all three regions. -
UNIT -1 Microwave Spectrum and Bands-Characteristics Of
UNIT -1 Microwave spectrum and bands-characteristics of microwaves-a typical microwave system. Traditional, industrial and biomedical applications of microwaves. Microwave hazards.S-matrix – significance, formulation and properties.S-matrix representation of a multi port network, S-matrix of a two port network with mismatched load. 1.1 INTRODUCTION Microwaves are electromagnetic waves (EM) with wavelengths ranging from 10cm to 1mm. The corresponding frequency range is 30Ghz (=109 Hz) to 300Ghz (=1011 Hz) . This means microwave frequencies are upto infrared and visible-light regions. The microwaves frequencies span the following three major bands at the highest end of RF spectrum. i) Ultra high frequency (UHF) 0.3 to 3 Ghz ii) Super high frequency (SHF) 3 to 30 Ghz iii) Extra high frequency (EHF) 30 to 300 Ghz Most application of microwave technology make use of frequencies in the 1 to 40 Ghz range. During world war II , microwave engineering became a very essential consideration for the development of high resolution radars capable of detecting and locating enemy planes and ships through a Narrow beam of EM energy. The common characteristics of microwave device are the negative resistance that can be used for microwave oscillation and amplification. Fig 1.1 Electromagnetic spectrum 1.2 MICROWAVE SYSTEM A microwave system normally consists of a transmitter subsystems, including a microwave oscillator, wave guides and a transmitting antenna, and a receiver subsystem that includes a receiving antenna, transmission line or wave guide, a microwave amplifier, and a receiver. Reflex Klystron, gunn diode, Traveling wave tube, and magnetron are used as a microwave sources. -
Mobile TV Technologies Zahid Ghadialy March 2006
Mobile TV Technologies Zahid Ghadialy March 2006 © 2006 Zahid Ghadialy What is Mobile TV Mobile TV Broadcasting allows the user to watch their favourite TV programs such as dramas, news, music, sports and documentaries on their mobile device. The service works by receiving a specialised digital TV broadcast signal from the air in much the same way as televisions at home will do in future. Channel guides will also be broadcast allowing users to keep abreast of the latest programs on air. It is not the same as a streaming video service over 3G or GPRS, but one which is optimised for longer period TV viewing by large numbers of simultaneous users with high picture quality and low battery power consumption. Mobile TV Technologies BCMCS: BroadCast MultiCast Services (3GPP2) DVB-H: Digital Video Braodcasting-Handheld (ETSI) ISDB-T: Integrated Service Digital Broadcasting – Terrestrial (ARIB) T-DMB: Terrestrial Digital Multimedia Broadcasting (Korean Standard) MediaFLO: Media Forward Link Only (Qualcomm proprietary) MBMS is not Mobile TV MBMS uses existing 3G Spectrum whereas Mobile TV needs new frequency spectrum Channel switching is faster using Mobile TV technologies compared to MBMS Very little number of channels using MBMS are possible as compared to Mobile TV technologies Battery life is much less if MBMS is used as compared to Mobile TV technologies Higher coverage possible with Mobile TV technologies Mobile TV Technologies In Depth Analysis Qualcomm has pulled together The FLO Forum, (Forward Link Only) which is pushing to standardize this Qualcomm’s technology for transmitting multimedia content to mobile devices. MediaFLO Qualcomm proprietary It uses unidirectional COFDM (Coded Orthogonal Frequency Division Multiplexing) Its under the process of standardisation Interested parties include LG, Sanyo, Sharp, Huawei In US, MediaFLO will deliver 29 channels on TV channel 55. -
NAB's Guide to Careers in Television
