(Amoebozoa, Discosea, Vannellida) a Small, Cyst-Forming Soil Amoeba
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download This Publication (PDF File)
PUBLIC LIBRARY of SCIENCE | plosgenetics.org | ISSN 1553-7390 | Volume 2 | Issue 12 | DECEMBER 2006 GENETICS PUBLIC LIBRARY of SCIENCE www.plosgenetics.org Volume 2 | Issue 12 | DECEMBER 2006 Interview Review Knight in Common Armor: 1949 Unraveling the Genetics 1956 An Interview with Sir John Sulston e225 of Human Obesity e188 Jane Gitschier David M. Mutch, Karine Clément Research Articles Natural Variants of AtHKT1 1964 The Complete Genome 2039 Enhance Na+ Accumulation e210 Sequence and Comparative e206 in Two Wild Populations of Genome Analysis of the High Arabidopsis Pathogenicity Yersinia Ana Rus, Ivan Baxter, enterocolitica Strain 8081 Balasubramaniam Muthukumar, Nicholas R. Thomson, Sarah Jeff Gustin, Brett Lahner, Elena Howard, Brendan W. Wren, Yakubova, David E. Salt Matthew T. G. Holden, Lisa Crossman, Gregory L. Challis, About the Cover Drosophila SPF45: A Bifunctional 1974 Carol Churcher, Karen The jigsaw image of representatives Protein with Roles in Both e178 Mungall, Karen Brooks, Tracey of various lines of eukaryote evolution Splicing and DNA Repair Chillingworth, Theresa Feltwell, refl ects the current lack of consensus as Ahmad Sami Chaouki, Helen K. Zahra Abdellah, Heidi Hauser, to how the major branches of eukaryotes Salz Kay Jagels, Mark Maddison, fi t together. The illustrations from upper Sharon Moule, Mandy Sanders, left to bottom right are as follows: a single Mammalian Small Nucleolar 1984 Sally Whitehead, Michael A. scale from the surface of Umbellosphaera; RNAs Are Mobile Genetic e205 Quail, Gordon Dougan, Julian Amoeba, the large amoeboid organism Elements Parkhill, Michael B. Prentice used as an introduction to protists for Michel J. Weber many school children; Euglena, the iconic Low Levels of Genetic 2052 fl agellate that is often used to challenge Soft Sweeps III: The Signature 1998 Divergence across e215 ideas of plants (Euglena has chloroplasts) of Positive Selection from e186 Geographically and and animals (Euglena moves); Stentor, Recurrent Mutation Linguistically Diverse one of the larger ciliates; Cacatua, the Pleuni S. -
Ptolemeba N. Gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba
The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Ptolemeba n. gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba Pamela M. Watsona, Stephanie C. Sorrella & Matthew W. Browna,b a Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, 39762 b Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, 39762 Keywords ABSTRACT 18S rRNA; amoeba; amoeboid; Cashia; cristae; freshwater amoebae; Hartmannella; Hartmannellid amoebae are an unnatural assemblage of amoeboid organisms mitochondrial morphology; SSU rDNA; SSU that are morphologically difficult to discern from one another. In molecular phy- rRNA; terrestrial amoebae; tubulinid. logenetic trees of the nuclear-encoded small subunit rDNA, they occupy at least five lineages within Tubulinea, a well-supported clade in Amoebozoa. The Correspondence polyphyletic nature of the hartmannellids has led to many taxonomic problems, M.W. Brown, Department of Biological in particular paraphyletic genera. Recent taxonomic revisions have alleviated Sciences, Mississippi State University, some of the problems. However, the genus Saccamoeba is paraphyletic and is Mississippi State, MS 39762, USA still in need of revision as it currently occupies two distinct lineages. Here, we Telephone number: +1 662-325-2406; report a new clade on the tree of Tubulinea, which we infer represents a novel FAX number: +1 662-325-7939; genus that we name Ptolemeba n. gen. This genus subsumes a clade of hart- e-mail: [email protected] mannellid amoebae that were previously considered in the genus Saccamoeba, but whose mitochondrial morphology is distinct from Saccamoeba. -
A Revised Classification of Naked Lobose Amoebae (Amoebozoa
Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility. -
Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes. -
CH28 PROTISTS.Pptx
9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3. -
Testate Lobose Amoebae)
Palaeontologia Electronica palaeo-electronica.org Mediolus, a new genus of Arcellacea (Testate Lobose Amoebae) R. Timothy Patterson ABSTRACT Mediolus, a new arcellacean genus of the Difflugidae (informally known as the- camoebia, testate rhizopods, or testate lobose amoebae) differs from other genera of the family in having distinctive tooth-like inward oriented apertural crenulations and tests generally characterized by a variable number of hollow basal spines. R. Timothy Patterson. Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. [email protected] Keywords: Arcellacea; thecamoebian; testate lobose amoebae; Quaternary, new genus INTRODUCTION of the simple unilocular test (e.g., Bonnet, 1975; Medioli et al., 1987, 1990; Beyens and Meisterfeld, Arcellacea (also informally known as the- 2001), although some researchers have placed camoebians, testate amoebae, testate rhizopods, more emphasis on test composition (e.g., Ander- or testate lobose amoebae; Patterson et al., 2012) son, 1988). The proliferation of species descrip- are a diverse group of unicellular testate rhizopods tions within the Difflugia, often based on subtle test that occur in a wide array of aquatic and terrestrial differences, has resulted in considerable taxo- environments (Patterson and Kumar, 2002) from nomic confusion (Patterson and Kumar, 2002). the tropics to poles (Dalby et al., 2000). Although Researchers have often described new species most common in Quaternary sediments fossil based on regional interest, often with little consid- arcellaceans have been found preserved in sedi- eration of the previous literature or the systematic ments deposited under freshwater and brackish value of distinguishing characters (see discussions conditions spanning the Phanerozoic and into the in Medioli and Scott, 1983; Medioli et al., 1987; Neoproterozoic (Porter and Knoll, 2000; Van Ogden and Hedley, 1980; Tolonen, 1986; Bobrov Hengstum, 2007). -
Brown Algae and 4) the Oomycetes (Water Molds)
Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level. -
The Ameba Chaos Chaos
A STUDY OF PHAGOCYTOSIS IN THE AMEBA CHAOS CHAOS RICHARD G. CHRISTIANSEN, M.D., and JOHNM. MARSHALL, M.D. From the Department of Anatomy, University of Pennsylvania School of Medicine, Philadelphia~ Pennsylvania ABSTRACT The process of phagocytosis was invcstigatcd by observing the interactions between the ameba Chaos chaos and its prey (Paramecium aurelia), by studying food cup formation in the living cell, and by studying the fine structure of the newly formed cup using electron microscopy of serial sections. The cytoplasm surrounding the food cup was found to contain structures not sccn clsewhere in the ameba. The results arc discussed in relation to the mechanisms which operate during food cup formation. INTRODUCTION One of the most familiar, yet dramatic events in formation of the food cup in response to an external introductory biology is the entrapment of a living stimulus may be related to the formation of pino- celiate by a fresh water ameba. Students of cell cytosis channels and to cytoplasmic streaming in physiology have long been interested in the process general, subjects already studied extensively in by which an ameba forms a food cup in response the ameba (Mast and Doyle, 1934; Holter and to an appropriate stimulus (Rhumbler, 1898, Marshall, 1954; Chapman-Andresen, 1962; Gold- 1910; Jennings, 1904; Schaeffer, 1912, 1916, acre, 1964; Wolpert et al, 1964; Ab6, 1964; Griffin, 1917; Mast and Root, 1916; Mast and Hahnert 1964; Wohlfarth-Bottermann, 1964). 1935), and also in the processes of digestion and During phagocytosis (as during pinocytosis) assimilation which follow once the cup closes to large amounts of the plasmalemma are consumed. -
The Microbial Food Web of the Coastal Southern Baltic Sea As Influenced by Wind-Induced Sediment Resuspension
THE MICROBIAL FOOD WEB OF THE COASTAL SOUTHERN BALTIC SEA AS INFLUENCED BY WIND-INDUCED SEDIMENT RESUSPENSION I n a u g u r a l - D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von TOBIAS GARSTECKI aus Magdeburg Köln, 2001 Berichterstatter: Prof. Dr. STEPHEN A. WICKHAM Prof. Dr. HARTMUT ARNDT Tag der letzten mündlichen Prüfung: 29.06.2001 Inhaltsverzeichnis Angabe von verwendeten Fremddaten .............................................. 5 Abkürzungsverzeichnis ..................................................................... 6 1. Einleitung ........................................................................................................ 7 1.1. Begründung der Fragestellung ......................................................... 7 1.2. Herangehensweise ..................................................................... 11 2. A comparison of benthic and planktonic heterotrophic protistan community structure in shallow inlets of the Southern Baltic Sea ........… 13 2.1. Summary ................... ........................................................................ 13 2.2. Introduction ................................................................................. 14 2.3. Materials and Methods ..................................................................... 15 2.3.1. Study sites ..................................................................... 15 2.3.2. Sampling design ........................................................ -
Studies on the Heavy Spherical (Refractive) Bodies of Freshwater Amoebae. I. Morphology and Regeneration of Hsbs in Chaos Carolinense
