<<

Design and Evolution of Carbon Conservation and Fixation Pathways

James C. Liao Academia Sinica Taipei, Taiwan

1 • Non-Oxidative Glycolysis (NOG) Bogorad Nature 2013; Lin PNAS 2018 6”H”

C6H12O6  3 CH3COOH  3 C2H5OH • Malyl-CoA Glycerate (MCG) pathway for CO2 fixation Yu Nat Comm 2018

4”H” 8”H”

C6H12O6 + 2 CO2  4 CH3COOH  4 C2H5OH

2 o Global net CO2 emission pathway (1.5 C limit)

Reduced emission

Negative emission

2050

IPCC “Global Warming of 1.5oC” Oct 2018 3 Pathways to Life

Cytoplasm Ribulose5P ATP NADPH Ribulose1,5BP hν CO2 hν Fdox Fdred Ribose5P Xylulose5P

G3P S7P PQ 3PGA Cytochrome

b6f complex ATP PQH2 S1,7BP Pc-Cu+ ATP Photosystem II Photosystem I 2+ Xylulose5P H O Pc-Cu E4P 2 O2 Lumen e- (CBB pathway)1,3BPGA Light reactions G3P F6P NADPH F1,6BP G3P

DHAP Cellulose G3P Glycolysis (EMP pathway) ATP e- TCA Cycle Acetyl-CoA Pyruvate

CO2 CO2

Fatty acid Amino acids Alcohol Alcohol Acids Lipid Acids Isoprenoids 4 CO2 loss is a common problem in cellular

C H O , C H O CO2 CO2, HCOOH, CH3OH, CH4 5 10 5 6 12 6

CBB RuMP PPP W-L EMP rTCA

Acetyl-CoA Pyruvate CO2 PDHc PFOR PFL CO2 Pyruvate Acetyl-CoA

Amino acids Isoprenoids Alcohol Fatty acid 5 Non-Oxidative Glycolysis (NOG)

C6H12O6 3 CH3COOH

6 Oxidative Glycolysis Embden-Meyerhof-Parnas (EMP) pathway

$0.4/Kg Glucose F6P FDP

DHAP G3P

2e- Partial oxidation C3 Pyruvate

2e- Carbon yield = 66% CO2 Mass yield O

= 50% SCoA Acetyl-CoA C2

$0.8/Kg Ethanol Butanol Lipids Isoprenoids 7 Theoretical Energy and Mass Yields

 C6H12O6 2C2H6O + 2 CO2 energy % mass % 2540 2 x 1235 kJ/mol 97.24% 51%

C6H12O6  C4H10O + 2 CO2 2540 2455 kJ/mol 96.6% 41%

2 C6H12O6  C7H16 + 4CO2 + CO 2x 2540 4543 kJ/mol 89.4% 27%

Jet 8 Non-oxidative Glycolysis (NOG)

Glucose F6P

3 F6P (C6)

Carbon 2 F6P 3 AcP 3 E4P Rearrangement111 (C2) (C4)

3 AcCoA Bifidobacterium breve.

Phosphoketolase Carbon yield = 100% Ethanol Acetate F6P AcP + E4P Butanol X5P  AcP + G3P 9 Two Modes of Non-Oxidative Glycolysis (NOG)

F6P X5P phosphoketolase F6P AcP + E4P X5P AcP + G3P F6P F6P

AcP E4P tal tkt tal fpk E4P AcP F6P F6P G3P S7P fpk fbp X5P fbp G3P S7P G3P F6P E4P tkt FBP FBP AcP tkt xpk tkt X5P X5P AcP fba G3P R5P fba DHAP R5P AcP tpi rpi G3P xpk rpi DHAP fpk G3P Ru5P F6P E4P Ru5P xpk tpi X5P rpe rpe G3P X5P AcP tkt

Net reaction: F6P  3 AcP

Bogorad et al. Nature 201310 Construction and Evolution of an NOG E. coli strain Glycolysis

TCA

11 Construction and Evolution of an NOG E. coli strain

Glycolysis NOG

TCA/GS

12 Lin et al. PNAS 2018 Laboratory evolution

Initial Strain

Mutations

13 Deleting Regular Use directed strain evolution to force the cell Glycolysis

“Loophole”

14 Lin et al. PNAS 2018 Deleting Potential Loopholes

No loopholes But no growth

15 Lin et al. PNAS 2018 Tune-up desired pathways, Delete potential futile cycles

Growth in

Glucose + Acetate 16 Lin et al. PNAS 2018 Use pathway assays to identify limiting De-bottlenecking

Growth in Glucose 17 Lin et al. PNAS 2018 Improved 18 Lin et al. PNAS 2018 growth Pathway assay to identify limiting enzymes

19 Construction and Evolution of an NOG E. coli strain

Glycolysis NOG

TCA/GS

20 Lin et al. PNAS 2018 Important occurring during evolution ∆ptsG EII-P CyaA cAMP

rpoS::transposon

21 Fine-tuning of activity Ensemble Modeling for Rubustness Analysis

22 Fine-tuning of enzyme activity

23 Installed Stronger Wt promoter Evolved away

Pck Activity

24 Lin et al. PNAS 2018 NOG21 NOG22 JCL16

8 JCL16(Wt) 6 NOG21 600 4 OD 2

0 0 20 40 60 Time (h) 1.0 ) 1 - JCL16 NOG21

0.5 Growth (h Growth rate

0.0

Glucose minimal Glucose minimal LB medium with medium aerobic medium anaerobic glucose aerobic 25 acetate lactate formate succinate

