Hydroxynitril-Lyasen Für Die Biotechnologie

Total Page:16

File Type:pdf, Size:1020Kb

Hydroxynitril-Lyasen Für Die Biotechnologie Hydroxynitril-Lyasen für die Biotechnologie Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Jan-Karl Guterl Aus Essen Jülich, Oktober 2008 Aus dem Institut für Molekulare Enzymtechnologie der Heinrich-Heine Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Frau PD Dr. Martina Pohl Korreferent: Herr Prof. Dr. Michael Bott Tag der mündlichen Prüfung: 27.11.2008 II Die vorliegende Arbeit wurde in der Zeit von Februar 2005 bis Oktober 2008 am Institut für Molekulare Enzymtechnologie der Heinrich-Heine-Universität Düsseldorf im Forschungs- zentrum Jülich unter der Leitung von Frau PD Dr. Martina Pohl angefertigt. Die Arbeit wurde vom Bundesministerium für Bildung und Forschung im Rahmen des Pro- jektes „Biokatalytische Hydrocyanierung und Hydroformylierung (BioHydroForm)“ sowie von der DFG im Rahmen des Graduiertenkollegs „Biocatalysis using non-conventional media (BioNoCo)“ gefördert. III Es könnt alles so einfach sein – isses aber nicht! (Die Fantastischen Vier, „Einfach sein“) IV Wissenschaftliche Veröffentlichungen im Rahmen dieser Promotion Artikel in Fachjournalen: „A high-troughput screening assay for hydroxynitrile lyase activity” Andexer, J.; Guterl, J.-K.; Pohl, M.; Eggert, T. Chemical Communications 40: 4201 – 4203 (2006) „Hydroxynitrile lyase catalyzed cyanohydrin synthesis at high pH-values” von Langermann, J.; Guterl, J.-K.; Pohl, M.; Wajant, H.; Kragl, U. Bioprocess and Biosystems Engineering 31 (3): 155 – 161 (2008) „Uneven twins: comparison of the two enantiocomplementary hydroxynitrile lyases with /- hydrolase fold” Guterl, J.-K.; Andexer, J.; Sehl, T.; von Langermann, J.; Frindi-Wosch, I.; Rosenkranz, T.; Fitter, J.; Gruber, K.; Kragl, U.; Eggert, T.; Pohl, M. Zur Veröffentlichung eingereicht. „The hydroxynitrile lyase from flax – a lyase that looks like an alcohol dehydrogenase” Horeis, G.; Guterl, J.-K.; Pohl, M.; Pichler, S.; Wagner, U.; Gruber, K.; Kratky, C. In Vorbereitung. Tagungsbeiträge: „Directed evolution of a plant hydroxynitrile lyase for industrial applications” Andexer, J.; Guterl, J.-K.; Pohl, M.; Eggert, T. Posterbeitrag, Industrial Biocatalysis in Pharmacy and Fine Chemistry (Nimes/ Frankreich, 2005). „High-throughput screening assay for hydroxynitrile lyases” Andexer, J.; Guterl, J.-K.; Pohl, M.; Eggert, T. Posterbeitrag, VAAM-Tagung (Jena, 2006) V „Improving the hydroxynitrile lyase from Manihot esculenta by directed evolution for techni- cal applications” Guterl, J.-K.; Andexer, J.; Eggert, T.; Pohl, M. Posterbeitrag, Biocat (Hamburg, 2006). „First steps towards the optimization of the hydroxynitrile lyase from Linum usitatissimum” Guterl, J.-K.; Horeis, G.; Gruber, K.; Kratky, C.; Andexer, J.; Eggert, T.; Pohl, M. Posterbeitrag, Biotrans (Oviedo/ Spanien, 2007). VI Inhalt Inhalt Wissenschaftliche Veröffentlichungen im Rahmen dieser Promotion ..................................... V Inhalt........................................................................................................................................VII Abkürzungen ............................................................................................................................XI Verzeichnis der Abbildungen & Tabellen............................................................................. XIV 1. Einleitung ............................................................................................................................... 1 1.1 Die Anwendung von Enzymen in der Biotechnologie..................................................... 1 1.2 Die Hydroxynitril-Lyasen ................................................................................................ 2 1.2.1 Durch Hydroxynitril-Lyasen katalysierte Reaktionen: Cyanogenese & Hydrocyanierung................................................................................................................ 2 1.2.1.1 Die Cyanogenese als Abwehrstrategie höherer Pflanzen....................................... 2 1.2.1.2 Metabolismus der cyanogenen Glycoside.............................................................. 3 1.2.2 HNLs sind durch konvergente Evolution entstanden................................................ 6 1.2.2.1 FAD-abhängige HNLs: Struktur, Substratspektrum und Verbreitung................... 8 1.2.2.2 FAD-unabhängige HNLs: ein kurzer Überblick .................................................. 10 1.2.3 Die HNL aus Manihot esculenta: eine S-selektive /-Hydrolase......................... 11 1.2.4 Die HNL aus Arabidopsis thaliana – Der ungleiche Zwilling der MeHNL ........... 