Parazitičtí Korýši Afrických Sladkovodních Ryb

Total Page:16

File Type:pdf, Size:1020Kb

Parazitičtí Korýši Afrických Sladkovodních Ryb MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE PARAZITIČTÍ KORÝŠI AFRICKÝCH SLADKOVODNÍCH RYB Bakalářská práce Robert Míč Vedoucí práce: RNDr. Martina Dávidová, Ph.D. Brno 2016 Bibliografický záznam Autor: Robert Míč Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Parazitičtí korýši afrických sladkovodních ryb Studijní program: Ekologická a evoluční biologie Studijní obor: Ekologická a evoluční biologie Vedoucí práce: RNDr. Martina Dávidová, Ph.D. Akademický rok: 2015/2016 Počet stran: 64 Klíčová slova: parazitičtí korýši; Afrika; sladkovodní ryby; diverzita; Súdán Bibliographic Entry Author Robert Míč Faculty of Science, Masaryk University Department of Botany and Zoology Title of Thesis: Parasitic crustaceans of African freshwater fishes Degree programme: Ecological and Evolutionary Biology Field of Study: Ecological and Evolutionary Biology Supervisor: RNDr. Martina Dávidová, Ph.D. Academic Year: 2015/2016 Number of Pages: 64 Keywords: parasitic crustaceans; Africa; freshwater fishes; diversity; Sudan Abstrakt Tato bakalářská práce se zabývá problematikou parazitických korýšů afrických sladkovodních ryb. Práce je rozdělena do dvou částí. První část práce představuje korýše jako skupinu, zejména jejich adaptace k parazitickému způsobu života (morfologie, životní cykly, způsob přichycení) a systematiku. Prezentováni jsou parazitičtí zástupci tříd Copepoda, Branchiura a řádu Isopoda, kteří se v Africe vyskytují. Práce je doplněna o přehled parazitických korýšů sladkovodních ryb s odkazy na práce, jež o jednotlivých druzích pojednávají. Druhá, praktická část, vyhodnocuje diverzitu korýšů parazitujících u sladkovodních ryb z povodí Bílého a Modrého Nilu v Súdánu pomocí morfologicko- molekulárních metod. Celkově bylo v letech 2010 a 2014 vyšetřeno 424 ryb 53 různých druhů. Nalezeno bylo 180 jedinců parazitických korýšů, kteří patří do rodů Ergasilus (3 druhy), Lamproglena (5 druhů), Lernaea (1 druh) a Argulus (3 druhy). Celková prevalence napadení ryb byla nízká. U vybraných jedinců (22) byla provedena molekulární analýza parciálních sekvencí 18S a 28S rDNA. Abstract This bachelor’s thesis is dealing with parasitic crustaceans of African freshwater fishes. The thesis is divided into two parts. The first part of the thesis presents crustaceans as a group, mainly their adaptations for a parasitic lifestyle (morphology, life cycles, attachment to their hosts) and the taxonomy of crustaceans. Parasitic species of classes Copepoda, Branchiura and order Isopoda that are found in Africa are also presented. The thesis is further supplemented with a list of all parasitic crustaceans of freshwater fishes that were recorded in Africa, with references provided for each species. The second, more practical part evaluates diversity of freshwater crustaceans on fishes of White and Blue Nile basin in Sudan, using morphological-molecular methods. In total, during the periods 2010 to 2014, there were 424 fishes of 53 different species examined. The results revealed 180 specimens of parasitic crustaceans, which belong to genuses Ergasilus (3 species), Lamproglena (5 species), Lernaea (1 species) and Argulus (3 species). Total prevalence of fish infection was low. The molecular analysis of partial sequences 18S and 28S rDNA was performed on chosen specimens (22). Poděkování Rád bych na tomto místě poděkoval vedoucí mé baklářské práce RNDr. Martině Dávidové, Ph.D. za odborné vedení, poskytnutí cenných rad, článků, publikací a za její trpělivý a ochotný přístup. Velký dík patří také Mgr. Márii Seifertové, Ph.D. za vysvětlení a pomoc s molekulární analýzou. V neposlední řadě také děkuji RNDr. Radimu Blažkovi za poskytnutí informací ohledně sběru materiálu, lokalitách a poskytnutí fotografií. Děkuji také za podporu mé rodině a přítelkyni Shivaun. Prohlášení Prohlašuji, že jsem svoji bakalářskou práci vypracoval samostatně s využitím informačních zdrojů, které jsou v práci citovány. Brno 29. dubna 2016 ……………………………… Jméno Příjmení OBSAH OBSAH ................................................................................................................................................... 9 ÚVOD ................................................................................................................................................... 10 1. LITERÁRNÍ PŘEHLED ............................................................................................................... 11 1.1. Obecná charakteristika korýšů .............................................................................................. 11 1.2. Parazitičí korýši ryb .............................................................................................................. 13 1.3. Diverzita parazitických korýšů afrických sladkovodních ryb ............................................... 