Chapter 3. Multilayer Perceptrons

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 3. Multilayer Perceptrons Table of Contents CHAPTER III - MULTILAYER PERCEPTRONS.........................................................................................3 1. ARTIFICIAL NEURAL NETWORKS (ANNS) ..........................................................................................4 2. PATTERN RECOGNITION ABILITY OF THE MCCULLOCH-PITTS PE........................................................6 3. THE PERCEPTRON ........................................................................................................................27 4. ONE HIDDEN LAYER MULTILAYER PERCEPTRONS ............................................................................39 5. MLPS WITH TWO HIDDEN LAYERS...................................................................................................53 6. TRAINING STATIC NETWORKS WITH THE BACKPROPAGATION PROCEDURE .........................................60 7. TRAINING EMBEDDED ADAPTIVE SYSTEMS.......................................................................................72 8. MLPS AS OPTIMAL CLASSIFIERS.....................................................................................................77 9. CONCLUSIONS ..............................................................................................................................81 SEPARATION SURFACES OF THE SIGMOID PES ....................................................................................85 PROBABILISTIC INTERPRETATION OF SIGMOID OUTPUTS .......................................................................85 VECTOR INTERPRETATION OF THE SEPARATION SURFACE ....................................................................86 PERCEPTRON LEARNING ALGORITHM ..................................................................................................87 ERROR ATTENUATION ........................................................................................................................88 OPTIMIZING LINEAR AND NONLINEAR SYSTEMS ....................................................................................89 DERIVATION OF LMS WITH THE CHAIN RULE ........................................................................................89 DERIVATION OF SENSITIVITY THROUGH NONLINEARITY .........................................................................90 WHY NONLINEAR PES? .....................................................................................................................91 MAPPING CAPABILITIES OF THE 1 HIDDEN LAYER MLP .........................................................................91 BACKPROPAGATION DERIVATION ........................................................................................................92 MULTILAYER LINEAR NETWORKS .........................................................................................................95 REDERIVATION OF BACKPROP WITH ORDERED DERIVATIVES .................................................................95 ARTIFICIAL NEURAL NETWORKS ..........................................................................................................96 TOPOLOGY........................................................................................................................................96 FEEDFORWARD .................................................................................................................................97 SIGMOID ...........................................................................................................................................97 F. ROSENBLATT ................................................................................................................................97 SENSITIVITY ......................................................................................................................................97 GLOBAL MINIMUM ..............................................................................................................................97 NONCONVEX .....................................................................................................................................97 SADDLE POINT...................................................................................................................................97 LINEARLY SEPARABLE PATTERNS........................................................................................................97 GENERALIZE......................................................................................................................................98 LOCAL ERROR ...................................................................................................................................98 MINSKY ............................................................................................................................................98 MULTILAYER PERCEPTRONS...............................................................................................................98 BUMP................................................................................................................................................98 BACKPROPAGATION...........................................................................................................................99 INVENTORS OF BACKPROPAGATION ....................................................................................................99 ORDERED DERIVATIVE .......................................................................................................................99 LOCAL MAPS .....................................................................................................................................99 DATAFLOW........................................................................................................................................99 TOPOLOGY......................................................................................................................................100 A POSTERIORI PROBABILITY .............................................................................................................100 LIKELIHOOD.....................................................................................................................................100 PROBABILITY DENSITY FUNCTION......................................................................................................100 EQ2................................................................................................................................................100 ADALINE .........................................................................................................................................100 EQ.1 ..............................................................................................................................................101 EQ.6 ..............................................................................................................................................101 EQ.8 ..............................................................................................................................................101 EQ.10 ............................................................................................................................................101 