Characterizing the Earliest Stages of Partial Melting: a Study of the Pyrometamorphic Aureole of Miocene Mt

Total Page:16

File Type:pdf, Size:1020Kb

Characterizing the Earliest Stages of Partial Melting: a Study of the Pyrometamorphic Aureole of Miocene Mt UNLV Theses, Dissertations, Professional Papers, and Capstones May 2016 Characterizing the Earliest Stages of Partial Melting: A Study of the Pyrometamorphic Aureole of Miocene Mt. Perkins Pluton, Northwest Arizona Mathew Beshears University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geochemistry Commons, and the Geology Commons Repository Citation Beshears, Mathew, "Characterizing the Earliest Stages of Partial Melting: A Study of the Pyrometamorphic Aureole of Miocene Mt. Perkins Pluton, Northwest Arizona" (2016). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2639. http://dx.doi.org/10.34917/9112031 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. CHARACTERIZING THE EARLIEST STAGES OF PARTIAL MELTING: A STUDY OF THE PYROMETAMORPHIC AUREOLE OF MIOCENE MT. PERKINS PLUTON, NORTHWEST ARIZONA By Mathew Beshears Bachelor of Science in Geosciences Indiana University – Purdue University Indianapolis December 2011 A thesis submitted in partial fulfillment of the requirements for the Master of Science – Geoscience Department of Geoscience College of Sciences The Graduate College University of Nevada, Las Vegas May 2016 Thesis Approval The Graduate College The University of Nevada, Las Vegas April 13, 2016 This thesis prepared by Mathew Beshears entitled Characterizing the Earliest Stages of Partial Melting: A Study of the Pyrometamorphic Aureole of Miocene Mt. Perkins Pluton, Northwest Arizona is approved in partial fulfillment of the requirements for the degree of Master of Science – Geoscience Department of Geoscience Rodney V. Metcalf, Ph.D. Kathryn Hausbeck Korgan, Ph.D. Examination Committee Chair Graduate College Interim Dean Terry Spell, Ph.D. Examination Committee Member Jean Cline, Ph.D. Examination Committee Member George Rhee, Ph.D. Graduate College Faculty Representative ii Abstract Partial melting is an important process in the evolution of continental crust. Due to its progressive nature, evidence of the early stages of partial melting is often overprinted by later, advanced stages of partial melting. Experimental work has provided a model for the early stages of partial melting, but is limited to timescales of hours to weeks. Pyrometamorphic environments within the contact aureole of mafic intrusions provide natural laboratories for the study of the earliest stages of partial melt production on geologic time scales of 102 to 104 years. Samples collected along two traverses of the tilted pyrometamorphic aureole of the Mt. Perkins pluton provide an opportunity to quantify partial melt volume percent and chemistry at 2 kbar. Using titanium-in-quartz geothermometry, EPMA techniques to obtain mineral chemistry, and a point- counting method using imaging software, melt volume percent, whole-rock, melt, and residual chemistry and percent minerals in each category were quantified. Melt volume percent and temperature decrease with distance from the pluton. Melt geochemistries plot near the cotectic in the quartz-(Ab+Or)-An system. Plaigoclase anorthite components were quantified and compared with eachother based on textures. The earliest stages of partial melting are recorded in samples that experienced a lower heat budget distal to the pluton. These data confirm hypotheses that earliest melts are silica rich and become progressively enriched in other cations as melting continues. iii Table of Contents Abstract iii Table of Contents iv List of Tables vii List of Figures xiii 1. Introduction 1 2. Background 3 2.1 Recognizing Pseudomelt Pockets 3 2.2 Current Model for Early Stages of Partial Melt (Low Melt Percent) 4 2.3 The Plagioclase Problem 5 2.4 Melt mobility 7 3. Geologic Setting – Mt. Perkins pluton 9 4. Study Design 12 4.1 Hypotheses 12 4.2 Predictions 13 5. Methods 16 5.1 Sample Collection 16 iv 5.2 Point counting method 18 5.3 Analytical Methods 21 5.4 Geothermometry 22 6. Results 25 6.1 Mineralogy and Textures 25 6.2 Point Count Results 26 6.3 Melt connectivity 27 6.4 Plagioclase chemistry with respect to textures. 28 6.5 A and B traverse plagioclase. 30 6.6 Calculated whole-rock, melt, and residual geochemistry 31 6.7 Melt, residual, and whole rock geochemistry in the Q-An-(Ab+Or)-H2O system33 6.8 Melt volume percent 34 6.9 TitaniQ geothermometry 34 7.1 Discussion 36 7.1 Melt Textures 36 7.2 Melt Reaction 36 7.3 Melt Volume 38 7.4 Geochemical evolution 39 7.5 Plagioclase geochemistry 40 v 8. Conclusions 42 Appendix A 81 Appendix B 101 Appendix C 167 References 218 Cirriculum Vitae 222 vi List of Tables Table 1 List of minerals found in various textures…………………………….…………76 Table 2 Modal mineral abundances for each sample divided into three types: melt, residual and whole rock, and distance from pluton……………..…….…………77 Table 3 Average EPMA analysis of plagioclase within each sample………….