Chapter 3. Multilayer Perceptrons

Chapter 3. Multilayer Perceptrons

Table of Contents CHAPTER III - MULTILAYER PERCEPTRONS.........................................................................................3 1. ARTIFICIAL NEURAL NETWORKS (ANNS) ..........................................................................................4 2. PATTERN RECOGNITION ABILITY OF THE MCCULLOCH-PITTS PE........................................................6 3. THE PERCEPTRON ........................................................................................................................27 4. ONE HIDDEN LAYER MULTILAYER PERCEPTRONS ............................................................................39 5. MLPS WITH TWO HIDDEN LAYERS...................................................................................................53 6. TRAINING STATIC NETWORKS WITH THE BACKPROPAGATION PROCEDURE .........................................60 7. TRAINING EMBEDDED ADAPTIVE SYSTEMS.......................................................................................72 8. MLPS AS OPTIMAL CLASSIFIERS.....................................................................................................77 9. CONCLUSIONS ..............................................................................................................................81 SEPARATION SURFACES OF THE SIGMOID PES ....................................................................................85 PROBABILISTIC INTERPRETATION OF SIGMOID OUTPUTS .......................................................................85 VECTOR INTERPRETATION OF THE SEPARATION SURFACE ....................................................................86 PERCEPTRON LEARNING ALGORITHM ..................................................................................................87 ERROR ATTENUATION ........................................................................................................................88 OPTIMIZING LINEAR AND NONLINEAR SYSTEMS ....................................................................................89 DERIVATION OF LMS WITH THE CHAIN RULE ........................................................................................89 DERIVATION OF SENSITIVITY THROUGH NONLINEARITY .........................................................................90 WHY NONLINEAR PES? .....................................................................................................................91 MAPPING CAPABILITIES OF THE 1 HIDDEN LAYER MLP .........................................................................91 BACKPROPAGATION DERIVATION ........................................................................................................92 MULTILAYER LINEAR NETWORKS .........................................................................................................95 REDERIVATION OF BACKPROP WITH ORDERED DERIVATIVES .................................................................95 ARTIFICIAL NEURAL NETWORKS ..........................................................................................................96 TOPOLOGY........................................................................................................................................96 FEEDFORWARD .................................................................................................................................97 SIGMOID ...........................................................................................................................................97 F. ROSENBLATT ................................................................................................................................97 SENSITIVITY ......................................................................................................................................97 GLOBAL MINIMUM ..............................................................................................................................97 NONCONVEX .....................................................................................................................................97 SADDLE POINT...................................................................................................................................97 LINEARLY SEPARABLE PATTERNS........................................................................................................97 GENERALIZE......................................................................................................................................98 LOCAL ERROR ...................................................................................................................................98 MINSKY ............................................................................................................................................98 MULTILAYER PERCEPTRONS...............................................................................................................98 BUMP................................................................................................................................................98 BACKPROPAGATION...........................................................................................................................99 INVENTORS OF BACKPROPAGATION ....................................................................................................99 ORDERED DERIVATIVE .......................................................................................................................99 LOCAL MAPS .....................................................................................................................................99 DATAFLOW........................................................................................................................................99 TOPOLOGY......................................................................................................................................100 A POSTERIORI PROBABILITY .............................................................................................................100 LIKELIHOOD.....................................................................................................................................100 PROBABILITY DENSITY FUNCTION......................................................................................................100 EQ2................................................................................................................................................100 ADALINE .........................................................................................................................................100 EQ.1 ..............................................................................................................................................101 EQ.6 ..............................................................................................................................................101 EQ.8 ..............................................................................................................................................101 EQ.10 ............................................................................................................................................101 CONVEX..........................................................................................................................................101 1 EQ.9 ..............................................................................................................................................101 EQ.12 ............................................................................................................................................101 EQ.13 ............................................................................................................................................102 EQ.14 ............................................................................................................................................102 LMS ..............................................................................................................................................102 EQ.7 ..............................................................................................................................................102 EQ.21 ............................................................................................................................................102 EQ.20 ............................................................................................................................................102 EQ.11 ............................................................................................................................................103 EQ.23 ............................................................................................................................................103 EQ.33 ............................................................................................................................................103 EQ.30 ............................................................................................................................................103 EQ.31 ............................................................................................................................................103 EQ.38 ............................................................................................................................................103 EQ.26 ............................................................................................................................................104

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    111 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us