Multilayer Perceptron

Total Page:16

File Type:pdf, Size:1020Kb

Multilayer Perceptron Advanced Introduction to Machine Learning, CMU-10715 Perceptron, Multilayer Perceptron Barnabás Póczos, Sept 17 Contents History of Artificial Neural Networks Definitions: Perceptron, MLP Representation questions Perceptron algorithm Backpropagation algorithm 2 Short History Progression (1943-1960) • First mathematical model of neurons . Pitts & McCulloch (1943) • Beginning of artificial neural networks • Perceptron, Rosenblatt (1958) . A single layer neuron for classification . Perceptron learning rule . Perceptron convergence theorem Degression (1960-1980) • Perceptron can’t even learn the XOR function • We don’t know how to train MLP • 1969 Backpropagation… but not much attention… 3 Short History Progression (1980-) • 1986 Backpropagation reinvented: . Rumelhart, Hinton, Williams: Learning representations by back-propagating errors. Nature, 323, 533—536, 1986 • Successful applications: . Character recognition, autonomous cars,… • Open questions: Overfitting? Network structure? Neuron number? Layer number? Bad local minimum points? When to stop training? • Hopfield nets (1982), Boltzmann machines,… 4 Short History Degression (1993-) • SVM: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture. • SVM almost kills the ANN research. • Training deeper networks consistently yields poor results. • Exception: deep convolutional neural networks, Yann LeCun 1998. (discriminative model) 5 Short History Progression (2006-) Deep Belief Networks (DBN) • Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554. • Generative graphical model • Based on restrictive Boltzmann machines • Can be trained efficiently Deep Autoencoder based networks Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19 6 The Neuron – Each neuron has a body, axon, and many dendrites – A neuron can fire or rest – If the sum of weighted inputs larger than a threshold, then the neuron fires. – Synapses: The gap between the axon and other neuron’s dendrites. It determines the weights in the sum. 7 The Mathematical Model of a Neuron 8 Typical activation functions • Identity function • Threshold function (perceptron) • Ramp function 9 Typical activation functions • Logistic function • Hiperbolic tangent function 10 Structure of Neural Networks 11 Fully Connected Neural Network Input neurons, Hidden neurons, Output neurons 12 Layers Convention: The input layer is Layer 0. 13 Feedforward neural networks • Connections only between Layer i and Layer i+1 • = Multilayer perceptron • The most popular architecture. Recurrent NN: there are connections backwards too. 14 What functions can multi-layer perceptrons represent? 15 Perceptrons cannot represent the XOR function f(0,0)=1, f(1,1)=1, f(0,1)=0, f(1,0)=0 What functions can multilayer perceptrons represent? 16 Hilbert’s 13th Problem “Solve 7-th degree equation using continuous functions of two parameters.” Related conjecture: Let f be a function of 3 arguments such that Prove that f cannot be rewritten as a composition of finitely many functions of two arguments. Another rewritten form: Prove that there is a nonlinear continuous system of three variables that cannot be decomposed with finitely many functions of two variables. 17 Function decompositions f(x,y,z)=Φ1(ψ1(x), ψ2(y))+Φ2(c1ψ3(y)+c2ψ4(z),x) ψ1 x Φ1 ψ2 f(x,y,z) Σ y ψ3 c1 Σ Φ2 z ψ4 c2 18 Function decompositions 1957, Arnold disproves Hilbert’s conjecture. 19 Function decompositions Corollary: Issues: This statement is not constructive. For a given N we don’t know and for a given N and f, we don’t know 20 Universal Approximators Kur Hornik, Maxwell Stinchcombe and Halber White: “Multilayer feedforward networks are universal approximators”, Neural Networks, Vol:2(3), 359-366, 1989 Definition: ΣN(g) neural network with 1 hidden layer: M N N T (g) f : f (x1,..., xN ) ci g(ai x bi ) i1 Theorem: If δ>0, g arbitrary sigmoid function, f is continuous on a compact set A, then fˆ N (g),such that f (x) fˆ(x) x A esetén 21 Universal Approximators Theorem: (Blum & Li, 1991) SgnNet2(x,w) with two hidden layers and sgn activation function is uniformly dense in L2. Definition: (2) 3 2 1 sgn Net x, w wi sgn wij sgn w jl xl i j l Formal statement: If f x L2 , i.e. f 2 xdx , and 0, then w, such that X 2 f x w 3 sgn w 2 sgn w 1x dx dx i ij jl l 1 n i j l 22 Proof Integral approximation in 1-dim: Integral approximation in 2-dim: xi xi xi 2 i i j f x x d(x) i X i i i 23 Proof xi The indicator function of Xi polygon can be learned by this neural network: xi xi 1 if x is in Xi sgnai sgnbij x j i j -1 otherwise The weighted linear combination of these indicator functions will be a good approximation of the original function f 24 LEARNING The Perceptron Algorithm 25 The Perceptron 1 -1 26 The training set 27 The perceptron algorithm 28 The perceptron algorithm 29 Perceptron convergence theorem Theorem: If the training samples were linearly separable, then the algorithm finds a separating hyperplane in finite steps. The upper bound on the number of steps is “independent” from the number of training samples, but depends on the dimension. Proof: [homework] 30 Multilayer Perceptron 31 The gradient of the error 32 Notation 33 Some observations 34 The backpropagated error 35 The backpropagated error Lemma 36 The backpropagated error Therefore, 37 The backpropagation algorithm 38 .