13 1.2.5 Die HNL aus Linum usitatissimum ähnelt Zn2+-abhängigen Alkoholdehydrogenasen................................................................................................... 14 1.2.6 Biotechnologische Nutzung der HNLs ................................................................... 16 1.2.7 Cyanhydrine sind vielseitige Bausteine in der organischen Synthese .................... 17 1.2.8 Randbedingungen für die technische Herstellung enantiomerenreiner Cyanhydrine ..................................................................................................................... 18 1.3 Stabilität von Enzymen .................................................................................................. 20 1.3.1 Allgemeine Aspekte der Stabilität von Enzymen ................................................... 20 1.3.2 Kinetische und Thermodynamische Stabilität......................................................... 21 1.3.3 Allgemeine Aspekte der Inaktivierung von Enzymen ............................................ 23 1.3.4 Einfluss der Temperatur auf die Enzymstabilität.................................................... 24 1.3.5 Einfluss des pH-Wertes auf die Enzymstabilität..................................................... 25 1.3.6 Möglichkeiten zur Stabilisierung von Enzymen ..................................................... 27 1.3.6.1 Rationales Protein-Design.................................................................................... 28 1.3.6.2 Gerichtete Evolution und semi-rationale Ansätze................................................ 29 1.3.6.3 Stabilisierung durch chemische Additive............................................................. 33 1.3.6.4 Stabilisierung durch Immobilisierung.................................................................. 34 1.4 Zielsetzung dieser Arbeit ............................................................................................... 36 2. Material & Methoden........................................................................................................... 38 2.1 Material .......................................................................................................................... 38 2.1.1 Chemikalien & Enzyme .......................................................................................... 38 2.1.2 Geräte & Software................................................................................................... 38 2.1.3 Verwendete Bakterienstämme................................................................................. 40 2.1.4 Verwendete Plasmide.............................................................................................. 41 2.1.5 Oligonukleotide....................................................................................................... 41 2.2 Kultivierung und Lagerung von Bakterien..................................................................... 42 2.2.1 Nährmedien ............................................................................................................. 42 2.2.2 Antibiotika............................................................................................................... 44 2.2.3 Plattenkulturen ........................................................................................................ 44 2.2.4 Kultivierung in Flüssigmedien................................................................................ 44 2.2.5 Hochzelldichte-Kultivierung................................................................................... 45 2.2.6 Bestimmung der Zelldichte ..................................................................................... 45 2.2.7 Lagerung von Bakterienkulturen............................................................................. 45 VII Inhalt 2.3 Molekularbiologische Methoden.................................................................................... 46 2.3.1 Präparation von Plasmid-DNA................................................................................ 46 2.3.2 Konzentrationsbestimmung von DNA.................................................................... 46 2.3.3 Gelelektrophoretische Auftrennung von DNA (Sambrook et al., 1989) ................ 46 2.3.4 Elution von DNA aus Agarosegelen ....................................................................... 47 2.3.5 Polymerasekettenreaktion (PCR) ............................................................................ 47 2.3.5.1 Standard-PCR (nach Saiki et al., 1988) ............................................................... 47 2.3.5.2 Ortsspezifische Mutagenese................................................................................. 47 2.3.5.3 Ungerichtete Mutagenese mittels epPCR............................................................