14 1.3.1. Klanonožci (Copepoda) ..................................................................................................... 15 1.3.1.1. Čeleď Ergasilidae ...................................................................................................... 17 Charakteristika rodů ................................................................................................................. 18 1.3.1.2. Čeleď Lernaeidae ...................................................................................................... 19 Charakteristika rodů .................................................................................................................. 22 1.3.1.3. Další parazitičtí klanonožci prokázaní v Africe ........................................................ 23 1.3.2. Kapřivci (Branchiura) ....................................................................................................... 24 Charakteristika rodů ................................................................................................................. 26 1.3.3. Isopoda .............................................................................................................................. 27 Charakteristika rodů ................................................................................................................. 27 2. PRAKTICKÁ ČÁST ..................................................................................................................... 29 2.1. Charakteristika území ................................................................................................................ 29 2.2. Metodika sběru .......................................................................................................................... 31 2.3. Determinace parazitických korýšů ............................................................................................ 35 2.4. Základní epidemiologické charakteristiky ................................................................................ 35 2.5. Analýza molekulárních dat ........................................................................................................ 36 3. VÝSLEDKY ................................................................................................................................. 37 4. DISKUZE ...................................................................................................................................... 42 ZÁVĚR ................................................................................................................................................. 44 SEZNAM LITERATURY .................................................................................................................... 45 PŘÍLOHY ............................................................................................................................................. 54 9 ÚVOD Jedním z mnoha vztahů, jež můžeme nalézt v přírodě, je parazitismus. Jedná se o takovou situaci, kdy jeden organismus (parazit) žije celý svůj život, či alespoň část z něj na úkor jiného organismu (hostitele), přičemž parazit má z tohoto vztahu prospěch, kdežto hostitel naopak strádá. Na rozdíl od vztahu dravec - kořist, parazit zpravidla svého hostitele okamžitě neusmrcuje, zbavil by se zdroje existence, ale naopak je s ním v určitém rovnovážném stavu, který je udržován vzájemným působením obranných schopností hostitelského organismu na straně jedné a schopností parazita poškozovat tento organismus na straně druhé. V případě, že rovnovážnost stavu se posouvá ve prospěch hostitele, dochází buď k částečné, nebo i úplné redukci parazitů, v opačném případě pak může dojít ke smrti hostitele (Ergens a Lom, 1970). Parazitismus má mnoho forem a nevyhnou se mu ani obyvatelé vodního prostředí. Voda je pro obratlovce náročné médium. Obsahuje méně kyslíků než vzduch, naopak je ale mnohem hustší a viskóznější. S hloubkou vzrůstá tlak, zatímco dostupnost světla se snižuje. Nicméně, ryby se nejenom dokáží vyrovnat s těmito fyzikálními změnami a omezeními, ale také dominují vodnímu prostředí na planetě (Kearn, 2004). Afrika je kontinent s velkou biologickou diverzitou. To platí jak pro ryby jakožto hostitele, tak i jejich parazity. Tato práce je zaměřena na parazitické korýše sladkovodních ryb, jež se na tomto kontinentě vyskytují. Primárním cílem bakalářské práce je shrnout poznatky týkající se jejich biologie, distribuce, strategii rozmnožování a morfologických adaptací k parazitismu. Cílem praktické části bylo pomocí morfologicko-molekulárních metod vyhodnotit diverzitu korýšů parazitujících u ryb z povodí Bílého a Modrého Nilu v Súdánu, kde pracovní skupina z Parazitologie,
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • Trait Decoupling Promotes Evolutionary Diversification of The
    Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament.