Recommended publications
  • Malware Classification with BERT
    San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-25-2021 Malware Classification with BERT Joel Lawrence Alvares Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons Malware Classification with Word Embeddings Generated by BERT and Word2Vec Malware Classification with BERT Presented to Department of Computer Science San José State University In Partial Fulfillment of the Requirements for the Degree By Joel Alvares May 2021 Malware Classification with Word Embeddings Generated by BERT and Word2Vec The Designated Project Committee Approves the Project Titled Malware Classification with BERT by Joel Lawrence Alvares APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE San Jose State University May 2021 Prof. Fabio Di Troia Department of Computer Science Prof. William Andreopoulos Department of Computer Science Prof. Katerina Potika Department of Computer Science 1 Malware Classification with Word Embeddings Generated by BERT and Word2Vec ABSTRACT Malware Classification is used to distinguish unique types of malware from each other. This project aims to carry out malware classification using word embeddings which are used in Natural Language Processing (NLP) to identify and evaluate the relationship between words of a sentence. Word embeddings generated by BERT and Word2Vec for malware samples to carry out multi-class classification. BERT is a transformer based pre- trained natural language processing (NLP) model which can be used for a wide range of tasks such as question answering, paraphrase generation and next sentence prediction. However, the attention mechanism of a pre-trained BERT model can also be used in malware classification by capturing information about relation between each opcode and every other opcode belonging to a malware family.
    [Show full text]
  • Fun with Hyperplanes: Perceptrons, Svms, and Friends
    Perceptrons, SVMs, and Friends: Some Discriminative Models for Classification Parallel to AIMA 18.1, 18.2, 18.6.3, 18.9 The Automatic Classification Problem Assign object/event or sequence of objects/events to one of a given finite set of categories. • Fraud detection for credit card transactions, telephone calls, etc. • Worm detection in network packets • Spam filtering in email • Recommending articles, books, movies, music • Medical diagnosis • Speech recognition • OCR of handwritten letters • Recognition of specific astronomical images • Recognition of specific DNA sequences • Financial investment Machine Learning methods provide one set of approaches to this problem CIS 391 - Intro to AI 2 Universal Machine Learning Diagram Feature Things to Magic Vector Classification be Classifier Represent- Decision classified Box ation CIS 391 - Intro to AI 3 Example: handwritten digit recognition Machine learning algorithms that Automatically cluster these images Use a training set of labeled images to learn to classify new images Discover how to account for variability in writing style CIS 391 - Intro to AI 4 A machine learning algorithm development pipeline: minimization Problem statement Given training vectors x1,…,xN and targets t1,…,tN, find… Mathematical description of a cost function Mathematical description of how to minimize/maximize the cost function Implementation r(i,k) = s(i,k) – maxj{s(i,j)+a(i,j)} … CIS 391 - Intro to AI 5 Universal Machine Learning Diagram Today: Perceptron, SVM and Friends Feature Things to Magic Vector
    [Show full text]
  • Introduction to Machine Learning
    Introduction to Machine Learning Perceptron Barnabás Póczos Contents History of Artificial Neural Networks Definitions: Perceptron, Multi-Layer Perceptron Perceptron algorithm 2 Short History of Artificial Neural Networks 3 Short History Progression (1943-1960) • First mathematical model of neurons ▪ Pitts & McCulloch (1943) • Beginning of artificial neural networks • Perceptron, Rosenblatt (1958) ▪ A single neuron for classification ▪ Perceptron learning rule ▪ Perceptron convergence theorem Degression (1960-1980) • Perceptron can’t even learn the XOR function • We don’t know how to train MLP • 1963 Backpropagation… but not much attention… Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550 4 Short History Progression (1980-) • 1986 Backpropagation reinvented: ▪ Rumelhart, Hinton, Williams: Learning representations by back-propagating errors. Nature, 323, 533—536, 1986 • Successful applications: ▪ Character recognition, autonomous cars,… • Open questions: Overfitting? Network structure? Neuron number? Layer number? Bad local minimum points? When to stop training? • Hopfield nets (1982), Boltzmann machines,… 5 Short History Degression (1993-) • SVM: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture. • SVM and Graphical models almost kill the ANN research. • Training deeper networks consistently yields poor results. • Exception: deep convolutional neural networks, Yann LeCun 1998. (discriminative model) 6 Short History Progression (2006-) Deep Belief Networks (DBN) • Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554. • Generative graphical model • Based on restrictive Boltzmann machines • Can be trained efficiently Deep Autoencoder based networks Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H.