Recommended publications
  • Bioprospecting for Hydroxynitrile Lyases by Blue Native PAGE Coupled HCN Detection
    Send Orders for Reprints to [email protected] Current Biotechnology, 2015, 4, 111-117 111 Bioprospecting for Hydroxynitrile Lyases by Blue Native PAGE Coupled HCN Detection Elisa Lanfranchi1, Eva-Maria Köhler1, Barbara Darnhofer1,2,3, Kerstin Steiner1, Ruth Birner-Gruenberger1,2,3, Anton Glieder1,4 and Margit Winkler*,1 1ACIB GmbH, Graz, Austria; 2Institute for Pathology, Medical University of Graz, Graz, Austria; 3Omics Center Graz, BioTechMed, Graz, Austria; 4Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria Abstract: Hydroxynitrile lyase enzymes (HNLs) catalyze the stereoselective addition of HCN to carbonyl compounds to give valuable chiral hydroxynitriles. The discovery of new sources of HNL activity has been reported several times as the result of extensive screening of diverse plants for cyanogenic activity. Herein we report a two step-method that allows estimation of not only the native size of the active HNL enzyme but also its substrate specificity. Specifically, crude protein extracts from plant tissue are first subjected to blue native-PAGE. The resulting gel is then directly used for an activity assay in which the formation of hydrocyanic acid (HCN) is detected upon the cyanogenesis reaction of any cyanohydrin catalyzed by the enzyme of interest. The same gel may be used with different substrates, thus exploring the enzyme’s substrate scope already on the screening level. In combination with mass spectrometry, sequence information can be retrieved, which is demonstrated
    [Show full text]
  • A New Insight Into Role of Phosphoketolase Pathway in Synechocystis Sp
    www.nature.com/scientificreports OPEN A new insight into role of phosphoketolase pathway in Synechocystis sp. PCC 6803 Anushree Bachhar & Jiri Jablonsky* Phosphoketolase (PKET) pathway is predominant in cyanobacteria (around 98%) but current opinion is that it is virtually inactive under autotrophic ambient CO2 condition (AC-auto). This creates an evolutionary paradox due to the existence of PKET pathway in obligatory photoautotrophs. We aim to answer the paradox with the aid of bioinformatic analysis along with metabolic, transcriptomic, fuxomic and mutant data integrated into a multi-level kinetic model. We discussed the problems linked to neglected isozyme, pket2 (sll0529) and inconsistencies towards the explanation of residual fux via PKET pathway in the case of silenced pket1 (slr0453) in Synechocystis sp. PCC 6803. Our in silico analysis showed: (1) 17% fux reduction via RuBisCO for Δpket1 under AC-auto, (2) 11.2–14.3% growth decrease for Δpket2 in turbulent AC-auto, and (3) fux via PKET pathway reaching up to 252% of the fux via phosphoglycerate mutase under AC-auto. All results imply that PKET pathway plays a crucial role under AC-auto by mitigating the decarboxylation occurring in OPP pathway and conversion of pyruvate to acetyl CoA linked to EMP glycolysis under the carbon scarce environment. Finally, our model predicted that PKETs have low afnity to S7P as a substrate. Metabolic engineering of cyanobacteria provides many options for producing valuable compounds, e.g., acetone from Synechococcus elongatus PCC 79421 and butanol from Synechocystis sp. strain PCC 68032. However, certain metabolites or overproduction of intermediates can be lethal. Tere is also a possibility that required mutation(s) might be unstable or the target bacterium may even be able to maintain the fux distribution for optimal growth balance due to redundancies in the metabolic network, such as alternative pathways.