    [Show full text]
  • Jlb Smith Institute of Ichthyology
    ISSN 0075-2088 J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY GRAHAMSTOWN, SOUTH AFRICA SPECIAL PUBLICATION No. 56 SCIENTIFIC AND COMMON NAMES OF SOUTHERN AFRICAN FRESHWATER FISHES by Paul H. Skelton November 1993 SERIAL PUBLICATIONS o f THE J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY The Institute publishes original research on the systematics, zoogeography, ecology, biology and conservation of fishes. Manuscripts on ancillary subjects (aquaculture, fishery biology, historical ichthyology and archaeology pertaining to fishes) will be considered subject to the availability of publication funds. Two series are produced at irregular intervals: the Special Publication series and the Ichthyological Bulletin series. Acceptance of manuscripts for publication is subject to the approval of reviewers from outside the Institute. Priority is given to papers by staff of the Institute, but manuscripts from outside the Institute will be considered if they are pertinent to the work of the Institute. Colour illustrations can be printed at the expense of the author. Publications of the Institute are available by subscription or in exchange for publi­ cations of other institutions. Lists of the Institute’s publications are available from the Publications Secretary at the address below. INSTRUCTIONS TO AUTHORS Manuscripts shorter than 30 pages will generally be published in the Special Publications series; longer papers will be considered for the Ichthyological Bulletin series. Please follow the layout and format of a recent Bulletin or Special Publication. Manuscripts must be submitted in duplicate to the Editor, J.L.B. Smith Institute of Ichthyology, Private Bag 1015, Grahamstown 6140, South Africa. The typescript must be double-spaced throughout with 25 mm margins all round.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • 60 Years of Coral Reef Fish Ecology: Past, Present, Future
    BULLETIN OF MARINE SCIENCE. 87(4):727–765. 2011 CORAL REEF PAPER http://dx.doi.org/10.5343/bms.2010.1055 60 YEARS OF CORAL REEF FISH ECOLOGY: PAST, PRESENT, FUTURE Mark A Hixon ABSTRACT Revisiting the past 60 yrs of studies of the ecology of fishes on coral reefs reveals successive decadal trends that highlight many lasting contributions relevant to fisheries biology, conservation biology, and ecology in general. The Bulletin of Marine Science was founded in 1951, about the same time SCUBA was first used to study reef fishes, so the 1950s was a decade of initial subtidal exploration by early pioneers. Detailed natural-history investigations of the use of space, food, and time by reef fishes developed in the 1960s, including studies based from undersea habitats late that decade. The 1970s saw the first comprehensive observational studies of reef- fish communities, as well as initial breakthroughs in behavioral ecology, especially regarding cleaning symbiosis, mating systems, and sex reversal. In community ecology, the conventional wisdom—that interspecific competition structured reef-fish assemblages via equilibrium dynamics and resource partitioning—was called into question by the “lottery hypothesis,” which posited that coexistence of ecologically similar species was fostered by nonequilibrial dynamics. The 1980s, in turn, were dominated by debate regarding the relative importance of larval supply vs post-settlement interactions in determining the local abundance and diversity of reef fishes. The “recruitment limitation hypothesis” asserted that larval settlement was so low that subsequent population dynamics were not only unpredictable, but also density-independent. Population and community studies during the 1990s thus focused largely on detecting demographic density dependence in reef-fish populations and identifying the mechanisms underlying this ultimate source of population regulation.