CONVEX..........................................................................................................................................101 1 EQ.9 ..............................................................................................................................................101 EQ.12 ............................................................................................................................................101 EQ.13 ............................................................................................................................................102 EQ.14 ............................................................................................................................................102 LMS ..............................................................................................................................................102 EQ.7 ..............................................................................................................................................102 EQ.21 ............................................................................................................................................102 EQ.20 ............................................................................................................................................102 EQ.11 ............................................................................................................................................103 EQ.23 ............................................................................................................................................103 EQ.33 ............................................................................................................................................103 EQ.30 ............................................................................................................................................103 EQ.31 ............................................................................................................................................103 EQ.38 ............................................................................................................................................103 EQ.26 ............................................................................................................................................104
Recommended publications
  • Audio Event Classification Using Deep Learning in an End-To-End Approach
    Audio Event Classification using Deep Learning in an End-to-End Approach Master thesis Jose Luis Diez Antich Aalborg University Copenhagen A. C. Meyers Vænge 15 2450 Copenhagen SV Denmark Title: Abstract: Audio Event Classification using Deep Learning in an End-to-End Approach The goal of the master thesis is to study the task of Sound Event Classification Participant(s): using Deep Neural Networks in an end- Jose Luis Diez Antich to-end approach. Sound Event Classifi- cation it is a multi-label classification problem of sound sources originated Supervisor(s): from everyday environments. An auto- Hendrik Purwins matic system for it would many applica- tions, for example, it could help users of hearing devices to understand their sur- Page Numbers: 38 roundings or enhance robot navigation systems. The end-to-end approach con- Date of Completion: sists in systems that learn directly from June 16, 2017 data, not from features, and it has been recently applied to audio and its results are remarkable. Even though the re- sults do not show an improvement over standard approaches, the contribution of this thesis is an exploration of deep learning architectures which can be use- ful to understand how networks process audio. The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author. Contents 1 Introduction1 1.1 Scope of this work.............................2 2 Deep Learning3 2.1 Overview..................................3 2.2 Multilayer Perceptron...........................4
    [Show full text]
  • 4 Nonlinear Regression and Multilayer Perceptron
    4 Nonlinear Regression and Multilayer Perceptron In nonlinear regression the output variable y is no longer a linear function of the regression parameters plus additive noise. This means that estimation of the parameters is harder. It does not reduce to minimizing a convex energy functions { unlike the methods we described earlier. The perceptron is an analogy to the neural networks in the brain (over-simplified). It Pd receives a set of inputs y = j=1 !jxj + !0, see Figure (3). Figure 3: Idealized neuron implementing a perceptron. It has a threshold function which can be hard or soft. The hard one is ζ(a) = 1; if a > 0, ζ(a) = 0; otherwise. The soft one is y = σ(~!T ~x) = 1=(1 + e~!T ~x), where σ(·) is the sigmoid function. There are a variety of different algorithms to train a perceptron from labeled examples. Example: The quadratic error: t t 1 t t 2 E(~!j~x ; y ) = 2 (y − ~! · ~x ) ; for which the update rule is ∆!t = −∆ @E = +∆(yt~! · ~xt)~xt. Introducing the sigmoid j @!j function rt = sigmoid(~!T ~xt), we have t t P t t t t E(~!j~x ; y ) = − i ri log yi + (1 − ri) log(1 − yi ) , and the update rule is t t t t ∆!j = −η(r − y )xj, where η is the learning factor. I.e, the update rule is the learning factor × (desired output { actual output)× input. 10 4.1 Multilayer Perceptrons Multilayer perceptrons were developed to address the limitations of perceptrons (introduced in subsection 2.1) { i.e.
    [Show full text]
  • A Adaboost, 176 ADALINE. See Adaptive Linear Element/ Adaptive
    Index A B AdaBoost, 176 Bayes’ classifier, 171–173 ADALINE. See Adaptive Linear Element/ Bayesian decision theory Adaptive Linear Neuron multiple features (ADALINE) complex decision boundary, Adaptive Linear Element/Adaptive Linear 85, 86 Neuron (ADALINE), 112 trade off performance, 86 Agglomerative hierarchical clustering. See two-dimensional feature space, 85 Hierarchical clustering single dimensional (1D) feature Angular anisotropy, 183 class-conditional probabilities (see ANN. See Artificial neural network (ANN) Class-conditional probabilities) Artificial neural network (ANN) classification error, 81–83 activation function, 112, 113 CondProb.xls, 85 ADALINE, 112 likelihood ratio, 77, 83, 84 advantages and disadvantages, 116, 117 optimal decision rule, 81 backpropagation, 109, 115 posterior probability, 76–77 bias, 99–100, 105–106, 109 recognition approaches, 75 feed-forward, 112, 113 symmetrical/zero-one loss global minimum, 110 function, 83 learning rate, 109–111 Bayes’ rule linear discriminant function, 107 conditional probability and, 46–53 logical AND function, 106, 107 Let’s Make a Deal, 48 logical OR function, 107 naı¨ve Bayes classifier, 53–54 logical XOR function, 107–109, 114 posterior probability, 47 multi-layer network, 107, 112, 116 Bias-variance tradeoff, 99–101 neurons, 104–105 Bioinformatics, 2 overfitting, 112–113 Biometrics, 2 perceptron (see Perceptron, ANN) Biometric systems recurrent network, 112 cost, accuracy, and security, 184 signals, 104 face recognition, 187 simulated annealing, 115 fingerprint recognition, 184–186 steepest/gradient descent, 110, 115 infrared scan, hand, 184 structure, neurons, 105 physiological/behavioral training, 109, 115–116 characteristics, 183 universal approximation theorem, 112 Bootstrap, 163–164 weight vector, 109, 112 Breast Screening, 51–52 Astronomy, 2 Brodatz textures, 181 G.