STUDIES ON THE HEAVY SPHERICAL (REFRACTIVE) BODIES OF FRESHWATER AMOEBAE. I. MORPHOLOGY AND REGENERATION OF HSBS IN CHAOS CAROLINENSE. by CICILY CHAPMAN-ANDRESEN * Institute of General Zoology, University of Copenhagen. Universitetsparken 15, DK-2100 Copenhagen O *Supported by The Carlsberg Foundation The heavy spherical bodies of Amoeba and Chaos are refractive organelles, varying in size from ca. 10 ~tm in diameter, down to the limit of resolution of the light microscope. These inclusions have many characteristics in common with the phosphate-rich, Jvolutin~ granules of other unicellular organisms, but differ from the latter in being constantly present in healthy growing amoebae, while in other organisms they appear only under con- ditions of nutritional imbalance. The fine structure of the HSBs of Amoeba and Chaos show that the organelles are membrane-bound, with an electron translucent periphery, and an electron dense inner core which sublimes in the electron beam, but which is stabilized by lead staining. During centrifugation in vivo, the HSBs collect at the centrifugal pole of the amoebae; under favourable conditions, a HSB-sack is formed at the heavy pole, and can be excised, leaving amoebae, normal in other respects, but containing only ca. 5% of the normal complement of HSBs. Using this method for obtaining practically HSB-free amoebae, the regeneration of HSBs was studied in Chaos carolinense, by determining the number and size distribution of HSBs in a standard volume in fixed, whole mounts by phase contrast microscopy. It was found that although the number of HSBs per standard volume in both fed and starved amoebae returned to that found in control, unoperated, Chaos by 7 days after operation, the size distribution did not return to normal until ca. -
Neoparamoeba Sp. and Other Protozoans on the Gills of Atlantic Salmon Salmo Salar Smolts in Seawater
DISEASES OF AQUATIC ORGANISMS Vol. 76: 231–240, 2007 Published July 16 Dis Aquat Org Neoparamoeba sp. and other protozoans on the gills of Atlantic salmon Salmo salar smolts in seawater Mairéad L. Bermingham*, Máire F. Mulcahy Environmental Research Institute, Aquaculture and Fisheries Development Centre, Department of Zoology, Ecology and Plant Science, National University of Ireland, Cork, Ireland ABSTRACT: Protozoan isolates from the gills of marine-reared Atlantic salmon Salmo salar smolts were cultured, cloned and 8 dominant isolates were studied in detail. The light and electron-micro- scopical characters of these isolates were examined, and 7 were identified to the generic level. Struc- ture, ultrastructure, a species-specific immunofluorescent antibody test (IFAT), and PCR verified the identity of the Neoparamoeba sp. isolate. Five other genera of amoebae, comprising Platyamoeba, Mayorella, Vexillifera, Flabellula, and Nolandella, a scuticociliate of the genus Paranophrys, and a trypanosomatid (tranosomatid-bodonid incertae sedis) accompanied Neoparamoeba sp. in the gills. The pathogenic potential of the isolated organisms, occurring in conjunction with Neoparamoeba sp. in the gills of cultured Atlantic salmon smolts in Ireland, remains to be investigated KEY WORDS: Amoebic gill disease · Neoparamoeba sp. · Amoebae · Platyamoeba sp. · Scuticociliates · Trypanosomatids Resale or republication not permitted without written consent of the publisher INTRODUCTION 1990, Palmer et al. 1997). However, simultaneous iso- lation of amoebae other than Neoparamoeba sp. from Various protozoans have been associated with gill the gills of clinically diseased fish has raised the disease in fish. Those causing the most serious mor- question of the possible involvement of such amoe- talities in fish are generally free-living species of bae in the disease (Dyková et al. -
High Resolution Time Series Reveals Cohesive but Short-Lived Communities in Coastal Plankton
ARTICLE DOI: 10.1038/s41467-017-02571-4 OPEN High resolution time series reveals cohesive but short-lived communities in coastal plankton Antonio M. Martin-Platero1,6, Brian Cleary2,3, Kathryn Kauffman 1, Sarah P. Preheim1,7, Dennis J. McGillicuddy, Jr4, Eric J. Alm1,2,5 & Martin F. Polz1 Because microbial plankton in the ocean comprise diverse bacteria, algae, and protists that are subject to environmental forcing on multiple spatial and temporal scales, a fundamental 1234567890():,; open question is to what extent these organisms form ecologically cohesive communities. Here we show that although all taxa undergo large, near daily fluctuations in abundance, microbial plankton are organized into clearly defined communities whose turnover is rapid and sharp. We analyze a time series of 93 consecutive days of coastal plankton using a technique that allows inference of communities as modular units of interacting taxa by determining positive and negative correlations at different temporal frequencies. This approach shows both coordinated population expansions that demarcate community boundaries and high frequency of positive and negative associations among populations within communities. Our analysis thus highlights that the environmental variability of the coastal ocean is mirrored in sharp transitions of defined but ephemeral communities of organisms. 1 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2 Broad Institute, Cambridge, MA 02139, USA. 3 Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 4 Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. 5 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.