Runaway Sexual Selection When Female Preferences Are Directly Selected

Total Page:16

File Type:pdf, Size:1020Kb

Runaway Sexual Selection When Female Preferences Are Directly Selected Evolution, 54(6), 2000, pp. 1862±1869 RUNAWAY SEXUAL SELECTION WHEN FEMALE PREFERENCES ARE DIRECTLY SELECTED DAVID W. HALL,1 MARK KIRKPATRICK, AND BRIAN WEST Section of Integrative Biology C0930, University of Texas, Austin, Texas 78712 1E-mail: [email protected] Abstract. We introduce models for the runaway coevolution of female mating preferences and male display traits. The models generalize earlier results by allowing for direct natural selection on the preference, arbitrary forms of mate choice, and fairly general assumptions about the underlying genetics. Results show that a runaway is less likely when there is direct selection on the preference, but that it is still possible if there is a suf®ciently large phenotypic correlation between the female's preference and the male's trait among mated pairs. Comparison of three preference functions introduced by Lande (1981) shows that open-ended preferences are particularly prone to a runaway, and that absolute preferences require very large differences between females in their preferences. We analyze the causes of the runaway seen in a model developed by Iwasa and Pomiankowski (1995). Key words. Mating preferences, runaway, sexual selection. Received December 31, 1999. Accepted June 29, 2000. Why have females of some species evolved mating pref- selection acting on the pleiotropic effects of genes that affect erences for males with extreme secondary sexual traits? A mating preferences will also cause those genes to fall under mechanism that has been widely discussed was proposed by direct selection (Kirkpatrick 1982; 1985). Male parental care Fisher (1958, p. 152) in a famous but obscure passage. In generates direct selection on preferences because a female's modern terms, Fisher suggested that male display traits and mate choice affects her fecundity. Search costs may also lead female preferences will naturally become genetically corre- to direct selection on preference (Kirkpatrick 1985; Pomian- lated. As a result, further exaggeration of the male trait caused kowski 1987). These considerations have led to the sugges- by sexual selection will cause the preference itself to become tion that some kind of direct selection may be acting on more exaggerated as a correlated selection response. Because virtually all preference genes (Kirkpatrick and Ryan 1991; more exaggerated preferences in turn cause stronger sexual Ryan 1997). selection on the male trait, the preference and trait could Despite the large amount of work that has been done on coevolve in an explosive ``runaway process.'' Fisher's verbal the runaway process and on direct selection of preference logic was veri®ed much later by genetic models (O'Donald genes, we do not know how the two mechanisms interact. 1980; Lande 1981; Kirkpatrick 1982). We do know that if direct natural selection favors a particular Theoretical work since Fisher has revealed two key points value of the preference, then there is an equilibrium in which that he did not discuss (reviewed in Kirkpatrick and Ryan the preference lies at its favored value. At this equilibrium, 1991; Andersson 1994). The ®rst regards the outcome of the the male trait takes a value that is a compromise between the coevolution between the preference and male trait. Genetic forces of natural and sexual selection acting on the male trait models show that one possibility is that they will arrive at a (Lande 1981, eq. (10); Kirkpatrick 1985, eq. (12)). But is stable equilibrium point. However, if the genetic covariance this equilibrium always stable, or can an unstable runaway between the preference and trait is large enough, the equi- ensue if the genetic covariance becomes suf®ciently large? librium becomes unstable. In a landmark paper, Lande (1981) Intuitively, we might suspect that direct selection on the pref- discovered that in such a case, a rapid burst of evolution will erence will make the equilibrium more stable and therefore follow in which the trait and preference evolve at an expo- make a runaway less likely. That conclusion has not, how- nentially increasing rate until genetic variation is exhausted ever, been studied with a genetic model. or the intensity of natural selection becomes very severe. Another reason for revisiting the runaway is to learn more Lande identi®ed this unstable outcome with what Fisher de- about the conditions under which it will occur even when scribed verbally as the runaway process. Others have used there is no direct selection on the preference. Lande's (1981) runaway to indicate whether evolution of the male trait leads conclusions were developed in two stages. The ®rst assumes to exaggerated female preference at equilibrium, regardless that females choose males using one of three preference rules, of the equilibrium's stability, whereas Fisher did not make and that the additive genetic and