    [Show full text]
  • Chapter 02: Fundamentals of Neural Networks
    FUNDAMENTALS OF NEURAL 2 NETWORKS Ali Zilouchian 2.1 INTRODUCTION For many decades, it has been a goal of science and engineering to develop intelligent machines with a large number of simple elements. References to this subject can be found in the scientific literature of the 19th century. During the 1940s, researchers desiring to duplicate the function of the human brain, have developed simple hardware (and later software) models of biological neurons and their interaction systems. McCulloch and Pitts [1] published the first systematic study of the artificial neural network. Four years later, the same authors explored network paradigms for pattern recognition using a single layer perceptron [2]. In the 1950s and 1960s, a group of researchers combined these biological and psychological insights to produce the first artificial neural network (ANN) [3,4]. Initially implemented as electronic circuits, they were later converted into a more flexible medium of computer simulation. However, researchers such as Minsky and Papert [5] later challenged these works. They strongly believed that intelligence systems are essentially symbol processing of the kind readily modeled on the Von Neumann computer. For a variety of reasons, the symbolic–processing approach became the dominant method. Moreover, the perceptron as proposed by Rosenblatt turned out to be more limited than first expected. [4]. Although further investigations in ANN continued during the 1970s by several pioneer researchers such as Grossberg, Kohonen, Widrow, and others, their works received relatively less attention. The primary factors for the recent resurgence of interest in the area of neural networks are the extension of Rosenblatt, Widrow and Hoff’s works dealing with learning in a complex, multi-layer network, Hopfield mathematical foundation for understanding the dynamics of an important class of networks, as well as much faster computers than those of 50s and 60s.
    [Show full text]
  • Petroleum and Coal
    Petroleum and Coal Article Open Access IMPROVED ESTIMATION OF PERMEABILITY OF NATURALLY FRACTURED CARBONATE OIL RESER- VOIRS USING WAVENET APPROACH Mohammad M. Bahramian 1, Abbas Khaksar-Manshad 1*, Nader Fathianpour 2, Amir H. Mohammadi 3, Bengin Masih Awdel Herki 4, Jagar Abdulazez Ali 4 1 Department of Petroleum Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran 2 Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran 3 Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa 4 Faculty of Engineering, Soran University, Kurdistan-Iraq Received June 18, 2017; Accepted September 30, 2017 Abstract One of the most important parameters which is regarded in petroleum industry is permeability that its accurate knowledge allows petroleum engineers to have adequate tools to evaluate and minimize the risk and uncertainty in the exploration of oil and gas reservoirs. Different direct and indirect methods are used to measure this parameter most of which (e.g. core analysis) are very time -consuming and cost consuming. Hence, applying an efficient method that can model this important parameter has the highest importance. Most of the researches show that the capability (i.e. classification, optimization and data mining) of an Artificial Neural Network (ANN) is suitable for imperfections found in petroleum engineering problems considering its successful application. In this study, we have used a Wavenet Neural Network (WNN) model, which was constructed by combining neural network and wavelet theory to improve estimation of permeability. To achieve this goal, we have also developed MLP and RBF networks and then compared the results of the latter two networks with the results of WNN model to select the best estimator between them.
    [Show full text]
  • Learning Sabatelli, Matthia; Loupe, Gilles; Geurts, Pierre; Wiering, Marco
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Deep Quality-Value (DQV) Learning Sabatelli, Matthia; Loupe, Gilles; Geurts, Pierre; Wiering, Marco Published in: ArXiv IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Early version, also known as pre-print Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Sabatelli, M., Loupe, G., Geurts, P., & Wiering, M. (2018). Deep Quality-Value (DQV) Learning. ArXiv. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 19-05-2020 Deep Quality-Value (DQV) Learning Matthia Sabatelli Gilles Louppe Pierre Geurts Montefiore Institute Montefiore Institute Montefiore Institute Université de Liège, Belgium Université de Liège, Belgium Université de Liège, Belgium [email protected] [email protected] [email protected] Marco A.