    [Show full text]
  • Audio Event Classification Using Deep Learning in an End-To-End Approach
    Audio Event Classification using Deep Learning in an End-to-End Approach Master thesis Jose Luis Diez Antich Aalborg University Copenhagen A. C. Meyers Vænge 15 2450 Copenhagen SV Denmark Title: Abstract: Audio Event Classification using Deep Learning in an End-to-End Approach The goal of the master thesis is to study the task of Sound Event Classification Participant(s): using Deep Neural Networks in an end- Jose Luis Diez Antich to-end approach. Sound Event Classifi- cation it is a multi-label classification problem of sound sources originated Supervisor(s): from everyday environments. An auto- Hendrik Purwins matic system for it would many applica- tions, for example, it could help users of hearing devices to understand their sur- Page Numbers: 38 roundings or enhance robot navigation systems. The end-to-end approach con- Date of Completion: sists in systems that learn directly from June 16, 2017 data, not from features, and it has been recently applied to audio and its results are remarkable. Even though the re- sults do not show an improvement over standard approaches, the contribution of this thesis is an exploration of deep learning architectures which can be use- ful to understand how networks process audio. The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author. Contents 1 Introduction1 1.1 Scope of this work.............................2 2 Deep Learning3 2.1 Overview..................................3 2.2 Multilayer Perceptron...........................4
    [Show full text]
  • 4 Nonlinear Regression and Multilayer Perceptron
    4 Nonlinear Regression and Multilayer Perceptron In nonlinear regression the output variable y is no longer a linear function of the regression parameters plus additive noise. This means that estimation of the parameters is harder. It does not reduce to minimizing a convex energy functions { unlike the methods we described earlier. The perceptron is an analogy to the neural networks in the brain (over-simplified). It Pd receives a set of inputs y = j=1 !jxj + !0, see Figure (3). Figure 3: Idealized neuron implementing a perceptron. It has a threshold function which can be hard or soft. The hard one is ζ(a) = 1; if a > 0, ζ(a) = 0; otherwise. The soft one is y = σ(~!T ~x) = 1=(1 + e~!T ~x), where σ(·) is the sigmoid function. There are a variety of different algorithms to train a perceptron from labeled examples. Example: The quadratic error: t t 1 t t 2 E(~!j~x ; y ) = 2 (y − ~! · ~x ) ; for which the update rule is ∆!t = −∆ @E = +∆(yt~! · ~xt)~xt. Introducing the sigmoid j @!j function rt = sigmoid(~!T ~xt), we have t t P t t t t E(~!j~x ; y ) = − i ri log yi + (1 − ri) log(1 − yi ) , and the update rule is t t t t ∆!j = −η(r − y )xj, where η is the learning factor. I.e, the update rule is the learning factor × (desired output { actual output)× input. 10 4.1 Multilayer Perceptrons Multilayer perceptrons were developed to address the limitations of perceptrons (introduced in subsection 2.1) { i.e.
    [Show full text]
  • 4 Perceptron Learning
    4 Perceptron Learning 4.1 Learning algorithms for neural networks In the two preceding chapters we discussed two closely related models, McCulloch–Pitts units and perceptrons, but the question of how to find the parameters adequate for a given task was left open. If two sets of points have to be separated linearly with a perceptron, adequate weights for the comput- ing unit must be found. The operators that we used in the preceding chapter, for example for edge detection, used hand customized weights. Now we would like to find those parameters automatically. The perceptron learning algorithm deals with this problem. A learning algorithm is an adaptive method by which a network of com- puting units self-organizes to implement the desired behavior. This is done in some learning algorithms by presenting some examples of the desired input- output mapping to the network. A correction step is executed iteratively until the network learns to produce the desired response. The learning algorithm is a closed loop of presentation of examples and of corrections to the network parameters, as shown in Figure 4.1. network test input-output compute the examples error fix network parameters Fig. 4.1. Learning process in a parametric system R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996 78 4 Perceptron Learning In some simple cases the weights for the computing units can be found through a sequential test of stochastically generated numerical combinations. However, such algorithms which look blindly for a solution do not qualify as “learning”. A learning algorithm must adapt the network parameters accord- ing to previous experience until a solution is found, if it exists.