NAB’s Guide to Careers in Television Second Edition by Liz Chuday TABLE OF CONTENTS Table of Contents…………………………………..……………………......... 1-3 Introduction………………………………………………………………... ......... 4 Acknowledgements…………………………………………………………....... 6 A Word About Station Ownership………………..…………… ..................…7 The General Administration Department…………………. ...................... 8-9 General Manager……………..……………….……………… ..................... 8 Station Manager……..…………………………………………….. .............. 8 Human Resources…………………………..………………........................ 8 Executive Assistant…………………………..…………………… ............... 9 Business Manager/Controller…………………………… ........................... 9 The Sales and Marketing Department………………………….............. 10-11 Director of Sales…………………..………………………….. ................... 10 General Sales Manager…………………………………………................ 10 National Sales Manager……...……………………..……......................... 10 Marketing Director or Director of Non-Traditional Revenue……….……………...................... 10 Local Sales Manager..……………………………………………. ............. 11 Account Executive..……………………….………………………............. .11 Sales Assistant..………………………….…………………………............ 11 The Traffic Department………………..…………………………................... 12 Operations Manager…………………………………………..................... 12 Traffic Manager…………………………………….………………. ............ 12 Traffic Supervisor………………………………….……………….............. 12 Traffic Assistant…………………………………………….………............. 12 Order Entry Coordinator/Log Editors………………………. .................... 12 The Research Department………………………………………. -
HF Radio Propagation
Introduction to HF Radio Propagation 1. The Ionosphere 1.1 The Regions of the Ionosphere In a region extending from a height of about 50 km to over 500 km, most of the molecules of the atmosphere are ionised by radiation from the Sun. This region is called the ionosphere (see Figure 1.1). Ionisation is the process in which electrons, which are negatively charged, are removed from neutral atoms or molecules to leave positively charged ions and free electrons. It is the ions that give their name to the ionosphere, but it is the much lighter and more freely moving electrons which are important in terms of HF (high frequency) radio propagation. The free electrons in the ionosphere cause HF radio waves to be refracted (bent) and eventually reflected back to earth. The greater the density of electrons, the higher the frequencies that can be reflected. During the day there may be four regions present called the D, E, F1 and F2 regions. Their approximate height ranges are: • D region 50 to 90 km; • E region 90 to 140 km; • F1 region 140 to 210 km; • F2 region over 210 km. At certain times during the solar cycle the F1 region may not be distinct from the F2 region with the two merging to form an F region. At night the D, E and F1 regions become very much depleted of free electrons, leaving only the F2 region available for communications. Only the E, F1 and F2 regions refract HF waves. The D region is very important though, because while it does not refract HF radio waves, it does absorb or attenuate them (see Section 1.5). -
Technology, Media and Telecommunications Review
Telecommunications Review Telecommunications the Technology, Media and and Media Technology, Technology, Media and Telecommunications Review Eleventh Edition Editor Matthew T Murchison Eleventh Edition lawreviews © 2020 Law Business Research Ltd Technology, Media and Telecommunications Review Eleventh Edition Reproduced with permission from Law Business Research Ltd This article was first published in December 2020 For further information please contact [email protected] Editor Matthew T Murchison lawreviews © 2020 Law Business Research Ltd PUBLISHER Tom Barnes SENIOR BUSINESS DEVELOPMENT MANAGER Nick Barette BUSINESS DEVELOPMENT MANAGER Joel Woods SENIOR ACCOUNT MANAGERS Pere Aspinall, Jack Bagnall ACCOUNT MANAGERS Olivia Budd, Katie Hodgetts, Reece Whelan PRODUCT MARKETING EXECUTIVE Rebecca Mogridge RESEARCH LEAD Kieran Hansen EDITORIAL COORDINATOR Gavin Jordan PRODUCTION AND OPERATIONS DIRECTOR Adam Myers PRODUCTION EDITOR Anna Andreoli SUBEDITOR Martin Roach CHIEF EXECUTIVE OFFICER Nick Brailey Published in the United Kingdom by Law Business Research Ltd, London Meridian House, 34–35 Farringdon Street, London, EC4A 4HL, UK © 2020 Law Business Research Ltd www.TheLawReviews.co.uk No photocopying: copyright licences do not apply. The information provided in this publication is general and may not apply in a specific situation, nor does it necessarily represent the views of authors’ firms or their clients. Legal advice should always be sought before taking any legal action based on the information provided. The publishers