The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-Based Policy Naoto Yoshida

Total Page:16

File Type:pdf, Size:1020Kb

The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-Based Policy Naoto Yoshida The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-based Policy Naoto Yoshida To cite this version: Naoto Yoshida. The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy- based Policy. 2015. hal-01138709v2 HAL Id: hal-01138709 https://hal.archives-ouvertes.fr/hal-01138709v2 Preprint submitted on 19 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-based Policy Naoto Yoshida School of Biomedical Engineering Tohoku University Sendai, Aramaki Aza Aoba 6-6-01 Email: [email protected] Abstract—Learning and acting in a high dimensional state- when the actions are represented by binary vector actions action space are one of the central problems in the reinforcement [4][5][6][7][8]. Energy-based RL algorithms represent a policy learning (RL) communities. The recent development of model- based on energy-based models [9]. In this approach the prob- free reinforcement learning algorithms based on an energy- based model have been shown to be effective in such domains. ability of the state-action pair is represented by the Boltzmann However, since the previous algorithms used neural networks distribution and the energy function, and the policy is a with stochastic hidden units, these algorithms required Monte conditional probability given the current state of the agent. Carlo sampling methods for the action selections. In this paper, Previous studies on energy-based RL utilized the framework we investigate actor-critic algorithms based on the energy-based of restricted Boltzmann machines (RBMs) [10][11][12] to model. And we especially use neural networks with deterministic hidden units as an actor. Introducing the deterministic hidden represent the probability over the state-action pair. There are units, we show that the gradient of the objective function is two approaches in the energy-based RL, one is the value-based proportional to the gradient of the energy function. Then, we approach in which the action-value function is approximated show the relationships between the energy-based approach and by the (free) energy function of the RBMs [4][5][6][7], the the conventional policy gradient algorithms by introducing the other is the actor-critic approach in which the RBMs are used specific energy function. We reveal that the specificity of the RL paradigm severely disturbs learning of an actor when we only for the policy and the value function is approximated use a multilayer perceptron as the representation of the policy. by the other deterministic function [8]. However, because the We therefore introduce “twin net” architecture. Finally, we RBMs are stochastic neural networks, exact sampling of the empirically show the effectiveness of this architecture in several action from the Boltzmann distribution is intractable except discrete domains. when considering a small action set. Therefore, the Monte Carlo sampling methods, such as Gibbs sampling, are used as I. INTRODUCTION an approximation. Reinforcement learning (RL) is a paradigm of machine In this paper, we investigate energy-based RL and suggest learning in which the artificial agents learn the optimal action a new actor-critic algorithm. In our approach, we use deter- sequences from interactions with the environments. One of the ministic neural networks, and the energy functions are also central problems in recent studies of RL is efficient learning deterministic functions with respect to the state-action pairs. in environments with a large state-action set. Actor-critic al- By introducing the specific energy function, we show that gorithms are model-free RL algorithms that explicitly separate an exact sampling from the policy is tractable, even when the evaluation of current policy from the representation of the we considering large action sets. We also show that the the policy; hence, the policy in an infinitely large state-action set gradient of the objective function, that is, the policy gradient, can be compactly represented by arbitrary smooth functions, is proportional to the gradient of the energy function. Then, such as multilayer perceptrons [1][2][3]. The conventional we reveal that the specificity of the learning framework of actor-critic algorithms treat the “1 of K” type actions in actor-critic algorithms can disturb the learning of the actor which the agent at each time step selects one action from when we use multilayer perceptrons. In order to overcome K discrete actions, or continuous vector actions in which this problem, we introduce a new architecture of multilayer actions are represented by real valued vectors. However, there perceptrons, an energy function, and a loss function for the is an important class of representations for actions, which is actor-critic algorithm. Finally, we empirically show that the represented by the K bits vector of the binary values. This suggested algorithm successfully learns the good policies in type of action is challenging for RL algorithms because the several environments with discrete state-action sets. size of the action set exponentially grows with