phenotypic values for the that distinction. Generally, however, the term runaway now preference and trait are normally distributed. He then found refers to the outcome discovered by Lande in which a pop- the conditions for a runaway given known values for the ulation evolves rapidly away from an unstable equilibrium. genetic variances and covariance. A question we consider A second development since Fisher is the appreciation of here is when will a runaway occur if the characters are not other processes that can establish extreme mating preferenc- normally distributed and females choose their mates by any es. One important mechanism is natural selection acting di- kind of process. In the second stage of Lande's analysis, he rectly on the genes underlying a preference (Lande 1981; made detailed assumptions about the genes underlying the Kirkpatrick 1982; Bulmer 1989). Direct selection on pref- preference and trait. With those, he found that a runaway erence genes happens for many reasons. For example, natural occurs when mutation rates at the preference loci are suf®- 1862 q 2000 The Society for the Study of Evolution. All rights reserved. RUNAWAY WITH DIRECT SELECTION 1863 ciently large. The genetic assumptions used in this second genetic covariance as a known quantity; later in the paper phase of the analysis, however, have been criticized as bi- we will calculate its size. ologically unrealistic (Turelli 1988). This paper investigates When the population is near an equilibrium, the forces of when a runaway is possible under more general and perhaps directional selection acting on the male trait and female pref- realistic assumptions about the genetics. erence are weak. In that case, the changes in their means We begin by developing a model of the runaway that allows caused by one generation of selection are for direct selection on the preference and that makes fairly 11 general genetical and behavioral assumptions. Following D¯¯t 5 Gttb (t, pÅ) 1 G tppb (pÅ), (1a) 22 Lande's approach, this section assumes that the critical ge- netic covariance between the preference and trait has a known 11 DpÅ 5 G b (pÅ) 1 G b (¯t, pÅ). (1b) value. Analysis shows that direct selection of preference 22pp tpt genes does indeed stabilize the equilibrium, but that a run- Here G and G are the additive genetic variances and and away can still occur if the genetic covariance is big enough. t p bt b are the directional selection gradients for the male trait Next, we use recent theoretical results that allow the genetic p and female preference, respectively. The bs represent the covariance to be calculated to determine when the runaway selective force restoring the population to the equilibrium, will occur under a broad range of mating behaviors. We then and are de®ned as the regression of lifetime relative ®tness return to the three preference rules introduced by Lande regressed onto the character value (see Lande and Arnold (1981) to ®nd when a runaway will occur under those con- 1983). At equilibrium the bs are equal to zero (assuming the ditions when there is direct selection on the preference. The preference and trait are not perfectly correlated). The selec- analytic results are checked by simulations. Finally, we use tion gradient on the male trait is a function of the mean these results to study the runaway in a model of cycling preference pÅ as well as the mean trait Åt because male ®tness sexual selection introduced by Iwasa and Pomiankowski depends in part on sexual selection caused by the preference. (1995). The factors of 1/2 are present due to the sex-limited expres- sion of both characters. THE MODEL Equations (1) hold for any intensity of selection if the additive genetic values for the trait and preference are nor- Consider a species with two sex-limited characters, a male mally distributed in the population. They hold much more trait with mean Åt and a female preference with mean pÅ. The generally, however, as long as directional selection is weak female preference can be any character that in¯uences her and the genes affecting the characters have additive effects choice of mate. We make no assumptions about how mate (T. Johnson and M. Kirkpatrick, unpubl. data). Because we choice works or what the mating system is, only that pairing are interested in how the population evolves near an equi- is controlled by the females. Females that differ in their pref- librium, directional selection is necessarily weak and so the erence differ in the likelihood that they will mate with a male following results apply whenever the more general genetic with a given trait value. Thus, for our purposes a ``prefer- assumptions outlined above are met. Without losing any gen- ence'' is any phenotype expressed by females that affects the erality, it is convenient to choose a scale of measurement probabilities that they will mate with different types of males. that sets the equilibrium values of the male trait and female Direct selection on preference genes causes a female's pref- preference equal to zero.