    [Show full text]
  • The Cyanogenic Polymorphism in Trifolium Repens L
    Heredity66 (1991) 105—115 Received 16 May 1990 Genetical Society of Great Britain The cyanogenic polymorphism in Trifolium repens L. (white clover) M. A. HUGHES Department of Biochemistry and Genetics, The Medical School, The University, Newcastle upon Tyne NE2 4HH Thecyanogenic polymorphism in white clover is controlled by alleles of two independently segregating loci. Biochemical studies have shown that non-functional alleles of the Ac locus, which controls the level of cyanoglucoside produced in leaf tissue, result in the loss of several steps in the biosynthetic pathway. Alleles of the Li locus control the synthesis of the hydrolytic enzyme, linamarase, which is responsible for HCN release following tissue damage. Studies on the selective forces and the distribution of the cyanogenic morphs of white clover are discussed in relation to the quantitative variation in cyanogenesis revealed by biochemical studies. Molecular studies reveal considerable restriction fragment length polymorphism for linamarase homologous genes. Keywords:cyanogenesis,polymorphism, Trifolium repen, white clover. genetics to plant taxomony. This review discusses the Introduction extensive and diverse ecological genetic studies in rela- Theterm cyanogenesis describes the release of hydro- tion to the more recent biochemical and molecular cyanic acid (HCN), which occurs when the tissues of studies of cyanogenesis in white clover. some plant species are damaged. The first report of cyanogenesis in Trifolium repens (white clover) was by Mirande (1912) and this was shortly followed by a Biochemistry paper which demonstrated that the species was poly- Theproduction of HCN by higher plants depends morphic for the character, with both cyanogenic and upon the co-occurrence of a cyanogenic glycoside and acyanogenic plants occurring in the same population catabolic enzymes.
    [Show full text]
  • UV-B Induced Stress Responses in Three Rice Cultivars
    BIOLOGIA PLANTARUM 54 (3): 571-574, 2010 BRIEF COMMUNICATION UV-B induced stress responses in three rice cultivars I. FEDINA1*, J. HIDEMA2, M. VELITCHKOVA3, K. GEORGIEVA1 and D. NEDEVA1 Institute of Plant Physiology1 and Institute of Biophysics3, Bulgarian Academy of Sciences, Academic Georgi Bonchev Street, Building 21, Sofia 1113, Bulgaria Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan2 Abstract UV-B responses of three rice (Oryza sativa L.) cultivars (Sasanishiki, Norin 1 and Surjamkhi) with different photolyase activity were investigated. Carbon dioxide assimilation data support that Sasanishiki was less sensitive to UV-B than Norin 1 and Surjamkhi. UV-B radiation sharply decreased the content of Rubisco protein in Surjamkhi and has no effect in Sasanishiki. The photochemical activities of photosystem (PS) 1 and PS 2 was slightly affected by UV-B treatment. The content of H2O2 and the activities of antioxidant enzymes, catalase (CAT), peroxides (POX) and superoxide dismutase (SOD) were enhanced after UV-B treatment. The activities of CAT and POX isoenzymes in Sasanishiki were more enhanced by UV-B radiation than those in Norin 1 and Surjamkhi. 14 Additional key words: catalase, CO2 fixation, hydrogen peroxide, peroxidase, Rubisco, superoxide dismutase. ⎯⎯⎯⎯ UV-B sensitivity of plants is determined by the balance of Furthermore, transgenic rice plants in which the CPD damage incurred and by the efficiency of repair processes photolyase was overexpressed had higher CPD photolyase that can restore the impaired functions. This balance is activity and showed significantly greater resistance to influenced by several factors, including the genetic UV-B than wild plants (Hidema et al.