    [Show full text]
  • The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-Based Policy Naoto Yoshida
    The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-based Policy Naoto Yoshida To cite this version: Naoto Yoshida. The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy- based Policy. 2015. hal-01138709v2 HAL Id: hal-01138709 https://hal.archives-ouvertes.fr/hal-01138709v2 Preprint submitted on 19 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-based Policy Naoto Yoshida School of Biomedical Engineering Tohoku University Sendai, Aramaki Aza Aoba 6-6-01 Email: [email protected] Abstract—Learning and acting in a high dimensional state- when the actions are represented by binary vector actions action space are one of the central problems in the reinforcement [4][5][6][7][8]. Energy-based RL algorithms represent a policy learning (RL) communities. The recent development of model- based on energy-based models [9]. In this approach the prob- free reinforcement learning algorithms based on an energy- based model have been shown to be effective in such domains. ability of the state-action pair is represented by the Boltzmann However, since the previous algorithms used neural networks distribution and the energy function, and the policy is a with stochastic hidden units, these algorithms required Monte conditional probability given the current state of the agent.
    [Show full text]
  • Performance Analysis of Multilayer Perceptron in Profiling Side
    Performance Analysis of Multilayer Perceptron in Profiling Side-channel Analysis L´eoWeissbart1;2 1 Delft University of Technology, The Netherlands 2 Digital Security Group, Radboud University, The Netherlands Abstract. In profiling side-channel analysis, machine learning-based analysis nowadays offers the most powerful performance. This holds espe- cially for techniques stemming from the neural network family: multilayer perceptron and convolutional neural networks. Convolutional neural net- works are often favored as results suggest better performance, especially in scenarios where targets are protected with countermeasures. Mul- tilayer perceptron receives significantly less attention, and researchers seem less interested in this method, narrowing the results in the literature to comparisons with convolutional neural networks. On the other hand, a multilayer perceptron has a much simpler structure, enabling easier hyperparameter tuning and, hopefully, contributing to the explainability of this neural network inner working. We investigate the behavior of a multilayer perceptron in the context of the side-channel analysis of AES. By exploring the sensitivity of mul- tilayer perceptron hyperparameters over the attack's performance, we aim to provide a better understanding of successful hyperparameters tuning and, ultimately, this algorithm's performance. Our results show that MLP (with a proper hyperparameter tuning) can easily break im- plementations with a random delay or masking countermeasures. This work aims to reiterate the power of simpler neural network techniques in the profiled SCA. 1 Introduction Side-channel analysis (SCA) exploits weaknesses in cryptographic algorithms' physical implementations rather than the mathematical properties of the algo- rithms [16]. There, SCA correlates secret information with unintentional leakages like timing [13], power dissipation [14], and electromagnetic (EM) radiation [25].
    [Show full text]
  • Perceptron 1 History of Artificial Neural Networks
    Introduction to Machine Learning (Lecture Notes) Perceptron Lecturer: Barnabas Poczos Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. 1 History of Artificial Neural Networks The history of artificial neural networks is like a roller-coaster ride. There were times when it was popular(up), and there were times when it wasn't. We are now in one of its very big time. • Progression (1943-1960) { First Mathematical model of neurons ∗ Pitts & McCulloch (1943) [MP43] { Beginning of artificial neural networks { Perceptron, Rosenblatt (1958) [R58] ∗ A single neuron for classification ∗ Perceptron learning rule ∗ Perceptron convergence theorem [N62] • Degression (1960-1980) { Perceptron can't even learn the XOR function [MP69] { We don't know how to train MLP { 1963 Backpropagation (Bryson et al.) ∗ But not much attention • Progression (1980-) { 1986 Backpropagation reinvented: ∗ Learning representations by back-propagation errors. Rumilhart et al. Nature [RHW88] { Successful applications in ∗ Character recognition, autonomous cars, ..., etc. { But there were still some open questions in ∗ Overfitting? Network structure? Neuron number? Layer number? Bad local minimum points? When to stop training? { Hopfield nets (1982) [H82], Boltzmann machines [AHS85], ..., etc. • Degression (1993-) 1 2 Perceptron: Barnabas Poczos { SVM: Support Vector Machine is developed by Vapnik et al.. [CV95] However, SVM is a shallow architecture. { Graphical models are becoming more and more popular { Great success of SVM and graphical models almost kills the ANN (Artificial Neural Network) research. { Training deeper networks consistently yields poor results. { However, Yann LeCun (1998) developed deep convolutional neural networks (a discriminative model).