Recommended publications
  • Science Georgia Standards of Excellence SCIENCE - Zoology
    Science Georgia Standards of Excellence SCIENCE - Zoology The Science Georgia Standards of Excellence are designed to provide foundational knowledge and skills for all students to develop proficiency in science. The Project 2061’s Benchmarks for Science Literacy and the follow up work, A Framework for K-12 Science Education were used as the core of the standards to determine appropriate content and process skills for students. The Science Georgia Standards of Excellence focus on a limited number of core disciplinary ideas and crosscutting concepts which build from Kindergarten to high school. The standards are written with the core knowledge to be mastered integrated with the science and engineering practices needed to engage in scientific inquiry and engineering design. Crosscutting concepts are used to make connections across different science disciplines. The Science Georgia Standards of Excellence drive instruction. Hands-on, student-centered, and inquiry-based approaches should be the emphasis of instruction. The standards are a required minimum set of expectations that show proficiency in science. However, instruction can extend beyond these minimum expectations to meet student needs. Science consists of a way of thinking and investigating, as well a growing body of knowledge about the natural world. To become literate in science, students need to possess sufficient understanding of fundamental science content knowledge, the ability to engage in the science and engineering practices, and to use scientific and technological information correctly. Technology should be infused into the curriculum and the safety of the student should always be foremost in instruction. In this course, students will recognize key features of the major body plans that have evolved in animals and how those body plans have changed over time resulting in the diversity of animals that are evident today.
    [Show full text]
  • Of Socially Selected Traits Via Indirect Genetic Effects
    Social runaway: Fisherian elaboration (or reduction) of socially selected traits via indirect genetic effects Nathan W. Bailey1,2 and Mathias Kölliker3 1Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, United Kingdom 2E-mail: [email protected] 3Natural History Museum Fribourg, 1700 Fribourg, Switzerland RUNNING TITLE Social Runaway via Indirect Genetic Effects AUTHOR CONTRIBUTIONS NWB and MK conceived the idea for the study, constructed the models, and wrote the manuscript. ACKNOWLEDGEMENTS We are grateful to Graeme D. Ruxton and Michael B. Morrissey for valuable discussion and advice. Two associate editors, Louis Miguel-Chevin and Jarle Tufto, three anonymous reviewers, and the Editor in Chief Mohamed Noor provided helpful remarks that improved the study. NWB was funded by fellowships from the UK Natural Environment Research Council [NE/G014906/1 and NE/L011255/1]. DATA ACCESSIBILITY No data are associated with the manuscript. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/evo.13791. This article is protected by copyright. All rights reserved. Social runaway: Fisherian elaboration (or reduction) of socially selected traits via indirect genetic effects Our understanding of the evolutionary stability of socially-selected traits is dominated by sexual selection models originating with R. A. Fisher, in which genetic covariance arising through assortative mating can trigger exponential, runaway trait evolution. To examine whether non- reproductive, socially-selected traits experience similar dynamics—social runaway—when assortative mating does not automatically generate a covariance, we modelled the evolution of socially-selected badge and donation phenotypes incorporating indirect genetic effects (IGEs) arising from the social environment.
    [Show full text]
  • Description of an Eyeless Species of the Ground Beetle Genus Trechus Clairville, 1806 (Coleoptera: Carabidae: Trechini)
    Zootaxa 4083 (3): 431–443 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4083.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:C999EBFD-4EAF-44E1-B7E9-95C9C63E556B Blind life in the Baltic amber forests: description of an eyeless species of the ground beetle genus Trechus Clairville, 1806 (Coleoptera: Carabidae: Trechini) JOACHIM SCHMIDT1, 2, HANNES HOFFMANN3 & PETER MICHALIK3 1University of Rostock, Institute of Biosciences, General and Systematic Zoology, Universitätsplatz 2, 18055 Rostock, Germany 2Lindenstraße 3a, 18211 Admannshagen, Germany. E-mail: [email protected] 3Zoological Institute and Museum, Ernst-Moritz-Arndt-University, Loitzer Str. 26, D-17489 Greifswald, Germany. E-mail: [email protected] Abstract The first eyeless beetle known from Baltic amber, Trechus eoanophthalmus sp. n., is described and imaged using light microscopy and X-ray micro-computed tomography. Based on external characters, the new species is most similar to spe- cies of the Palaearctic Trechus sensu stricto clade and seems to be closely related to the Baltic amber fossil T. balticus Schmidt & Faille, 2015. Due to the poor conservation of the internal parts of the body, no information on the genital char- acters can be provided. Therefore, the systematic position of this fossil within the megadiverse genus Trechus remains dubious. The occurrence of the blind and flightless T. eoanophthalmus sp. n. in the Baltic amber forests supports a previ- ous hypothesis that these forests were located in an area partly characterised by mountainous habitats with temperate cli- matic conditions.