    [Show full text]
  • Taming the Wild Rubisco: Explorations in Functional Metagenomics
    Taming the Wild RubisCO: Explorations in Functional Metagenomics DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Brian Hurin Witte, M.S. Graduate Program in Microbiology The Ohio State University 2012 Dissertation Committee : F. Robert Tabita, Advisor Joseph Krzycki Birgit E. Alber Paul Fuerst Copyright by Brian Hurin Witte 2012 Abstract Ribulose bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39) (RubisCO) is the most abundant protein on Earth and the mechanism by which the vast majority of carbon enters the planet’s biosphere. Despite decades of study, many significant questions about this enzyme remain unanswered. As anthropogenic CO2 levels continue to rise, understanding this key component of the carbon cycle is crucial to forecasting feedback circuits, as well as to engineering food and fuel crops to produce more biomass with few inputs of increasingly scarce resources. This study demonstrates three means of investigating the natural diversity of RubisCO. Chapter 1 builds on existing DNA sequence-based techniques of gene discovery and shows that RubisCO from uncultured organisms can be used to complement growth in a RubisCO-deletion strain of autotrophic bacteria. In a few short steps, the time-consuming work of bringing an autotrophic organism in to pure culture can be circumvented. Chapter 2 details a means of entirely bypassing the bias inherent in sequence-based gene discovery by using selection of RubisCO genes from a metagenomic library. Chapter 3 provides a more in-depth study of the RubisCO from the methanogenic archaeon Methanococcoides burtonii.
    [Show full text]
  • Commentary. in the Article “Genetic Code Origins: Experi- Ments Confirm Phylogenetic Predictions and May Explain a Puzzle” B
    5890 Corrections Proc. Natl. Acad. Sci. USA 96 (1999) Commentary. In the article “Genetic code origins: Experi- Neurobiology. In the article “Growth factor-mediated Fyn ments confirm phylogenetic predictions and may explain a signaling regulates a-amino-3-hydroxy-5-methyl-4-isox- puzzle” by Paul Schimmel and Lluis Ribas de Pouplana, which azolepropionic acid (AMPA) receptor expression in rodent appeared in number 2, January 19, 1999 of Proc. Natl. Acad. neocortical neurons” by Mako Narisawa-Saito, Alcino J. Silva, Sci. USA (96, 327–328), the following corrections should be Tsuyoshi Yamaguchi, Takashi Hayashi, Tadashi Yamamoto, noted. The fifth and sixth sentences of the first paragraph on and Hiroyuki Nawa, which appeared in number 5, March 2, page 328 should read as follows (changes are indicated by bold 1999, of Proc. Natl. Acad. Sci. USA (96, 2461–2466), due to a type): “This base pair is found in the spirochetes T. pallidum printer’s error, there were several errors in the author and and B. burgdorferi that contain a class I enzyme. In contrast, affiliations lines. The correct affiliations are as follows: Ibba et al. (1) show that the class II E. coli enzyme cannot MAKO NARISAWA-SAITO*†,ALCINO J. SILVA‡,TSUYOSHI accept G2-U71.” Also, the word “spirocytes” in the sixth YAMAGUCHI*, TAKASHI HAYASHI§,TADASHI YAMAMOTO§, sentence of the second paragraph on page 328 should read AND HIROYUKI NAWA*†‡ spirochetes. Finally, the sixth sentence of the last paragraph on page 328 should read as follows: “So multiple lateral gene *Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; ‡Cold Spring Harbor Laboratory, Cold transfer from archaebacteria to certain bacteria could account Spring Harbor, NY 11724; and §Institute of Medical Science, University of for the presence of class I LysRS in bacterial organisms such Tokyo, Tokyo 108-8639, Japan as T.
    [Show full text]
  • University of London Thesis
    REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree Year^^0^ Name of Author C O P Y R IG H T This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOANS Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied.