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • Benvenuto, C and SC Weeks. 2020
    --- Not for reuse or distribution --- 8 HERMAPHRODITISM AND GONOCHORISM Chiara Benvenuto and Stephen C. Weeks Abstract This chapter compares two sexual systems: hermaphroditism (each individual can produce gametes of either sex) and gonochorism (each individual produces gametes of only one of the two distinct sexes) in crustaceans. These two main sexual systems contain a variety of alternative modes of reproduction, which are of great interest from applied and theoretical perspectives. The chapter focuses on the description, prevalence, analysis, and interpretation of these sexual systems, centering on their evolutionary transitions. The ecological correlates of each reproduc- tive system are also explored. In particular, the prevalence of “unusual” (non- gonochoristic) re- productive strategies has been identified under low population densities and in unpredictable/ unstable environments, often linked to specific habitats or lifestyles (such as parasitism) and in colonizing species. Finally, population- level consequences of some sexual systems are consid- ered, especially in terms of sex ratios. The chapter aims to provide a broad and extensive overview of the evolution, adaptation, ecological constraints, and implications of the various reproductive modes in this extraordinarily successful group of organisms. INTRODUCTION 1 Historical Overview of the Study of Crustacean Reproduction Crustaceans are a very large and extraordinarily diverse group of mainly aquatic organisms, which play important roles in many ecosystems and are economically important. Thus, it is not surprising that numerous studies focus on their reproductive biology. However, these reviews mainly target specific groups such as decapods (Sagi et al. 1997, Chiba 2007, Mente 2008, Asakura 2009), caridean Reproductive Biology. Edited by Rickey D. Cothran and Martin Thiel.
    [Show full text]
  • Tis Schall and Synodontis Nigrita (Ostariophysi : Mochokidae) from the Ouémé River, Bénin
    Belg. J. Zool., 136 (2) : 193-201 July 2006 Studies on the biology of two species of catfish Synodon- tis schall and Synodontis nigrita (Ostariophysi : Mochokidae) from the Ouémé River, Bénin Philippe Lalèyè1, Antoine Chikou1, Pierre Gnohossou1, Pierre Vandewalle2, Jean Claude Philippart2 and Guy Teugels3 1 Université d’Abomey Calavi. Faculté des Sciences Agronomiques, Laboratoire d’Hydrobiologie et d’Aquaculture. 01 BP 526 Cotonou. Bénin. 2 Université de Liège, Laboratoire de Morphologie fonctionnelle et évolutive. Institut de Chimie, B6 Sart Tilman. B-4000 Liège et Laboratoire de Démographie des Poissons et d’Aquaculture, 8 Chemin de la Justice. B 4500 Tihange Belgique. 3 Musée Royal de l’Afrique Centrale (MRAC), Laboratoire d’Ichtyologie, B - 3080 Tervuren. Belgique. Corresponding address : Philippe Lalèyè, e-mail : [email protected] / [email protected] ABSTRACT. The abundance and distribution, length-weight, condition factor, diet and reproduction of Synodontis schall and S. nigrita from the Ouémé (Bénin) are described. S. nigrita is less abundant than S. schall in the river. Both species are euryphagous with their diet containing a wide variety of food items that include various types of plankton, invertebrates and plants. This high diversity of the food composition indicates a wide adaptability to the habitats in which they live. This is an important strategy for survival and an advantage over the fish species compet- ing for a specific food item. Size at maturity differs between species for both males (15 cm TL for S. schall and 21 cm TL for S. nigrita) and females (16 cm and 22 cm, respectively). Fecundity range is higher for S.
    [Show full text]
  • Greater Genetic Diversity in Spatially Restricted Coral Reef Fishes Suggests Secondary Contact Among Differentiated Lineages
    Diversity 2011, 3, 483-502; doi:10.3390/d3030483 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article Greater Genetic Diversity in Spatially Restricted Coral Reef Fishes Suggests Secondary Contact among Differentiated Lineages Line K Bay * and M. Julian Caley Australian Institute of Marine Science, PMB #3, Townsville MC, QLD 4810, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-7-47-534179; Fax: +61-7-4772-5852. Received: 30 June 2011; in revised form: 1 September 2011/ Accepted: 2 September 2011/ Published: 14 September 2011 Abstract: The maintenance of genetic diversity is a central goal of conservation. It is the raw material for evolutionary change and if lost, can accelerate extinction of species. According to theory, total genetic diversity should be less in species with restricted ranges and in populations on the margins of distributional ranges, making such species or populations more vulnerable to environmental perturbations. Using mtDNA and nuclear Inter Simple Sequence Repeat (ISSR) data we investigated how the genetic diversity and structure of three con-generic species pairs of coral reef fishes (Pomacentridae) was related to species’ range size and position of populations within these ranges. Estimates of genetic structure did not differ significantly among species, but mtDNA and nucDNA genetic diversities were up to 10 times greater in spatially restricted species compared to their widespread congeners. In two of the three species pairs, the distribution of genetic variation indicated secondary contact among differentiated lineages in the spatially restricted species.