    [Show full text]
  • TF-IDF Vs Word Embeddings for Morbidity Identification in Clinical Notes: an Initial Study
    TF-IDF vs Word Embeddings for Morbidity Identification in Clinical Notes: An Initial Study 1 2 Danilo Dess`ı [0000−0003−3843−3285], Rim Helaoui [0000−0001−6915−8920], Vivek 1 1 Kumar [0000−0003−3958−4704], Diego Reforgiato Recupero [0000−0001−8646−6183], and 1 Daniele Riboni [0000−0002−0695−2040] 1 University of Cagliari, Cagliari, Italy {danilo dessi, vivek.kumar, diego.reforgiato, riboni}@unica.it 2 Philips Research, Eindhoven, Netherlands [email protected] Abstract. Today, we are seeing an ever-increasing number of clinical notes that contain clinical results, images, and textual descriptions of pa-tient’s health state. All these data can be analyzed and employed to cater novel services that can help people and domain experts with their com-mon healthcare tasks. However, many technologies such as Deep Learn-ing and tools like Word Embeddings have started to be investigated only recently, and many challenges remain open when it comes to healthcare domain applications. To address these challenges, we propose the use of Deep Learning and Word Embeddings for identifying sixteen morbidity types within textual descriptions of clinical records. For this purpose, we have used a Deep Learning model based on Bidirectional Long-Short Term Memory (LSTM) layers which can exploit state-of-the-art vector representations of data such as Word Embeddings. We have employed pre-trained Word Embeddings namely GloVe and Word2Vec, and our own Word Embeddings trained on the target domain. Furthermore, we have compared the performances of the deep learning approaches against the traditional tf-idf using Support Vector Machine and Multilayer per-ceptron (our baselines).
    [Show full text]
  • Multilayer Perceptron
    Advanced Introduction to Machine Learning, CMU-10715 Perceptron, Multilayer Perceptron Barnabás Póczos, Sept 17 Contents History of Artificial Neural Networks Definitions: Perceptron, MLP Representation questions Perceptron algorithm Backpropagation algorithm 2 Short History Progression (1943-1960) • First mathematical model of neurons . Pitts & McCulloch (1943) • Beginning of artificial neural networks • Perceptron, Rosenblatt (1958) . A single layer neuron for classification . Perceptron learning rule . Perceptron convergence theorem Degression (1960-1980) • Perceptron can’t even learn the XOR function • We don’t know how to train MLP • 1969 Backpropagation… but not much attention… 3 Short History Progression (1980-) • 1986 Backpropagation reinvented: . Rumelhart, Hinton, Williams: Learning representations by back-propagating errors. Nature, 323, 533—536, 1986 • Successful applications: . Character recognition, autonomous cars,… • Open questions: Overfitting? Network structure? Neuron number? Layer number? Bad local minimum points? When to stop training? • Hopfield nets (1982), Boltzmann machines,… 4 Short History Degression (1993-) • SVM: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture. • SVM almost kills the ANN research. • Training deeper networks consistently yields poor results. • Exception: deep convolutional neural networks, Yann LeCun 1998. (discriminative model) 5 Short History Progression (2006-) Deep Belief Networks (DBN) • Hinton, G. E, Osindero, S., and Teh, Y.
    [Show full text]
  • Investigation of Stochastic Gradient Descent in Neural Networks
    Investigation of Stochastic Gradient Descent in Neural Networks Hugh Chen Department of Statistics University of Washington Seattle, Washington {hughchen}@uw.edu Abstract Neural networks are machine learning techniques that are capable of arbitrarily reducing bias by introducing parameters and non-linearities - which often leads to non-convex optimization. Due to the generalizability and widespread appeal of neural networks, many smart techniques have been developed to optimize neural networks. In this paper, I investigate and specify different variants of stochastic gradient descent for neural networks. Then, I explore these methods experimentally. First, I experiment with methods for visualizing these methods for gradient descent. Second, I analyze these methods applied to neural networks in simple settings. Finally, I look at the utility of ensemble methods which can be applied in addition to these variants of SGD. Keywords: neural networks, stochastic optimization, ensembles. 1 Background Stochastic gradient descent (SGD) is a stochastic approximation for minimizing an objective function (generally a loss function) [1]. Defining a function L over a set of weight parameters w, our general form of objective function is: n X L(w; y1; ··· ; yn; x1; ··· ; xn) = Li(w; yi; xi) i=1 We denote a prediction using weights w on input xi as h(w; xi). For regression, mean squared error is a commonly used loss function where 2 Li(w; yi; xi) = (yi − h(w; xi)) For binary classification problems, it is common to utilize binary cross-entropy loss functions where Li(w; yi; xi) = yi ln(h(w; xi)) + (1 − yi) ln(1 − h(w; xi)) Other loss functions include exponential cost, Hellinger distance, Kullback-Leibler divergence, generalized Kullback-Leibler divergence, and Itakura-Saito distance [2].
    [Show full text]