    [Show full text]
  • Microfilmed 199S Information to Users
    UMI MICROFILMED 199S INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with s m a ll overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Beil & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313.-761-4700 800.521-0600 Order Number 0517044 Molecular and biochemical studies of RubisCO activation in Anabatna species Li, Lih-Ann, Ph.D. The Ohio State University, 1094 Copyright ©1094 by Li, Llh-Ann.
    [Show full text]
  • The Mechanism of Rubisco Catalyzed Carboxylation Reaction: Chemical Aspects Involving Acid-Base Chemistry and Functioning of the Molecular Machine
    catalysts Review The Mechanism of Rubisco Catalyzed Carboxylation Reaction: Chemical Aspects Involving Acid-Base Chemistry and Functioning of the Molecular Machine Immacolata C. Tommasi Dipartimento di Chimica, Università di Bari Aldo Moro, 70126 Bari, Italy; [email protected] Abstract: In recent years, a great deal of attention has been paid by the scientific community to improving the efficiency of photosynthetic carbon assimilation, plant growth and biomass production in order to achieve a higher crop productivity. Therefore, the primary carboxylase enzyme of the photosynthetic process Rubisco has received considerable attention focused on many aspects of the enzyme function including protein structure, protein engineering and assembly, enzyme activation and kinetics. Based on its fundamental role in carbon assimilation Rubisco is also targeted by the CO2-fertilization effect, which is the increased rate of photosynthesis due to increasing atmospheric CO2-concentration. The aim of this review is to provide a framework, as complete as possible, of the mechanism of the RuBP carboxylation/hydration reaction including description of chemical events occurring at the enzyme “activating” and “catalytic” sites (which involve Broensted acid- base reactions) and the functioning of the complex molecular machine. Important research results achieved over the last few years providing substantial advancement in understanding the enzyme functioning will be discussed. Citation: Tommasi, I.C. The Mechanism of Rubisco Catalyzed Keywords: enzyme carboxylation reactions; enzyme acid-base catalysis; CO2-fixation; enzyme Carboxylation Reaction: Chemical reaction mechanism; potential energy profiles Aspects Involving Acid-Base Chemistry and Functioning of the Molecular Machine. Catalysts 2021, 11, 813. https://doi.org/10.3390/ 1. Introduction catal11070813 The increased amount of anthropogenic CO2 emissions since the beginning of the industrial era (starting around 1750) has significantly affected the natural biogeochemical Academic Editor: Arnaud Travert carbon cycle.
    [Show full text]
  • Overexpression of an Agave Phosphoenolpyruvate Carboxylase Improves Plant Growth and Stress Tolerance
    cells Article Overexpression of an Agave Phosphoenolpyruvate Carboxylase Improves Plant Growth and Stress Tolerance Degao Liu 1,2,†, Rongbin Hu 1,† , Jin Zhang 1,2 , Hao-Bo Guo 3, Hua Cheng 1 , Linling Li 1, Anne M. Borland 1,4 , Hong Qin 3, Jin-Gui Chen 1,2, Wellington Muchero 1,2, Gerald A. Tuskan 1,2 and Xiaohan Yang 1,2,* 1 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; [email protected] (D.L.); [email protected] (R.H.); [email protected] (J.Z.); [email protected] (H.C.); [email protected] (L.L.); [email protected] (A.M.B.); [email protected] (J.-G.C.); [email protected] (W.M.); [email protected] (G.A.T.) 2 The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 3 Department of Computer Science and Engineering, SimCenter, University of Tennessee Chattanooga, Chattanooga, TN 37403, USA; [email protected] (H.-B.G.); [email protected] (H.Q.) 4 School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, UK * Correspondence: [email protected]; Tel.: +1-865-241-6895; Fax: +1-865-576-9939 † These authors contribute equally to this work. Abstract: It has been challenging to simultaneously improve photosynthesis and stress tolerance in plants. Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism that facilitates plant adaptation to water-limited environments. We hypothesized that the ectopic expression of a CAM- specific phosphoenolpyruvate carboxylase (PEPC), an enzyme that catalyzes primary CO2 fixation in Citation: Liu, D.; Hu, R.; Zhang, J.; CAM plants, would enhance both photosynthesis and abiotic stress tolerance.