the length of II. BACKGROUNDS the vector. In this paper, we call this class of actions the K bits binary vector actions. A. Policy Gradient In recent studies on the online model-free RL algo- We assume that the RL agents act in an environment rithms, energy-based RL appeared to be a promising ap- modeled by the Markov Decision Process (MDP). MDP is proach to tackle learning in a large state-action set, especially defined by 4 tuples hS; A; P; Ri, where S is the state set and s 2 S is the state, A is the action set and a 2 A by is the action. P is the transition rule in the MDP, which is X π X π π defined by the conditional probability P (s0js; a) where s0 is rθJ(θ) = d (s) Q (s; a) − V (s) rθπθ(ajs) the next state given a state s and an action a. R is the reward s a 0 X π X π function r(s; a; s ), which gives the temporal evaluation of the = d (s) A (s; a)rθπθ(ajs) (2) state-action pair. The agent takes an action at every time step s a h π i from the stochastic policy π(ajs), which is the conditional = E A (s; a)rθ log πθ(ajs) ; (3) probability over the action set a 2 A given a state s. π π π The objective function of the RL algorithms is defined by where A (s; a) = Q (s; a)−V (s) is the advantage function. P π The advantage function has the property a π(ajs)A (s; a) = 1 P π(ajs)Qπ(s; a) − V π(s) = 0. hX t−1 i a J(π) = E γ rt ; In the actor-critic architecture, we approximate the value t=1 function of the current policy by a parametric function Vv(s) where v is the parameter of the function. Because the temporal where t denotes the time step, γ denotes the discount factor π π π difference (TD) error δt = rt + γV (st+1) − V (st) is an 0 ≤ γ < 1, rt = r(st; at; st+1), and d (s) denotes the π unbiased estimate of the advantage function, one approxima- discounted transition probability given the policy d (s) = tion of the advantage is calculated by using the approximated P1 γtP (s = sjs ; π) E[·] t=0 t 0 [13]. And is the expectation op- value function δ~ = r + γV (s ) − V (s ) [16][17]. Then E[f(s; a)] = P dπ(s) P π(ajs)f(s; a) t t v t+1 v t erator s a . The model- the update of the parameter ∆θ is given by free RL algorithms try to maximize this objective function ~ J(π) from trials and errors, without explicitly modeling the ∆θt = αδtrθ log πθ(ajs) (4) environment. where α is the learning rate. Many RL algorithms introduce the value function V π(s) π and the action-value function Q (s; a) by B. Energy-based Reinforcement Learning 1 In this paper, we call the approaches energy-based RL h i π X t−1 when the policy π is defined by some energy function E . V (s) = Eπ γ rt s0 = s θ θ t=1 The energy-based RL algorithms in previous studies used the 1 energy function π hX t−1 i Q (s; a) = Eπ γ rt s0 = s; a0 = a > > > > > t=1 Eθ(s; a; h) = s Wshh + a Wahh + bs s + ba a + bh h; where s, a, and h are the state, the action, and the hidden units where Eπ[·] is the expectation operator that denotes the ex- pectation over the trajectories given a policy π [14]. The value represented by the stochastic binary vectors in the RBMs. Wxy function and the action-value function have a relationship denotes the bidirectional connection between x and y. bx is > V π(s) = P π(ajs)Qπ(s; a). the bias vector of x. And denotes a transpose of the matrix a or vector. Then the parameter of the energy function θ is θ = If the policy π(ajs) is a smooth function π (ajs) with θ fW ;W ; b ; b g.
Recommended publications
  • Malware Classification with BERT
    San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-25-2021 Malware Classification with BERT Joel Lawrence Alvares Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons Malware Classification with Word Embeddings Generated by BERT and Word2Vec Malware Classification with BERT Presented to Department of Computer Science San José State University In Partial Fulfillment of the Requirements for the Degree By Joel Alvares May 2021 Malware Classification with Word Embeddings Generated by BERT and Word2Vec The Designated Project Committee Approves the Project Titled Malware Classification with BERT by Joel Lawrence Alvares APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE San Jose State University May 2021 Prof. Fabio Di Troia Department of Computer Science Prof. William Andreopoulos Department of Computer Science Prof. Katerina Potika Department of Computer Science 1 Malware Classification with Word Embeddings Generated by BERT and Word2Vec ABSTRACT Malware Classification is used to distinguish unique types of malware from each other. This project aims to carry out malware classification using word embeddings which are used in Natural Language Processing (NLP) to identify and evaluate the relationship between words of a sentence. Word embeddings generated by BERT and Word2Vec for malware samples to carry out multi-class classification. BERT is a transformer based pre- trained natural language processing (NLP) model which can be used for a wide range of tasks such as question answering, paraphrase generation and next sentence prediction. However, the attention mechanism of a pre-trained BERT model can also be used in malware classification by capturing information about relation between each opcode and every other opcode belonging to a malware family.
