Mouse P2rx6 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse P2rx6 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse P2rx6 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a P2rx6 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The P2rx6 gene (NCBI Reference Sequence: NM_011028 ; Ensembl: ENSMUSG00000022758 ) is located on Mouse chromosome 16. 12 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 12 (Transcript: ENSMUST00000023441). Exon 4~8 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse P2rx6 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-180P3 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous mutant mice exhibit a significant increase in thermal response latency during hot plate testing, and are resistant to metrazol-induced seizures. Exon 4 starts from about 33.76% of the coding region. The knockout of Exon 4~8 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 2410 bp, and the size of intron 8 for 3'-loxP site insertion: 1987 bp. The size of effective cKO region: ~1433 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 4 5 6 7 8 9 10 12 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse P2rx6 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7933bp) | A(23.36% 1853) | C(26.66% 2115) | T(26.09% 2070) | G(23.89% 1895) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr16 + 17564189 17567188 3000 browser details YourSeq 40 334 377 3000 97.7% chr1 - 90899611 90899656 46 browser details YourSeq 36 131 180 3000 81.7% chr8 - 36189541 36189589 49 browser details YourSeq 35 131 182 3000 86.1% chr11 - 22550671 22550721 51 browser details YourSeq 33 317 408 3000 89.2% chr8 + 16246696 16246786 91 browser details YourSeq 27 2523 2552 3000 96.7% chr1 + 35871178 35871208 31 browser details YourSeq 26 131 158 3000 96.5% chr8 - 127112511 127112538 28 browser details YourSeq 20 384 403 3000 100.0% chr8 - 40875169 40875188 20 browser details YourSeq 20 384 403 3000 100.0% chr4 + 16214235 16214254 20 Note: The 3000 bp section upstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr16 + 17568622 17571621 3000 browser details YourSeq 279 12 641 3000 87.4% chr2 - 92464998 92959496 494499 browser details YourSeq 245 15 532 3000 88.0% chr11 - 6800792 6801362 571 browser details YourSeq 233 3 639 3000 86.6% chr16 - 13614261 13614945 685 browser details YourSeq 217 4 453 3000 86.3% chr9 + 22252904 22253411 508 browser details YourSeq 201 291 641 3000 88.4% chrX + 12530264 12530614 351 browser details YourSeq 192 330 866 3000 83.6% chr11 + 31818482 31818974 493 browser details YourSeq 191 21 532 3000 89.1% chrX - 152285807 152286319 513 browser details YourSeq 176 293 617 3000 87.5% chr3 + 89699238 89699582 345 browser details YourSeq 176 283 641 3000 87.8% chr13 + 32412362 32412733 372 browser details YourSeq 171 283 641 3000 83.5% chr12 - 112832477 112832833 357 browser details YourSeq 171 283 622 3000 83.3% chr11 - 106508863 106509172 310 browser details YourSeq 170 312 617 3000 89.1% chr9 - 73788689 73789011 323 browser details YourSeq 167 293 619 3000 86.2% chr18 - 64507016 64507345 330 browser details YourSeq 165 292 641 3000 90.4% chr15 + 38188806 38189178 373 browser details YourSeq 163 311 622 3000 88.1% chr16 + 30245605 30245927 323 browser details YourSeq 161 387 645 3000 86.4% chr10 - 68340189 68340468 280 browser details YourSeq 159 328 579 3000 87.0% chr7 - 99294477 99294733 257 browser details YourSeq 157 283 620 3000 84.2% chr11 - 97917441 97917773 333 browser details YourSeq 156 358 617 3000 86.5% chr13 - 30105527 30105785 259 Note: The 3000 bp section downstream of Exon 8 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: P2rx6 purinergic receptor P2X, ligand-gated ion channel, 6 [ Mus musculus (house mouse) ] Gene ID: 18440, updated on 10-Oct-2019 Gene summary