    [Show full text]
  • Greater Efficiency of Photosynthetic Carbon Fixation Due to Single Amino
    ARTICLE Received 7 Aug 2012 | Accepted 16 Jan 2013 | Published 26 Feb 2013 DOI: 10.1038/ncomms2504 OPEN Greater efficiency of photosynthetic carbon fixation due to single amino-acid substitution Judith Katharina Paulus1,*, Daniel Schlieper1,* & Georg Groth1 The C4-photosynthetic carbon cycle is an elaborated addition to the classical C3-photo- synthetic pathway, which improves solar conversion efficiency. The key enzyme in this pathway, phosphoenolpyruvate carboxylase, has evolved from an ancestral non- photosynthetic C3 phosphoenolpyruvate carboxylase. During evolution, C4 phosphoe- nolpyruvate carboxylase has increased its kinetic efficiency and reduced its sensitivity towards the feedback inhibitors malate and aspartate. An open question is the molecular basis of the shift in inhibitor tolerance. Here we show that a single-point mutation is sufficient to account for the drastic differences between the inhibitor tolerances of C3 and C4 phosphoenolpyruvate carboxylases. We solved high-resolution X-ray crystal structures of a C3 phosphoenolpyruvate carboxylase and a closely related C4 phosphoenolpyruvate carboxylase. The comparison of both structures revealed that Arg884 supports tight inhibitor binding in the C3-type enzyme. In the C4 phosphoenolpyruvate carboxylase isoform, this arginine is replaced by glycine. The substitution reduces inhibitor affinity and enables the enzyme to participate in the C4 photosynthesis pathway. 1 Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Universitaetsstr. 1, 40225 Du¨sseldorf, Germany. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to G.G. (email: [email protected]). NATURE COMMUNICATIONS | 4:1518 | DOI: 10.1038/ncomms2504 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited.
    [Show full text]
  • Metagenomic Analysis of Phosphorus Removing Sludge Communities
    Metagenomic analysis of phosphorus removing sludge communities. Héctor García Martín1, Natalia Ivanova1, Victor Kunin1, Falk Warnecke1, Kerrie Barry1, Alice C. McHardy4, Christine Yeates2, Shaomei He3, Asaf Salamov1, Ernest Szeto1, Eileen Dalin1, Nik Putnam1, Harris J. Shapiro1, Jasmyn L. Pangilinan1, Isidore Rigoutsos4, Nikos C. Kyrpides1, Linda Louise Blackall2, Katherine D. McMahon3, and Philip Hugenholtz1* 1 DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA. 2 Advanced Wastewater Management Centre, University of Queensland, St Lucia, 4072, Queensland, Australia. 3 Civil and Environmental Engineering Department, University of Wisconsin- Madison, 1415 Engineering Drive, Madison, WI 53706, USA. 4 IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA *corresponding author: [email protected] 1 Abstract Enhanced Biological Phosphorus Removal (EBPR) is not well understood at the metabolic level despite being one of the best-studied microbially-mediated industrial processes due to its ecological and economic relevance. Here we present a metagenomic analysis of two lab-scale EBPR sludges dominated by the uncultured bacterium, “Candidatus Accumulibacter phosphatis”. This analysis sheds light on several controversies in EBPR metabolic models and provides hypotheses explaining the dominance of A. phosphatis in this habitat, its lifestyle outside EBPR and probable cultivation requirements. Comparison of the same species from different EBPR sludges highlights recent evolutionary dynamics in the A. phosphatis genome that could be linked to mechanisms for environmental adaptation. In spite of an apparent lack of phylogenetic overlap in the flanking communities of the two sludges studied, common functional themes were found, at least one of them complementary to the inferred metabolism of the dominant organism.
    [Show full text]