100%

80% 66% EMP Limit 60%

40%

20% Carbon distributionCarbon (mol/molfed carbon ) 0% JCL16 NOG21

26 An E. coli strain that uses solely NOG for sugar catabolism

27 Economy of oxidative and non-oxidative glycolysis for making ethanol

Traditional fermentation 1.5 C6H12O6  3C2H6O + 3 CO2 sugar price = $0.4/Kg ethanol price = $0.8/Kg http://www.nasdaq.com/markets/sugar.aspx

NOG C6H12O6 + 6 H2  3 C2H6O + 3 H2O

sugar price 12 When (= 0.133) Then it makes sense to use NOG + H2. H2 price > 90 H2 price < $3/Kg

28 Reductive Fermentation

(H2-assisted CO2 fixation) Traditional fermentation

C6H12O6  2C2H5OH + 2 CO2

 + 6 H2 + 2CO2 C2H5OH + 3 H2O

NOG: Reductive fermentation C6H12O6 + 6 H2  3 C2H5OH + 3 H2O

29 CO2 Saving

Non-oxidative (NOG) C6H12O6 + 6 H2  3 C2H5OH + 3 H2O Methane  steam reforming 1.5 CH4 + 3 H2O 1.5CO2 + 6 H2

C6H12O6 + 1.5 CH4  3 C2H5OH + 1.5 CO2

Traditional Fermentation 1.5 C6H12O6  3 C2H5OH + 3 CO2

30 Methane upgrading

Traditional C H O  2 C H OH + 2 CO Fermentation 6 12 6 2 5 2

+ Methane 0.5 CO + 1.5 CH  C H OH upgrading 2 4 2 5

NOG + Steam C6H12O6 + 1.5 CH4  3 C2H5OH + 1.5 CO2 Reforming

31 Methane upgrading

∆Go Energy* Carbon# Reactions Comment (kJ/mole) efficiency yield

1) C6H12O6 --> 2 C2H6O + 2 CO2 -228.4 0.97 66.70% Current fermentation Proposed Methane 2 100.05 1.03 133% ) 0.5 CO2 + 1.5 CH4 --> C2H6O upgrading (∆Go >0) Proposed reductive 3) = 1)+2) C H O + 1.5 CH --> 3 C H O + 1.5 CO -128.35 0.99 80% 6 12 6 4 2 6 2 fermentation

4) 2CH4 + O2--> C2H6O+ H2O -309.1 0.77 100% REMOTE

*Energy efficiency is calculated from the lower heating value (LHV) of combustion of products divided by the LHV of the reactants. o o ! ∆Gf and ∆H LHV values were taken from Table 2 # Carbon yield calculation does not include CO2.

32 Malyl-CoA Glycerate (MCG) pathway

for CO2 fixation

C6H12O6 + 2 CO2 + 4”H” 4 CH3COOH

Pyruvate + CO2 2 Acetyl-CoA

Glyoxylate Acetyl-CoA

33 Comparison of different carboxylases

Carboxylase Carbon FunctioninnaturalCO fixation Oxygensensitivity SpecificActivity 2 abbrev. species pathway (μmol/min/mg) 3.5[b] RuBisco CO2 No Yes No, but has (CBB) oxygenaseactivity HCO - ATP, biotion Yes No 18[b] ACC 3 (HP bi, HP/HB ) - [b] PCC HCO3 ATP, biotion Yes No 29.6 (HP bi, HP/HB ) - [b] PYC HCO3 ATP, biotion No No 32.4 (mainly in anaplerosis ) - [b] PPC HCO3 No Yes No 35.2 (DC/HB)

PFOR CO2 ferredoxin, TPP Yes Yes <1 (WL, rTCA, DC/HB)

KOR CO2 ferredoxin, TPP Yes Yes <1 (rTCA) [b] CCR CO2 NADPH No No 130 (found in ethylmalonyl-CoA pathway) Using Ppc for CO2 fixation

Ppc: Phosphoenolpyruvate carboxylase Problem:  Efficient • OAA can not be converted to general  Favor direction building blocks without carbon loss  No sensitivity

 Simple CO2 CO2 Pyruvate (C3) Acetyl-CoA (C2)

- HCO3 In most cells Asp Lys Met Thr Ppc PEP (C3) OAA (C4)

35 Reversal of glycoxylate shunt allows fixation of CO2 using Ppc

From CBB

C6H12O6 + 2 CO2 + 4”H” 4 CH3COOH

36 Constructing MCG in E. coli

37 MCG in E. coli

38 39 MCG augments CBB pathway

40 MCG pathway recycles product

Photorespiration MCG in S. elongates increased CO2 fixation

42 Summary and Acknowledgement • Hong Yu – MCG, Serine cycle • Paul Po-hen Lin – NOG • Igor Bogorad – NOG • Alec Yeager - NOG

43