…………78 Table 4 Whole rock geochemistry for each sample separated into melt, residual, and whole rock as well as distance from pluton and titanium-in-quartz geothermemetry………………………….............................................................79 Table 5 CIPW norm results from point counting divided into three types: melt, residual and whole rock ……………………………..........................................................80 Table A1 Point count results from the pilot study on sample 925-1.....................................81 Table A2 Whole rock, melt and residual geochemistries......................................................82 Table A3 Average mineral composition used to calculate residual geochemisty for sample 136-1A...................................................................................................................83 Table A4 Average mineral composition used to calculate melt geochemisty for sample 136- 1A...........................................................................................................................84 Table A5 Average mineral composition used to calculate whole rock geochemistry for sample 136-1A.......................................................................................................85 Table A6 Average mineral composition used to calculate residual geochemistry for sample 136-6A...................................................................................................................86 Table A7 Average mineral composition used to calculate melt geochemistry for sample 136-6A...................................................................................................................87 vii Table A8 Average mineral composition used to calculate whole rock geochemistry for sample 136-6A.......................................................................................................88 Table A9 Average mineral composition used to calculate residual geochemistry for sample 136-11A.................................................................................................................89 Table A10 Average mineral composition used to calculate melt geochemistry for sample 136-11A.................................................................................................................90 Table A11 Average mineral composition used to calculate whole rock geochemistry for sample 136-11A.....................................................................................................91 Table A12 Average mineral composition used to calculate residual geochemistry for sample 136-2B....................................................................................................................92 Table A13 Average mineral composition used to calculate melt geochemistry for sample 136-2B....................................................................................................................93 Table A14 Average mineral composition used to calculate whole rock geochemistry for sample 136-2B.......................................................................................................94 Table A15 Average mineral composition used to calculate residual geochemistry for sample 136-8B....................................................................................................................95 Table A16 Average mineral composition used to calculate melt geochemistry for sample 136-8B....................................................................................................................96 Table A17 Average mineral composition used to calculate whole rock geochemistry for sample 136-8B.......................................................................................................97 Table A18 Average mineral composition used to calculate residual geochemistry for sample 136-14B..................................................................................................................98 viii Table A19 Average mineral composition used to calculate melt geochemistry
Recommended publications
  • Geochemical Behaviour of Trace Elements During Fractional
    Anais da Academia Brasileira de Ciências (2015) 87(4): 1959-1979 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520130385 www.scielo.br/aabc Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil AKIHISA Motoki1*, SUSANNA E. SICHEL2, THAIS Vargas1, DEAN P. MELO3 and KENJI F. Motoki2 1Departamento de Mineralogia e Petrologia Ígnea, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala A-4023, Maracanã, 20550-990 Rio de Janeiro, RJ, Brasil 2Departamento de Geologia, Universidade Federal Fluminense, Av. General Milton Cardoso, s/n, 4° Andar, Gragoatá, 24210-340 Niterói, RJ, Brasil 3PETROBRAS, CENPES, Av. Horácio Macedo, 950, Cidade Universitária, 21941-915 Rio de Janeiro, RJ, Brasil Manuscript received on September 24, 2013; accepted for publication on June 10, 2015 ABSTRACT This paper presents geochemical behaviour of trace elements of the felsic alkaline rocks of the state of Rio de Janeiro, Brazil, with special attention of fractional crystallization and continental crust assimilation. Fractionation of leucite and K-feldspar increases Rb/K and decreases K2O/(K2O+Na2O). Primitive nepheline syenite magmas have low Zr/TiO2, Sr, and Ba. On the Nb/Y vs. Zr/TiO2 diagram, these rocks are projected on the field of alkaline basalt, basanite, and nephelinite, instead of phonolite. Well-fractionated peralkaline nepheline syenite has high Zr/TiO2 but there are no zircon. The diagrams of silica saturation index (SSI) distinguish the trends originated form fractional crystallization and crustal assimilation.