Official Symbol P2rx6 provided by MGI Official Full Name purinergic receptor P2X, ligand-gated ion channel, 6 provided by MGI Primary source MGI:MGI:1337113 See related Ensembl:ENSMUSG00000022758 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as P2x6; P2xm; P2rxl1 Expression Broad expression in subcutaneous fat pad adult (RPKM 7.9), ovary adult (RPKM 5.8) and 20 other tissues See more Orthologs human all Genomic context Location: 16; 16 A3 See P2rx6 in Genome Data Viewer Exon count: 12 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 16 NC_000082.6 (17561867..17572015) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 16 NC_000082.5 (17561978..17572105) Chromosome 16 - NC_000082.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 3 transcripts Gene: P2rx6 ENSMUSG00000022758 Description purinergic receptor P2X, ligand-gated ion channel, 6 [Source:MGI Symbol;Acc:MGI:1337113] Gene Synonyms P2rxl1, P2xm Location Chromosome 16: 17,561,885-17,577,800 forward strand. GRCm38:CM001009.2 About this gene This gene has 3 transcripts (splice variants), 122 orthologues, 6 paralogues, is a member of 1 Ensembl protein family and is associated with 6 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags P2rx6- ENSMUST00000023441.10 2345 389aa ENSMUSP00000023441.4 Protein coding CCDS28007 O54803 TSL:1 201 GENCODE basic APPRIS P1 P2rx6- ENSMUST00000171002.9 1353 362aa ENSMUSP00000132727.1 Protein coding CCDS49778 E9PY29 TSL:1 202 GENCODE basic P2rx6- ENSMUST00000231806.1 3382 286aa ENSMUSP00000156201.1 Nonsense mediated - A0A338P727 - 203 decay Page 6 of 8 https://www.alphaknockout.com 35.92 kb Forward strand 17.56Mb 17.57Mb 17.58Mb Genes (Comprehensive set... P2rx6-201 >protein coding P2rx6-202 >protein coding P2rx6-203 >nonsense mediated decay Contigs AC115733.14 > Genes < Lrrc74b-201protein coding < Slc7a4-202protein coding (Comprehensive set... < Lrrc74b-202protein coding < Slc7a4-201protein coding < Lrrc74b-203lncRNA < Slc7a4-205protein coding < Lrrc74b-204protein coding < Slc7a4-210protein coding < Slc7a4-211retained intron < Slc7a4-208protein coding < Slc7a4-206protein coding < Slc7a4-204protein coding < Slc7a4-203protein coding < Slc7a4-209protein coding < Slc7a4-207protein coding Regulatory Build 17.56Mb 17.57Mb 17.58Mb Reverse strand 35.92 kb Regulation Legend CTCF Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding processed transcript RNA gene Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000023441 10.13 kb Forward strand P2rx6-201 >protein coding ENSMUSP00000023... Transmembrane heli... Low complexity (Seg) TIGRFAM P2X purinoreceptor Prints P2X6 purinoceptor P2X purinoreceptor Pfam PF00864 PROSITE patterns P2X purinoreceptor PIRSF P2X purinoreceptor PANTHER P2X6 purinoceptor PTHR10125 Gene3D 1.10.287.940 P2X purinoreceptor extracellular domain superfamily All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 40 80 120 160 200 240 280 320 389 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • Cells Δγ Lineage Choice and Shapes Peripheral Purinergic P2X7
    Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral δγ Cells This information is current as Michela Frascoli, Jessica Marcandalli, Ursula Schenk and of October 2, 2021. Fabio Grassi J Immunol 2012; 189:174-180; Prepublished online 30 May 2012; doi: 10.4049/jimmunol.1101582 http://www.jimmunol.org/content/189/1/174 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/05/30/jimmunol.110158 Material 2.DC1 http://www.jimmunol.org/ References This article cites 31 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/1/174.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral gd Cells Michela Frascoli,* Jessica Marcandalli,* Ursula Schenk,*,1 and Fabio Grassi*,† TCR signal strength instructs ab versus gd lineage decision in immature T cells.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Polyhexamethylene Guanidine Phosphate Damages Tight Junctions and the F-Actin Architecture by Activating Calpain-1 Via the P2RX7/Ca2+ Signaling Pathway