    [Show full text]
  • Annotated Checklist of the Fishes of Lord Howe Island
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Allen, Gerald R., Douglass F. Hoese, John R. Paxton, J. E. Randall, C. Russell, W. A. Starck, F. H. Talbot, and G. P. Whitley, 1977. Annotated checklist of the fishes of Lord Howe Island. Records of the Australian Museum 30(15): 365–454. [21 December 1976]. doi:10.3853/j.0067-1975.30.1977.287 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia ANNOTATED CHECKLIST OF THE FISHES OF LORD HOWE ISLAND G. R. ALLEN, 1,2 D. F. HOESE,1 J. R. PAXTON,1 J. E. RANDALL, 3 B. C. RUSSELL},4 W. A. STARCK 11,1 F. H. TALBOT,1,4 AND G. P. WHITlEy5 SUMMARY lord Howe Island, some 630 kilometres off the northern coast of New South Wales, Australia at 31.5° South latitude, is the world's southern most locality with a well developed coral reef community and associated lagoon. An extensive collection of fishes from lord Howelsland was made during a month's expedition in February 1973. A total of 208 species are newly recorded from lord Howe Island and 23 species newly recorded from the Australian mainland. The fish fauna of lord Howe is increased to 447 species in 107 families. Of the 390 species of inshore fishes, the majority (60%) are wide-ranging tropical forms; some 10% are found only at lord Howe Island, southern Australia and/or New Zealand.
    [Show full text]
  • January 2015 1 ROBIN M. OVERSTREET Professor Emeritus
    1 January 2015 ROBIN M. OVERSTREET Professor Emeritus of Coastal Sciences Gulf Coast Research Laboratory The University of Southern Mississippi 703 East Beach Drive Ocean Springs, MS 39564 (228) 872-4243 (Office)/ (228) 282-4828 (cell)/ (228) 872-4204 (Fax) E-mail: [email protected] Home: 13821 Paraiso Road Ocean Springs, MS 39564 (228) 875-7912 (Home) 1 June 1939 Eugene, Oregon Married: Kim B. Overstreet (1964); children: Brian R. (1970) and Eric T. (1973) Education: BA, General Biology, University of Oregon, Eugene, OR, 1963 MS, Marine Biology, University of Miami, Institute of Marine Sciences, Miami, FL, 1966 PhD, Marine Biology, University of Miami, Institute of Marine Sciences, Miami, FL, 1968 NIH Postdoctoral Fellow in Parasitology, Tulane Medical School, New Orleans, LA, 1968-1969 Professional Experience: Gulf Coast Research Laboratory, Parasitologist, 1969-1970; Head, Section of Parasitology, 1970-1992; Senior Research Scientist-Biologist, 1992-1998; Professor of Coastal Sciences at The University of Southern Mississippi, 1998-2014; Professor Emeritus of Coastal Sciences, USM, February 2014-Present. 2 January 2015 The University of Southern Mississippi, Adjunct Member of Graduate Faculty, Department of Biological Sciences, 1970-1999; Adjunct Member of Graduate Faculty, Center for Marine Science, 1992-1998; Professor of Coastal Sciences, 1998-2014 (GCRL became part of USM in 1998); Professor Emeritus of Coastal Sciences, 2014- Present. University of Mississippi, Adjunct Assistant Professor of Biology, 1 July 1971-31 December 1990; Adjunct Professor, 1 January 1991-2014? Louisiana State University, School of Veterinary Medicine, Affiliate Member of Graduate Faculty, 26 February, 1981-14 January 1987; Adjunct Professor of Aquatic Animal Disease, Associate Member, Department of Veterinary Microbiology and Parasitology, 15 January 1987-20 November 1992.
    [Show full text]