    [Show full text]
  • Chapter 10: Mantle Melting and the Generation of Basaltic Magma 2 Principal Types of Basalt in the Ocean Basins Tholeiitic Basalt and Alkaline Basalt
    Chapter 10: Mantle Melting and the Generation of Basaltic Magma 2 principal types of basalt in the ocean basins Tholeiitic Basalt and Alkaline Basalt Table 10.1 Common petrographic differences between tholeiitic and alkaline basalts Tholeiitic Basalt Alkaline Basalt Usually fine-grained, intergranular Usually fairly coarse, intergranular to ophitic Groundmass No olivine Olivine common Clinopyroxene = augite (plus possibly pigeonite) Titaniferous augite (reddish) Orthopyroxene (hypersthene) common, may rim ol. Orthopyroxene absent No alkali feldspar Interstitial alkali feldspar or feldspathoid may occur Interstitial glass and/or quartz common Interstitial glass rare, and quartz absent Olivine rare, unzoned, and may be partially resorbed Olivine common and zoned Phenocrysts or show reaction rims of orthopyroxene Orthopyroxene uncommon Orthopyroxene absent Early plagioclase common Plagioclase less common, and later in sequence Clinopyroxene is pale brown augite Clinopyroxene is titaniferous augite, reddish rims after Hughes (1982) and McBirney (1993). Each is chemically distinct Evolve via FX as separate series along different paths Tholeiites are generated at mid-ocean ridges Also generated at oceanic islands, subduction zones Alkaline basalts generated at ocean islands Also at subduction zones Sources of mantle material Ophiolites Slabs of oceanic crust and upper mantle Thrust at subduction zones onto edge of continent Dredge samples from oceanic crust Nodules and xenoliths in some basalts Kimberlite xenoliths Diamond-bearing pipes blasted up from the mantle carrying numerous xenoliths from depth Lherzolite is probably fertile unaltered mantle Dunite and harzburgite are refractory residuum after basalt has been extracted by partial melting 15 Tholeiitic basalt 10 5 Figure 10-1 Brown and Mussett, A. E. (1993), The Inaccessible Earth: An Integrated View of Its Lherzolite Structure and Composition.