    cells Article Polyhexamethylene Guanidine Phosphate Damages Tight Junctions and the F-Actin Architecture by Activating Calpain-1 via the P2RX7/Ca2+ Signaling Pathway Sun Woo Jin y, Gi Ho Lee y, Hoa Thi Pham, Jae Ho Choi and Hye Gwang Jeong * College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; [email protected] (S.W.J.); [email protected] (G.H.L.); [email protected] (H.T.P.); [email protected] (J.H.C.) * Correspondence: [email protected]; Tel.: +82-42-821-5936 These authors contributed equally to this work. y Received: 14 November 2019; Accepted: 22 December 2019; Published: 24 December 2019 Abstract: Polyhexamethylene guanidine phosphate (PHMG-p), a member of the polymeric guanidine family, has strong antimicrobial activity and may increase the risk of inflammation-associated pulmonary fibrosis. However, the effect of PHMG-p on the barrier function of the bronchial epithelium is unknown. Epithelial barrier functioning is maintained by tight junctions (TJs); damage to these TJs is the major cause of epithelial barrier breakdown during lung inflammation. The present study showed that, in BEAS-2B human bronchial epithelial cells, exposure to PHMG-p reduced the number of TJs and the E-cadherin level and impaired the integrity of the F-actin architecture. Furthermore, exposure to PHMG-p stimulated the calcium-dependent protease calpain-1, which breaks down TJs. However, treatment with the calpain-1 inhibitor, ALLN, reversed the PHMG-p-mediated impairment of TJs and the F-actin architecture. Furthermore, exposure to PHMG-p increased the intracellular Ca2+ level via P2X purinoreceptor 7 (P2RX7) and inhibition of P2RX7 abolished the PHMG-p-induced calpain-1 activity and protein degradation and increased the intracellular Ca2+ level.
    [Show full text]
  • Genomics of Inherited Bone Marrow Failure and Myelodysplasia Michael
    Genomics of inherited bone marrow failure and myelodysplasia Michael Yu Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Mary-Claire King, Chair Akiko Shimamura Marshall Horwitz Program Authorized to Offer Degree: Molecular and Cellular Biology 1 ©Copyright 2015 Michael Yu Zhang 2 University of Washington ABSTRACT Genomics of inherited bone marrow failure and myelodysplasia Michael Yu Zhang Chair of the Supervisory Committee: Professor Mary-Claire King Department of Medicine (Medical Genetics) and Genome Sciences Bone marrow failure and myelodysplastic syndromes (BMF/MDS) are disorders of impaired blood cell production with increased leukemia risk. BMF/MDS may be acquired or inherited, a distinction critical for treatment selection. Currently, diagnosis of these inherited syndromes is based on clinical history, family history, and laboratory studies, which directs the ordering of genetic tests on a gene-by-gene basis. However, despite extensive clinical workup and serial genetic testing, many cases remain unexplained. We sought to define the genetic etiology and pathophysiology of unclassified bone marrow failure and myelodysplastic syndromes. First, to determine the extent to which patients remained undiagnosed due to atypical or cryptic presentations of known inherited BMF/MDS, we developed a massively-parallel, next- generation DNA sequencing assay to simultaneously screen for mutations in 85 BMF/MDS genes. Querying 71 pediatric and adult patients with unclassified BMF/MDS using this assay revealed 8 (11%) patients with constitutional, pathogenic mutations in GATA2 , RUNX1 , DKC1 , or LIG4 . All eight patients lacked classic features or laboratory findings for their syndromes.