    [Show full text]
  • Fun with Hyperplanes: Perceptrons, Svms, and Friends
    Perceptrons, SVMs, and Friends: Some Discriminative Models for Classification Parallel to AIMA 18.1, 18.2, 18.6.3, 18.9 The Automatic Classification Problem Assign object/event or sequence of objects/events to one of a given finite set of categories. • Fraud detection for credit card transactions, telephone calls, etc. • Worm detection in network packets • Spam filtering in email • Recommending articles, books, movies, music • Medical diagnosis • Speech recognition • OCR of handwritten letters • Recognition of specific astronomical images • Recognition of specific DNA sequences • Financial investment Machine Learning methods provide one set of approaches to this problem CIS 391 - Intro to AI 2 Universal Machine Learning Diagram Feature Things to Magic Vector Classification be Classifier Represent- Decision classified Box ation CIS 391 - Intro to AI 3 Example: handwritten digit recognition Machine learning algorithms that Automatically cluster these images Use a training set of labeled images to learn to classify new images Discover how to account for variability in writing style CIS 391 - Intro to AI 4 A machine learning algorithm development pipeline: minimization Problem statement Given training vectors x1,…,xN and targets t1,…,tN, find… Mathematical description of a cost function Mathematical description of how to minimize/maximize the cost function Implementation r(i,k) = s(i,k) – maxj{s(i,j)+a(i,j)} … CIS 391 - Intro to AI 5 Universal Machine Learning Diagram Today: Perceptron, SVM and Friends Feature Things to Magic Vector
    [Show full text]
  • Introduction to Machine Learning
    Introduction to Machine Learning Perceptron Barnabás Póczos Contents History of Artificial Neural Networks Definitions: Perceptron, Multi-Layer Perceptron Perceptron algorithm 2 Short History of Artificial Neural Networks 3 Short History Progression (1943-1960) • First mathematical model of neurons ▪ Pitts & McCulloch (1943) • Beginning of artificial neural networks • Perceptron, Rosenblatt (1958) ▪ A single neuron for classification ▪ Perceptron learning rule ▪ Perceptron convergence theorem Degression (1960-1980) • Perceptron can’t even learn the XOR function • We don’t know how to train MLP • 1963 Backpropagation… but not much attention… Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550 4 Short History Progression (1980-) • 1986 Backpropagation reinvented: ▪ Rumelhart, Hinton, Williams: Learning representations by back-propagating errors. Nature, 323, 533—536, 1986 • Successful applications: ▪ Character recognition, autonomous cars,… • Open questions: Overfitting? Network structure? Neuron number? Layer number? Bad local minimum points? When to stop training? • Hopfield nets (1982), Boltzmann machines,… 5 Short History Degression (1993-) • SVM: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture. • SVM and Graphical models almost kill the ANN research. • Training deeper networks consistently yields poor results. • Exception: deep convolutional neural networks, Yann LeCun 1998. (discriminative model) 6 Short History Progression (2006-) Deep Belief Networks (DBN) • Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554. • Generative graphical model • Based on restrictive Boltzmann machines • Can be trained efficiently Deep Autoencoder based networks Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H.