    [Show full text]
  • Partial Melting - Simple Process, Huge Global Impact How Partial Melting, Coupled with Plate Tectonics, Has Changed the Chemistry of Our Planet
    Earthlearningidea - http://www.earthlearningidea.com/ Partial melting - simple process, huge global impact How partial melting, coupled with plate tectonics, has changed the chemistry of our planet Demonstrating partial melting Explaining the planetary effects of partial melting Prepare two small beakers as described in the Each time that partial melting takes place during different resources section below. stages of the plate tectonic cycle, materials with different chemical and physical makeup are formed. Pre- prepared The starting point for these processes is the mantle, beakers where the most abundant elements are oxygen, silicon, magnesium and iron in that order. However the Earth’s crust contains much more silicon and oxygen and much less magnesium and iron than the mantle, and is formed through these stages: Photo: C. King. Stage 1: the mantle partially melts beneath oceanic ridges; the melt formed is richer in oxygen/silicon (and poorer in iron/magnesium) than the original mantle rock. This rises and then cools to form new oceanic crust and Show the pupils the beaker containing the mixture of ocean ridge volcanoes, as plates move apart. gravel and chopped candlewax before heating; ask what will happen if the beaker is heated until the wax Stage 2: the oceanic crust subducted beneath melts. Most will realise that the gravel will sink to the oceanic plates partially melts; the melt is still richer in bottom to form a mixed gravel/wax layer, whilst pure oxygen/silicon (and poorer in iron/ magnesium) than the wax will flow to the top to form another layer. Then original oceanic crust rock.
    [Show full text]
  • Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/ Adakite Magmas M
    Transactions of the Royal Society of Edinburgh: Earth Sciences, 87, 205-215, 1996 Petrogenesis of slab-derived trondhjemite-tonalite-dacite/ adakite magmas M. S. Drummond, M. J. Defant and P. K. Kepezhinskas ABSTRACT: The prospect of partial melting of the subducted oceanic crust to produce arc magmatism has been debated for over 30 years. Debate has centred on the physical conditions of slab melting and the lack of a definitive, unambiguous geochemical signature and petrogenetic process. Experimental partial melting data for basalt over a wide range of pressures (1-32 kbar) and temperatures (700-1150=C) have shown that melt compositions are primarily trondhjemite- tonalite-dacite (TTD). High-Al (> 15% A12O3 at the 70% SiO2 level) TTD melts are produced by high-pressure 015 kbar) partial melting of basalt, leaving a restite assemblage of garnet + clinopyroxe'ne ± hornblende. A specific Cenozoic high-Al TTD (adakite) contains lower Y, Yb and Sc and higher Sr, Sr/Y, La'/Yb and.Zr/Sm relative to other TTD types and is interpreted to represent a slab melt under garnet amphibolite to eclogite conditions. High-Al TTD with an adakite-like geochemical character is prevalent in the Archean as the result of a higher geotherm that facilitated slab melting. Cenozoic adakite localities are commonly associated with the subduction of young (<25Ma), hot oceanic crust, which may provide a slab geotherm (*9-10=C km"1) conducive for slab dehydration melting. Viable alternative or supporting tectonic effects that may enhance slab melting include highly oblique convergence and resultant high shear stresses and incipient subduction into a pristine hot mantle wedge.
    [Show full text]
  • End of Chapter Question Answers Chapter 4 Review Questions 1
    End of Chapter Question Answers Chapter 4 Review Questions 1. Describe the three processes that are responsible for the formation of magma. Answer: Magmas form from melting within the Earth. There are three types of melting: decompression melting, where magmas form when hot rock from deep in the mantle rises to shallower depths without undergoing cooling (the decrease in pressure facilitates the melting process); flux melting, where melting occurs due to the addition of volatiles such as CO2 and H2O; and heat transfer melting, where melting results from the transfer of heat from a hotter material to a cooler one. 2. Why are there so many different compositions of magma? Does partial melting produce magma with the same composition as the magma source from which it was derived? Answer: Magmas are formed from many different chemical constituents. Partial melting of rock yields magma that is more felsic (silicic) than the magma source because a higher proportion of chemicals needed to form felsic minerals diffuse into the melt at lower temperatures. Magma may incorporate chemicals dissolved from the solid rock through which it rises or from blocks of rock that fall into the magma. This process is called assimilation. Finally, fractional crystallization can modify magma composition as minerals crystallize out of a melt during the cooling process, causing the residual liquid to become progressively more felsic. 3. Why does magma rise from depth to the surface of the Earth? Answer: Magma rises toward the surface of the Earth because it is less dense than solid rock and buoyant relative to its surroundings.