    [Show full text]
  • Novel Approach to Chronic Cough
    Moksliniai darbai ir apžvalgos Novel approach to chronic cough NAUJAS POŽIŪRIS Į LĖTINĮ KOSULĮ LAIMA KONDRATAVIČIENĖ, KRISTINA BIEKŠIENĖ, SKAIDRIUS MILIAUSKAS Department of Pulmonology, Medical Academy, Lithuanian University of Health Sciences Summary. Cough is the most common symptom for which people seek medical advice. A multitude of reasons can cause it. In clinical practice, a new term “Cough hypersensitivity syndrome“ was proposed, which defines unaccountable reasons for cough and different groups of patients with chronic cough. Adenosine triphosphate (ATP) as a driver of chronic cough is the most important target in nowadays clinical trials. Extracellular ATP activates P2X purinoreceptor 3 (P2X3) receptor channels, which are expressed in sensory neurons. New treatment methods that block P2X3 receptors are being developed. Keywords: chronic cough, cough hypersensitivity syndrome, adenosine triphosphate, novel treatment options. Santrauka. Lėtinis kosulys yra dažniausias skundas, dėl kurio pacientai kreipiasi į gydytojus. Kosulį sukelia įvairios priežastys ir sutrikimai. Klinikinėje praktikoje vartojamas naujas terminas „Kosulio hiperjautrumo sindromas“, kuris apima neaiškos kilmės kosulio priežastis bei skirtingas pacientų, besiskundžiančių lėtiniu kosuliu, grupes. Adenozino trifosfatas (ATP), kaip vienas pagrindinių kosulį sukeliančių veiksnių, šiuo metu yra dažniausiai klinikiniuose tyrimuose tiriama cheminė medžiaga. ATP aktyvuoja P2X purino receptoriaus 3 (P2X3) jonų kanalus, kurie yra išreikšti jutiminiuose neuronuose. Nauji
    [Show full text]
  • Datasheet BA3178 Anti-P2RX6 Antibody
    Product datasheet Anti-P2RX6 Antibody Catalog Number: BA3178 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Basic Information Product Name Anti-P2RX6 Antibody Gene Name P2RX6 Source Rabbit IgG Species Reactivity human Tested Application WB Contents 500ug/ml antibody with PBS ,0.02% NaN3 , 1mg BSA and 50% glycerol. Immunogen A synthetic peptide corresponding to a sequence at the C-terminus of human P2X6(387-406aa VWRELALASQARLAECLRRS). Purification Immunogen affinity purified. Observed MW 60KD Dilution Ratios Western blot: 1:500-2000 Storage 12 months from date of receipt,-20℃ as supplied.6 months 2 to 8℃ after reconstitution. Avoid repeated freezing and thawing Background Information Purinergic receptor P2X-Like 1, also known as P2X6, is a protein that in humans is encoded by the P2RX6 gene. The encoded protein is associated with VE-cadherin at the adherens junctions of human umbilical vein endothelial cells. This gene belongs to the family of P2X receptors. P2RXL1 gene was mapped to chromosome 22q11 by fluorescence in situ hybridization. This gene is a receptor for ATP that acts as a ligand-gated ion channel. It can mediate rapid and selective permeability to cations. Reference Anti-P2RX6 Antibody被引用在0文献中。 暂无引用 FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC AND CLINICAL USE. 1 Product datasheet Anti-P2RX6 Antibody Catalog Number: BA3178 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Selected Validation Data Lane 1: U87 Cell LysateLane 2: 22RV1 Cell LysateLane 3: JURKAT Cell LysateLane 4: HT1080 Cell Lysate FOR RESEARCH USE ONLY.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • Sugar Causes Obesity and Metabolic Syndrome in Mice Independently of Sweet Taste
    Am J Physiol Endocrinol Metab 319: E276–E290, 2020. First published June 23, 2020; doi:10.1152/ajpendo.00529.2019. RESEARCH ARTICLE Sugar causes obesity and metabolic syndrome in mice independently of sweet taste Ana Andres-Hernando,1 Masanari Kuwabara,1 X David J. Orlicky,2 Aurelie Vandenbeuch,3,4 Christina Cicerchi,1 Sue C. Kinnamon,3,4 Thomas E. Finger,4,5 X Richard J. Johnson,1 and X Miguel A. Lanaspa1 1Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; 2Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; 3Department of Otolaryngology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; 4Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado; and 5Department of Cell and Developmental Biology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado Submitted 5 December 2019; accepted in final form 16 June 2020 Andres-Hernando A, Kuwabara M, Orlicky DJ, Vandenbeuch caloric sweeteners has skyrocketed over the last several cen- A, Cicerchi C, Kinnamon SC, Finger TE, Johnson RJ, Lanaspa turies, from an intake (based on sales) of ~4 pounds per capita MA. Sugar causes obesity and metabolic syndrome in mice indepen- per year in 1700 to over 150 pounds per capita per year in 2000 dently of sweet taste. Am J Physiol Endocrinol Metab 319: E276– E290, 2020. First published June 23, 2020; doi:10.1152/ajpendo. (12). Today nearly 70% of processed foods and beverages in 00529.2019.—Intake of sugars, especially the fructose component, is US supermarkets contain these sweeteners, including many strongly associated with the development of obesity and metabolic foods that one might initially not consider to contain such syndrome, but the relative role of taste versus metabolism in driving additives (30).