    [Show full text]
  • Survey on Reinforcement Learning for Language Processing
    Survey on reinforcement learning for language processing V´ıctorUc-Cetina1, Nicol´asNavarro-Guerrero2, Anabel Martin-Gonzalez1, Cornelius Weber3, Stefan Wermter3 1 Universidad Aut´onomade Yucat´an- fuccetina, [email protected] 2 Aarhus University - [email protected] 3 Universit¨atHamburg - fweber, [email protected] February 2021 Abstract In recent years some researchers have explored the use of reinforcement learning (RL) algorithms as key components in the solution of various natural language process- ing tasks. For instance, some of these algorithms leveraging deep neural learning have found their way into conversational systems. This paper reviews the state of the art of RL methods for their possible use for different problems of natural language processing, focusing primarily on conversational systems, mainly due to their growing relevance. We provide detailed descriptions of the problems as well as discussions of why RL is well-suited to solve them. Also, we analyze the advantages and limitations of these methods. Finally, we elaborate on promising research directions in natural language processing that might benefit from reinforcement learning. Keywords| reinforcement learning, natural language processing, conversational systems, pars- ing, translation, text generation 1 Introduction Machine learning algorithms have been very successful to solve problems in the natural language pro- arXiv:2104.05565v1 [cs.CL] 12 Apr 2021 cessing (NLP) domain for many years, especially supervised and unsupervised methods. However, this is not the case with reinforcement learning (RL), which is somewhat surprising since in other domains, reinforcement learning methods have experienced an increased level of success with some impressive results, for instance in board games such as AlphaGo Zero [106].
    [Show full text]
  • Audio Event Classification Using Deep Learning in an End-To-End Approach
    Audio Event Classification using Deep Learning in an End-to-End Approach Master thesis Jose Luis Diez Antich Aalborg University Copenhagen A. C. Meyers Vænge 15 2450 Copenhagen SV Denmark Title: Abstract: Audio Event Classification using Deep Learning in an End-to-End Approach The goal of the master thesis is to study the task of Sound Event Classification Participant(s): using Deep Neural Networks in an end- Jose Luis Diez Antich to-end approach. Sound Event Classifi- cation it is a multi-label classification problem of sound sources originated Supervisor(s): from everyday environments. An auto- Hendrik Purwins matic system for it would many applica- tions, for example, it could help users of hearing devices to understand their sur- Page Numbers: 38 roundings or enhance robot navigation systems. The end-to-end approach con- Date of Completion: sists in systems that learn directly from June 16, 2017 data, not from features, and it has been recently applied to audio and its results are remarkable. Even though the re- sults do not show an improvement over standard approaches, the contribution of this thesis is an exploration of deep learning architectures which can be use- ful to understand how networks process audio. The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author. Contents 1 Introduction1 1.1 Scope of this work.............................2 2 Deep Learning3 2.1 Overview..................................3 2.2 Multilayer Perceptron...........................4
    [Show full text]
  • 4 Nonlinear Regression and Multilayer Perceptron
    4 Nonlinear Regression and Multilayer Perceptron In nonlinear regression the output variable y is no longer a linear function of the regression parameters plus additive noise. This means that estimation of the parameters is harder. It does not reduce to minimizing a convex energy functions { unlike the methods we described earlier. The perceptron is an analogy to the neural networks in the brain (over-simplified). It Pd receives a set of inputs y = j=1 !jxj + !0, see Figure (3). Figure 3: Idealized neuron implementing a perceptron. It has a threshold function which can be hard or soft. The hard one is ζ(a) = 1; if a > 0, ζ(a) = 0; otherwise. The soft one is y = σ(~!T ~x) = 1=(1 + e~!T ~x), where σ(·) is the sigmoid function. There are a variety of different algorithms to train a perceptron from labeled examples. Example: The quadratic error: t t 1 t t 2 E(~!j~x ; y ) = 2 (y − ~! · ~x ) ; for which the update rule is ∆!t = −∆ @E = +∆(yt~! · ~xt)~xt. Introducing the sigmoid j @!j function rt = sigmoid(~!T ~xt), we have t t P t t t t E(~!j~x ; y ) = − i ri log yi + (1 − ri) log(1 − yi ) , and the update rule is t t t t ∆!j = −η(r − y )xj, where η is the learning factor. I.e, the update rule is the learning factor × (desired output { actual output)× input. 10 4.1 Multilayer Perceptrons Multilayer perceptrons were developed to address the limitations of perceptrons (introduced in subsection 2.1) { i.e.