    [Show full text]
  • Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece)
    minerals Article Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece) Aikaterini Rogkala 1,* , Petros Petrounias 1 , Basilios Tsikouras 2 , Panagiota P. Giannakopoulou 1 and Konstantin Hatzipanagiotou 1 1 Section of Earth Materials, Department of Geology, University of Patras, 265 04 Patras, Greece; [email protected] (P.P.); [email protected] (P.P.G.); [email protected] (K.H.) 2 Physical and Geological Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Bandar Seri Begawan, Brunei Darussalam; [email protected] * Correspondence: [email protected]; Tel.: +30-2610996288 Received: 10 December 2018; Accepted: 14 February 2019; Published: 17 February 2019 Abstract: The Edessa ophiolite complex of northern Greece consists of remnants of oceanic lithosphere emplaced during the Upper Jurassic-Lower Cretaceous onto the Palaeozoic-Mesozoic continental margin of Eurasia. This study presents new data on mineral compositions of mantle peridotites from this ophiolite, especially serpentinised harzburgite and minor lherzolite. Lherzolite formed by low to moderate degrees of partial melting and subsequent melt-rock reaction in an oceanic spreading setting. On the other hand, refractory harzburgite formed by high degrees of partial melting in a supra-subduction zone (SSZ) setting. These SSZ mantle peridotites contain Cr-rich spinel residual after partial melting of more fertile (abyssal) lherzolite with Al-rich spinel. Chromite with Cr# > 60 in harzburgite resulted from chemical modification of residual Cr-spinel and, along with the presence of euhedral chromite, is indicative of late melt-peridotite interaction in the mantle wedge. Mineral compositions suggest that the Edessa oceanic mantle evolved from a typical mid-ocean ridge (MOR) oceanic basin to the mantle wedge of a SSZ.
    [Show full text]
  • Igneous Rocks
    What is Igneous Rock? Earth’s crust is 4/5 igneous rock. Every igneous rock begins life as molten magma deep in the mantle. As magma migrates toward the surface, some of it chills and hardens Igneous underground into granite and other types of igneous rocks. Rocks Magma that makes it to the surface erupts in either flowing or explosive volcanoes, generating lava, geysers, and hot springs. http://www.soest.hawaii.edu/coasts/lecture/gg101/index.html Igneous rock crystallizes in Earth’s magma locations Extrusive igneous rock Intrusive igneous rock crystallizes within Earth’s crust. Intrusive igneous rock Extrusive igneous rock crystallizes upon Earth’s crust. 1 As magma crystallizes a network of interlocking Igneous Rocks minerals develops. The composition and • Igneous Rocks are named on the basis of texture of the resulting rock is determined by the ir tttexture and composition. these minerals. Composition of a rock is the assemblage of minerals it contains. Texture of a rock is the size and arrangement of the minerals it contains. Texture Texture Aphanitic texture - mineral grains too small to see with the unaided eye (Basalt) Phaneritic texture - with large minerals (Granite) Large crystals had a long time to crystallize. Small crystals had a short time to crystallize. Therefore, this is an intrusive rock Therefore, this is an extrusive rock 2 Texture Texture Glassy texture - without Vesicular texture – many pits obvious minerals (Obsidian) from gas escape (Basalt) No crystals. This is an extrusive rock. Extrusive rock. Composition Texture
    [Show full text]
  • Mantle Melting and Origin of Basaltic Magma
    Lecture 18 - Mantle Melting Monday, 28th, March, 2005 Mantle Melting and Origin of Basaltic Magma 1 Two principal types of basalt in the ocean basins Tholeiitic Basalt and Alkaline Basalt Table 10-1 Common petrographic differences between tholeiitic and alkaline basalts Tholeiitic Basalt Alkaline Basalt Usually fine-grained, intergranular Usually fairly coarse, intergranular to ophitic Groundmass No olivine Olivine common Clinopyroxene = augite (plus possibly pigeonite) Titaniferous augite (reddish) Orthopyroxene (hypersthene) common, may rim ol. Orthopyroxene absent No alkali feldspar Interstitial alkali feldspar or feldspathoid may occur Interstitial glass and/or quartz common Interstitial glass rare, and quartz absent Olivine