    [Show full text]
  • Perceptrons.Pdf
    Machine Learning: Perceptrons Prof. Dr. Martin Riedmiller Albert-Ludwigs-University Freiburg AG Maschinelles Lernen Machine Learning: Perceptrons – p.1/24 Neural Networks ◮ The human brain has approximately 1011 neurons − ◮ Switching time 0.001s (computer ≈ 10 10s) ◮ Connections per neuron: 104 − 105 ◮ 0.1s for face recognition ◮ I.e. at most 100 computation steps ◮ parallelism ◮ additionally: robustness, distributedness ◮ ML aspects: use biology as an inspiration for artificial neural models and algorithms; do not try to explain biology: technically imitate and exploit capabilities Machine Learning: Perceptrons – p.2/24 Biological Neurons ◮ Dentrites input information to the cell ◮ Neuron fires (has action potential) if a certain threshold for the voltage is exceeded ◮ Output of information by axon ◮ The axon is connected to dentrites of other cells via synapses ◮ Learning corresponds to adaptation of the efficiency of synapse, of the synaptical weight dendrites SYNAPSES AXON soma Machine Learning: Perceptrons – p.3/24 Historical ups and downs 1942 artificial neurons (McCulloch/Pitts) 1949 Hebbian learning (Hebb) 1950 1960 1970 1980 1990 2000 1958 Rosenblatt perceptron (Rosenblatt) 1960 Adaline/MAdaline (Widrow/Hoff) 1960 Lernmatrix (Steinbuch) 1969 “perceptrons” (Minsky/Papert) 1970 evolutionary algorithms (Rechenberg) 1972 self-organizing maps (Kohonen) 1982 Hopfield networks (Hopfield) 1986 Backpropagation (orig. 1974) 1992 Bayes inference computational learning theory support vector machines Boosting Machine Learning: Perceptrons – p.4/24
    [Show full text]
  • Petroleum and Coal
    Petroleum and Coal Article Open Access IMPROVED ESTIMATION OF PERMEABILITY OF NATURALLY FRACTURED CARBONATE OIL RESER- VOIRS USING WAVENET APPROACH Mohammad M. Bahramian 1, Abbas Khaksar-Manshad 1*, Nader Fathianpour 2, Amir H. Mohammadi 3, Bengin Masih Awdel Herki 4, Jagar Abdulazez Ali 4 1 Department of Petroleum Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran 2 Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran 3 Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa 4 Faculty of Engineering, Soran University, Kurdistan-Iraq Received June 18, 2017; Accepted September 30, 2017 Abstract One of the most important parameters which is regarded in petroleum industry is permeability that its accurate knowledge allows petroleum engineers to have adequate tools to evaluate and minimize the risk and uncertainty in the exploration of oil and gas reservoirs. Different direct and indirect methods are used to measure this parameter most of which (e.g. core analysis) are very time -consuming and cost consuming. Hence, applying an efficient method that can model this important parameter has the highest importance. Most of the researches show that the capability (i.e. classification, optimization and data mining) of an Artificial Neural Network (ANN) is suitable for imperfections found in petroleum engineering problems considering its successful application. In this study, we have used a Wavenet Neural Network (WNN) model, which was constructed by combining neural network and wavelet theory to improve estimation of permeability. To achieve this goal, we have also developed MLP and RBF networks and then compared the results of the latter two networks with the results of WNN model to select the best estimator between them.
    [Show full text]
  • Learning Sabatelli, Matthia; Loupe, Gilles; Geurts, Pierre; Wiering, Marco
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Deep Quality-Value (DQV) Learning Sabatelli, Matthia; Loupe, Gilles; Geurts, Pierre; Wiering, Marco Published in: ArXiv IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Early version, also known as pre-print Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Sabatelli, M., Loupe, G., Geurts, P., & Wiering, M. (2018). Deep Quality-Value (DQV) Learning. ArXiv. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 19-05-2020 Deep Quality-Value (DQV) Learning Matthia Sabatelli Gilles Louppe Pierre Geurts Montefiore Institute Montefiore Institute Montefiore Institute Université de Liège, Belgium Université de Liège, Belgium Université de Liège, Belgium [email protected] [email protected] [email protected] Marco A.