    [Show full text]
  • Ion Channels and Transporters in Lymphocyte Function and Immunity
    REVIEWS Ion channels and transporters in lymphocyte function and immunity Stefan Feske1, Edward Y. Skolnik2 and Murali Prakriya3 Abstract | Lymphocyte function is regulated by a network of ion channels and transporters in the plasma membrane of B and T cells. These proteins modulate the cytoplasmic concentrations of diverse cations, such as calcium, magnesium and zinc ions, which function as second messengers to regulate crucial lymphocyte effector functions, including cytokine production, differentiation and cytotoxicity. The repertoire of ion-conducting proteins includes calcium release-activated calcium (CRAC) channels, P2X receptors, transient receptor potential (TRP) channels, potassium channels, chloride channels and magnesium and zinc transporters. This Review discusses the roles of ion conduction pathways in lymphocyte function and immunity. Ion channels and ion transporters function as gateways Store-operated calcium channels Ion channels 2+ Pore-forming transmembrane for charged ions that cannot freely diffuse across lipid Ca is a well-established second messenger in lympho­ proteins that enable the flow of membrane barriers. They regulate the intracellular cytes that regulates proliferation, gene expression, motil- ions down an electrochemical concentration of various ions, such as calcium (Ca2+), ity and other functions. Similarly to in other mamm­alian gradient. magnesium (Mg2+) and zinc (Zn2+). The movement of cell types, the intracellular Ca2+ concentration in unstim- Ion transporters these cations across the plasma membrane depends on ulated B and T cells is maintained at ~50–100 nM, which 4 2+ Pore-forming transmembrane electrical gradients that are maintained in turn by potas- is ~10 -fold lower than the Ca concentration in the proteins that carry ions sium (K+), sodium (Na+) and chloride (Cl−) channels.
    [Show full text]
  • And Cystein Cathepsin-Dependent Cancer Cells Invasiveness
    Oncogene (2011) 30, 2108–2122 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE P2X7 receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness B Jelassi1, A Chantoˆme1, F Alcaraz-Pe´rez2, A Baroja-Mazo3, ML Cayuela2, P Pelegrin3,4, A Surprenant4 and S Roger1 1Inserm U921, Universite´ Franc¸ois Rabelais de Tours, 10 Boulevard Tonnelle´, Tours, France; 2Telomerase, Cancer and Aging Group, University Hospital ‘Virgen de la Arrixaca’-FFIS, Carretera Palmar, Murcia, Spain; 3Inflammation and Experimental Surgery Group, University Hospital ‘Virgen de la Arrixaca’-FFIS, Carretera Palmar, Murcia, Spain and 4Faculty of Life Science, Michael Smith Building D3315, University of Manchester, Manchester, UK ATP-gated P2X7 receptors (P2X7R) are unusual plasma cancer patients do not die because of local complications membrane ion channels that have been extensively studied of their primary solid tumour growth, which are in immune cells. More recently, P2X7R have been relatively well treated, but rather to the appearance of described as potential cancer cell biomarkers. However, metastases. The development of metastases consists of a mechanistic links between P2X7R and cancer cell complex series of events accomplished by tumour cells processes are unknown. Here, we show, in the highly after they acquire numerous abilities, one of which being aggressive human breast cancer cell line MDA-MB-435s, the acquisition of an invasive potency. This mainly lies that P2X7 receptor is highly expressed and fully into an enhanced migration and the ability to digest the functional. Its activation is responsible for the extension extracellular matrix (Gupta and Massague, 2006).
    [Show full text]