rare, unzoned, and may be partially resorbed Olivine common and zoned Phenocrysts or show reaction rims of orthopyroxene Orthopyroxene uncommon Orthopyroxene absent Early plagioclase common Plagioclase less common, and later in sequence Clinopyroxene is pale brown augite Clinopyroxene is titaniferous augite, reddish rims after Hughes (1982) and McBirney (1993). Each is chemically distinct Evolve via FX as separate series along different paths ● Tholeiites are generated at mid-ocean ridges ✦ Also generated at oceanic islands, subduction zones ● Alkaline basalts generated at ocean islands ✦ Also at subduction zones 2 Sources of mantle material ● Ophiolites ✦ Slabs of oceanic crust and upper mantle ✦ Thrust at subduction zones onto edge of continent ● Dredge samples from oceanic fracture zones ● Nodules and xenoliths in some basalts ● Kimberlite xenoliths ✦ Diamond-bearing pipes blasted up from the mantle carrying numerous xenoliths from depth Lherzolite is probably fertile unaltered mantle Dunite and harzburgite are refractory residuum after basalt has been extracted by partial melting 15 Tholeiitic basalt 3 10 O 2 Partial Melting Wt.% Al Wt.% 5 Figure 10-1 Brown and Mussett, A.
    [Show full text]
  • The Role of Partial Melting and Extensional Strain Rates in the Development of Metamorphic Core Complexes
    Tectonophysics 477 (2009) 135–144 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto The role of partial melting and extensional strain rates in the development of metamorphic core complexes P.F. Rey a,⁎, C. Teyssier b, D.L. Whitney b a Earthbyte Research Group, School of Geosciences, University of Sydney, NSW2006 Sydney, Australia b Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA article info abstract Article history: Orogenic collapse involves extension and thinning of thick and hot (partially molten) crust, leading to the Received 11 September 2008 formation of metamorphic core complexes (MCC) that are commonly cored by migmatite domes. Two- Accepted 12 March 2009 dimensional thermo-mechanical Ellipsis models evaluate the parameters that likely control the formation and Available online 20 March 2009 evolution of MCC: the nature and geometry of the heterogeneity that localizes MCC, the presence/absence of a partially molten layer in the lower crust, and the rate of extension. When the localizing heterogeneity is a Keywords: normal fault in the upper crust, the migmatite core remains in the footwall of the fault, resulting in an Continental extension Migmatite asymmetric MCC; if the localizing heterogeneity is point like region within the upper crust, the MCC remains Metamorphic core complex symmetric throughout its development. Therefore, asymmetrically located migmatite domes likely reflect the Gneiss dome dip of the original normal fault system that generated the MCC. Modeling of a severe viscosity drop owing to the Partial melting presence of a partially molten layer, compared to a crust with no melt, demonstrates that the presence of melt Modeling slightly enhances upward advection of material and heat.
    [Show full text]
  • Melting in the Earth's Deep Interior
    Melting in the Earth’s Deep Interior Guillaume Fiquet To cite this version: Guillaume Fiquet. Melting in the Earth’s Deep Interior. Yoshio Kono; Chrystèle Sanloup. Magmas under pressure, Elsevier, pp.115-134, 2018, 978-0-12-811301-1. hal-02106907 HAL Id: hal-02106907 https://hal.archives-ouvertes.fr/hal-02106907 Submitted on 23 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Melting in the Earth’s deep Interior Guillaume Fiquet Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie - IMPMC Sorbonne Université, UMR CNRS 7590 Muséum National d’Histoire Naturelle, IRD 4 Place Jussieu, 75005 Paris France Keywords : partial melting, solidus, liquidus, deep Earth, Earth’s mantle, ULVZ, melts, peridotite, MORB. Abstract In this article, I focus on melting in the deep Earth from the transition zone to the core mantle boundary, with a brief overview of recent works dedicated to such melting properties. Two regions in the deep Earth are likely to be the locus of partial melting of the mantle: the transition zone and the core mantle boundary. In the transition zone region, melts can be produced on the top of the transition zone or at the top of the lower mantle.