    [Show full text]
  • A Deep Reinforcement Learning Neural Network Folding Proteins
    DeepFoldit - A Deep Reinforcement Learning Neural Network Folding Proteins Dimitra Panou1, Martin Reczko2 1University of Athens, Department of Informatics and Telecommunications 2Biomedical Sciences Research Center “Alexander Fleming” ABSTRACT Despite considerable progress, ab initio protein structure prediction remains suboptimal. A crowdsourcing approach is the online puzzle video game Foldit [1], that provided several useful results that matched or even outperformed algorithmically computed solutions [2]. Using Foldit, the WeFold [3] crowd had several successful participations in the Critical Assessment of Techniques for Protein Structure Prediction. Based on the recent Foldit standalone version [4], we trained a deep reinforcement neural network called DeepFoldit to improve the score assigned to an unfolded protein, using the Q-learning method [5] with experience replay. This paper is focused on model improvement through hyperparameter tuning. We examined various implementations by examining different model architectures and changing hyperparameter values to improve the accuracy of the model. The new model’s hyper-parameters also improved its ability to generalize. Initial results, from the latest implementation, show that given a set of small unfolded training proteins, DeepFoldit learns action sequences that improve the score both on the training set and on novel test proteins. Our approach combines the intuitive user interface of Foldit with the efficiency of deep reinforcement learning. KEYWORDS: ab initio protein structure prediction, Reinforcement Learning, Deep Learning, Convolution Neural Networks, Q-learning 1. ALGORITHMIC BACKGROUND Machine learning (ML) is the study of algorithms and statistical models used by computer systems to accomplish a given task without using explicit guidelines, relying on inferences derived from patterns. ML is a field of artificial intelligence.
    [Show full text]
  • An Introduction to Deep Reinforcement Learning
    An Introduction to Deep Reinforcement Learning Ehsan Abbasnejad Remember: Supervised Learning We have a set of sample observations, with labels learn to predict the labels, given a new sample cat Learn the function that associates a picture of a dog/cat with the label dog Remember: supervised learning We need thousands of samples Samples have to be provided by experts There are applications where • We can’t provide expert samples • Expert examples are not what we mimic • There is an interaction with the world Deep Reinforcement Learning AlphaGo Scenario of Reinforcement Learning Observation Action State Change the environment Agent Don’t do that Reward Environment Agent learns to take actions maximizing expected Scenario of Reinforcement Learningreward. Observation Action State Change the environment Agent Thank you. Reward https://yoast.com/how-t Environment o-clean-site-structure/ Machine Learning Actor/Policy ≈ Looking for a Function Action = π( Observation ) Observation Action Function Function input output Used to pick the Reward best function Environment Reinforcement Learning in a nutshell RL is a general-purpose framework for decision-making • RL is for an agent with the capacity to act • Each action influences the agent’s future state • Success is measured by a scalar reward signal Goal: select actions to maximise future reward Deep Learning in a nutshell DL is a general-purpose framework for representation learning • Given an objective • Learning representation that is required to achieve objective • Directly from raw inputs
    [Show full text]
  • Modelling Working Memory Using Deep Recurrent Reinforcement Learning
    Modelling Working Memory using Deep Recurrent Reinforcement Learning Pravish Sainath1;2;3 Pierre Bellec1;3 Guillaume Lajoie 2;3 1Centre de Recherche, Institut Universitaire de Gériatrie de Montréal 2Mila - Quebec AI Institute 3Université de Montréal Abstract 1 In cognitive systems, the role of a working memory is crucial for visual reasoning 2 and decision making. Tremendous progress has been made in understanding the 3 mechanisms of the human/animal working memory, as well as in formulating 4 different frameworks of artificial neural networks. In the case of humans, the [1] 5 visual working memory (VWM) task is a standard one in which the subjects are 6 presented with a sequence of images, each of which needs to be identified as to 7 whether it was already seen or not. Our work is a study of multiple ways to learn a 8 working memory model using recurrent neural networks that learn to remember 9 input images across timesteps in supervised and reinforcement learning settings. 10 The reinforcement learning setting is inspired by the popular view in Neuroscience 11 that the working memory in the prefrontal cortex is modulated by a dopaminergic 12 mechanism. We consider the VWM task as an environment that rewards the 13 agent when it remembers past information and penalizes it for forgetting. We 14 quantitatively estimate the performance of these models on sequences of images [2] 15 from a standard image dataset (CIFAR-100 ) and their ability to remember 16 and recall. Based on our analysis, we establish that a gated recurrent neural 17 network model with long short-term memory units trained using reinforcement 18 learning is powerful and more efficient in temporally consolidating the input spatial 19 information.