    [Show full text]
  • The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-Based Policy Naoto Yoshida
    The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-based Policy Naoto Yoshida To cite this version: Naoto Yoshida. The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy- based Policy. 2015. hal-01138709v2 HAL Id: hal-01138709 https://hal.archives-ouvertes.fr/hal-01138709v2 Preprint submitted on 19 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-based Policy Naoto Yoshida School of Biomedical Engineering Tohoku University Sendai, Aramaki Aza Aoba 6-6-01 Email: [email protected] Abstract—Learning and acting in a high dimensional state- when the actions are represented by binary vector actions action space are one of the central problems in the reinforcement [4][5][6][7][8]. Energy-based RL algorithms represent a policy learning (RL) communities. The recent development of model- based on energy-based models [9]. In this approach the prob- free reinforcement learning algorithms based on an energy- based model have been shown to be effective in such domains. ability of the state-action pair is represented by the Boltzmann However, since the previous algorithms used neural networks distribution and the energy function, and the policy is a with stochastic hidden units, these algorithms required Monte conditional probability given the current state of the agent.
    [Show full text]
  • Performance Analysis of Multilayer Perceptron in Profiling Side
    Performance Analysis of Multilayer Perceptron in Profiling Side-channel Analysis L´eoWeissbart1;2 1 Delft University of Technology, The Netherlands 2 Digital Security Group, Radboud University, The Netherlands Abstract. In profiling side-channel analysis, machine learning-based analysis nowadays offers the most powerful performance. This holds espe- cially for techniques stemming from the neural network family: multilayer perceptron and convolutional neural networks. Convolutional neural net- works are often favored as results suggest better performance, especially in scenarios where targets are protected with countermeasures. Mul- tilayer perceptron receives significantly less attention, and researchers seem less interested in this method, narrowing the results in the literature to comparisons with convolutional neural networks. On the other hand, a multilayer perceptron has a much simpler structure, enabling easier hyperparameter tuning and, hopefully, contributing to the explainability of this neural network inner working. We investigate the behavior of a multilayer perceptron in the context of the side-channel analysis of AES. By exploring the sensitivity of mul- tilayer perceptron hyperparameters over the attack's performance, we aim to provide a better understanding of successful hyperparameters tuning and, ultimately, this algorithm's performance. Our results show that MLP (with a proper hyperparameter tuning) can easily break im- plementations with a random delay or masking countermeasures. This work aims to reiterate the power of simpler neural network techniques in the profiled SCA. 1 Introduction Side-channel analysis (SCA) exploits weaknesses in cryptographic algorithms' physical implementations rather than the mathematical properties of the algo- rithms [16]. There, SCA correlates secret information with unintentional leakages like timing [13], power dissipation [14], and electromagnetic (EM) radiation [25].
    [Show full text]
  • Perceptrons and Neural Networks
    Perceptrons and Neural Networks Manuela Veloso 15-381 - Fall 2001 15-381 – Fall 2001 Veloso, Carnegie Mellon Motivation Beginnings of AI – chess, theorem-proving,... tasks thought to require “intelligence.” Perception (language and vision) and common sense reasoning not thought to be difficult to have a machine do it. The human brain as a model of how to build intelligent machines. Brain-like machanisms - since McCulloch early 40s. Connectionism – building upon the architectures of the brain. 15-381 – Fall 2001 Veloso, Carnegie Mellon Massively parallel simple neuron-like processing elements. “Representation” – weighted connections between the elements. Learning of representation – change of weights. Common sense – extremely well organized gigantic memory of facts – indices are relevant, highly operational knowledge, access by content. Classification tasks. 15-381 – Fall 2001 Veloso, Carnegie Mellon How the Brain Works Axonal arborization Axon from another cell Synapse Dendrite Axon Nucleus Synapses Cell body or Soma 15-381 – Fall 2001 Veloso, Carnegie Mellon Memory ¢¡¤£¥£ ¦¡§£©¨ neurons, connections 15-381 – Fall 2001 Veloso, Carnegie Mellon Main Processing Unit a = g(in ) a i i j Wj,i g in Input i Output ai Links Σ Links Input Activation Output Function Function § § ¢¡¤£ ¥¤¦ § ¡© ¨ 15-381 – Fall 2001 Veloso, Carnegie Mellon Different Threshold Functions a ai i ai +1 +1 +1 t ini ini ini −1 (a) Step function (b) Sign function (c) Sigmoid function 15-381 – Fall 2001 Veloso, Carnegie Mellon Learning Networks How to acquire the right values for the connections to have the right knowledge in a network? Answer – learning: show the patterns, let the network converge the values of the connections for which those patterns correspond to stable states according to parallel relaxation.
    [Show full text]