    [Show full text]
  • Partial Melting of Lower Crust at 10–15 Kbar: Constraints on Adakite and TTG Formation
    Contrib Mineral Petrol (2013) 165:1195–1224 DOI 10.1007/s00410-013-0854-9 Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation Qing Qian • Jo¨rg Hermann Received: 21 September 2012 / Accepted: 12 January 2013 / Published online: 3 February 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract The pressure–temperature (P–T) conditions for (HREE) occur relative to the starting material when the producing adakite/tonalite–trondhjemite–granodiorite (TTG) amounts of residual amphibole, plagioclase, and garnet are magmas from lower crust compositions are still open to debate. [20 wt%, respectively. Major elements and trace element We have carried out partial melting experiments of mafic lower patterns of partial melts produced by 10–40 wt% melting of crust in the piston-cylinder apparatus at 10–15 kbar and lower crust composition at 10–12.5 kbar and 800–900 °Cand 800–1,050 °C to investigate the major and trace elements of 15 kbar and 800 °C closely resemble adakite/TTG rocks. TiO2 melts and residual minerals and further constrain the P–T range contents of the 1,000–1,050 °C melts are higher than that of appropriate for adakite/TTG formation. The experimental pristine adakite/TTG. In comparison with natural adakite/ residues include the following: amphibolite (plagioclase ? TTG, partial melts produced at 10–12.5 kbar and 1,000 °Cand amphibole ± garnet) at 10–15 kbar and 800 °C, garnet 15 kbar and 1,050 °C have elevated HREE, whereas partial granulite (plagioclase ? amphibole ? garnet ? clinopyrox- melts at 13.5–15 kbar and 900–1,000 °C in equilibrium with ene ? orthopyroxene) at 12.5 kbar and 900 °C, two-pyroxene [20 wt% garnet have depressed Yb and elevated La/Yb and granulite (plagioclase ? clinopyroxene ? orthopyroxene ± Gd/Yb.
    [Show full text]
  • IGNEOUS ROCKS EXTRUSIVE (Volcanic)- Fine-Grained INTRUSIVE
    IGNEOUS ROCKS EXTRUSIVE (Volcanic)- Fine-grained INTRUSIVE (Plutonic)- Coarse-grained MAGMA O Molten Rock – Usually with dissolved gasses O Generated at depth O If doesn’t reach surface, Solidifies underground – Intrudes country rock – Intrusive contact – Chill zone – Zenolith Igneous Rocks O Names based on mineral composition (which reflects chemical composition of the magma) and... Grain size – Course-grained: > 1 mm. – Fine-grained: < 1 mm. – Porphyritic – Pegmatite-very coarse-grained: >5 cm Igneous Rocks-Classification O Course-grained- Plutonic – GRANITE – Diorite – Gabbro – Ultramafic O Fine-Grained – Rhyolite – ANDESITE* – BASALT* Igneous Rock Identification O Granite (& Rhyolite) – High in Si + O – Low in Fe + Mg – Mostly feldspar & quartz – Light-colored O Basalt (& Gabbro) – “Low” in Si + O – High in Fe + Mg – no quartz, abundant ferromagnesian minerals – Dark colored O Andesite (& Diorite- intermediate) O Ultramafic rock (Peridotite) INTRUSIVE BODIES (STRUCTURES) O Bodies that solidified underground O Volcanic neck- shallow intrusion O Fills cracks- tabular bodies – DIKE- • If no layering in country rock • If country rock is layered- Discordant – SILL- less common • Concordant- parallel to layering in country rock O Pluton O BATHOLITH- – Large intrusive body – Exposed in an area greater than 100 square Km. – Coalesced smaller plutons O smaller bodies are called STOCKS O Batholiths a gathering of smaller blobs O Magma moves upward from depth as diapirs DISTRIBUTION OF PLUTONIC ROCK – Granite most abundant • Common in mountain
    [Show full text]