    [Show full text]
  • Reinforcement Learning: a Survey
    Journal of Articial Intelligence Research Submitted published Reinforcement Learning A Survey Leslie Pack Kaelbling lpkcsbrownedu Michael L Littman mlittmancsbrownedu Computer Science Department Box Brown University Providence RI USA Andrew W Mo ore awmcscmuedu Smith Hal l Carnegie Mel lon University Forbes Avenue Pittsburgh PA USA Abstract This pap er surveys the eld of reinforcement learning from a computerscience p er sp ective It is written to b e accessible to researchers familiar with machine learning Both the historical basis of the eld and a broad selection of current work are summarized Reinforcement learning is the problem faced by an agent that learns b ehavior through trialanderror interactions with a dynamic environment The work describ ed here has a resemblance to work in psychology but diers considerably in the details and in the use of the word reinforcement The pap er discusses central issues of reinforcement learning including trading o exploration and exploitation establishing the foundations of the eld via Markov decision theory learning from delayed reinforcement constructing empirical mo dels to accelerate learning making use of generalization and hierarchy and coping with hidden state It concludes with a survey of some implemented systems and an assessment of the practical utility of current metho ds for reinforcement learning Intro duction Reinforcement learning dates back to the early days of cyb ernetics and work in statistics psychology neuroscience and computer science In the last ve to ten years
    [Show full text]
  • Quantum Reinforcement Learning During Human Decision-Making
    ARTICLES https://doi.org/10.1038/s41562-019-0804-2 Quantum reinforcement learning during human decision-making Ji-An Li 1,2, Daoyi Dong 3, Zhengde Wei1,4, Ying Liu5, Yu Pan6, Franco Nori 7,8 and Xiaochu Zhang 1,9,10,11* Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforce- ment learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smok- ers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels. riginating from early behavioural psychology, reinforce- explained well by quantum probability theory9–16. For example, one ment learning is now a widely used approach in the fields work showed the superiority of a quantum random walk model over Oof machine learning1 and decision psychology2. It typi- classical Markov random walk models for a modified random-dot cally formalizes how one agent (a computer or animal) should take motion direction discrimination task and revealed quantum-like actions in unknown probabilistic environments to maximize its aspects of perceptual decisions12.
    [Show full text]
  • 4 Perceptron Learning
    4 Perceptron Learning 4.1 Learning algorithms for neural networks In the two preceding chapters we discussed two closely related models, McCulloch–Pitts units and perceptrons, but the question of how to find the parameters adequate for a given task was left open. If two sets of points have to be separated linearly with a perceptron, adequate weights for the comput- ing unit must be found. The operators that we used in the preceding chapter, for example for edge detection, used hand customized weights. Now we would like to find those parameters automatically. The perceptron learning algorithm deals with this problem. A learning algorithm is an adaptive method by which a network of com- puting units self-organizes to implement the desired behavior. This is done in some learning algorithms by presenting some examples of the desired input- output mapping to the network. A correction step is executed iteratively until the network learns to produce the desired response. The learning algorithm is a closed loop of presentation of examples and of corrections to the network parameters, as shown in Figure 4.1. network test input-output compute the examples error fix network parameters Fig. 4.1. Learning process in a parametric system R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996 78 4 Perceptron Learning In some simple cases the weights for the computing units can be found through a sequential test of stochastically generated numerical combinations. However, such algorithms which look blindly for a solution do not qualify as “learning”. A learning algorithm must adapt the network parameters accord- ing to previous experience until a solution is found, if it exists.
    [Show full text]