    [Show full text]
  • Classification of Botany and Use of Plants
    SECTION 1: CLASSIFICATION OF BOTANY AND USE OF PLANTS 1. Introduction Botany refers to the scientific study of the plant kingdom. As a branch of biology, it mainly accounts for the science of plants or ‘phytobiology’. The main objective of the this section is for participants, having completed their training, to be able to: 1. Identify and classify various types of herbs 2. Choose the appropriate categories and types of herbs for breeding and planting 1 2. Botany 2.1 Branches – Objectives – Usability Botany covers a wide range of scientific sub-disciplines that study the growth, reproduction, metabolism, morphogenesis, diseases, and evolution of plants. Subsequently, many subordinate fields are to appear, such as: Systematic Botany: its main purpose the classification of plants Plant morphology or phytomorphology, which can be further divided into the distinctive branches of Plant cytology, Plant histology, and Plant and Crop organography Botanical physiology, which examines the functions of the various organs of plants A more modern but equally significant field is Phytogeography, which associates with many complex objects of research and study. Similarly, other branches of applied botany have made their appearance, some of which are Phytopathology, Phytopharmacognosy, Forest Botany, and Agronomy Botany, among others. 2 Like all other life forms in biology, plant life can be studied at different levels, from the molecular, to the genetic and biochemical, through to the study of cellular organelles, cells, tissues, organs, individual plants, populations and communities of plants. At each of these levels a botanist can deal with the classification (taxonomy), structure (anatomy), or function (physiology) of plant life.
    [Show full text]
  • The Biodiversity–Ecosystem Function Debate in Ecology
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Handbook of The Philosophy of Science: Philosophy of Ecology. The copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research, and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From deLaplante Kevin, and Picasso Valentin, The Biodiversity-Ecosystem Function Debate in Ecology. In: Dov M. Gabbay, Paul Thagard and John Woods, editors, Handbook of The Philosophy of Science: Philosophy of Ecology. San Diego: North Holland, 2011, pp. 169-200. ISBN: 978-0-444-51673-2 © Copyright 2011 Elsevier B. V. North Holland. Author's personal copy THE BIODIVERSITY–ECOSYSTEM FUNCTION DEBATE IN ECOLOGY Kevin deLaplante and Valentin Picasso 1 INTRODUCTION Population/community ecology and ecosystem ecology present very different per- spectives on ecological phenomena. Over the course of the history of ecology there has been relatively little interaction between the two fields at a theoretical level, despite general acknowledgment that many ecosystem processes are both influ- enced by and constrain population- and community-level phenomena.
    [Show full text]
  • The Evolution of Sexual Dimorphism: Understanding Mechanisms of Sexual Shape Differences
    Chapter 1 The Evolution of Sexual Dimorphism: Understanding Mechanisms of Sexual Shape Differences Chelsea M. Berns Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55154 1. Introduction Understanding the origin of biodiversity has been a major focus in evolutionary and ecological biology for well over a century and several patterns and mechanisms have been proposed to explain this diversity. Particularly intriguing is the pattern of sexual dimorphism, in which males and females of the same species differ in some trait. Sexual dimorphism (SD) is a pattern that is seen throughout the animal kingdom and is exhibited in a myriad of ways. For example, differences between the sexes in coloration are common in many organisms [1] ranging from poeciliid fishes [2] to dragon flies [3] to eclectus parrots (see Figure 1). A B Figure 1. A) Male Eclectus (© Stijn De Win/Birding2asia) B) Female Eclectus (© James Eaton/Birdtour Asia) © 2013 Berns, licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2 Sexual Dimorphism Sexual dimorphism is also exhibited in ornamentation, such as the horns of dung beetles [4], the antlers of cervids [5], and the tail of peacocks [6]. Many species also exhibit sexual differences in foraging behavior such as the Russian agamid lizard [7], and parental behavior and territoriality can be dimorphic in species such as hummingbirds [8, 9].
    [Show full text]
  • Content Outline for Biological Science Section of the MCAT
    Content Outline for Biological Science Section of the MCAT Content Outline for Biological Science Section of the MCAT BIOLOGY MOLECULAR BIOLOGY: ENZYMES AND METABOLISM A. Enzyme Structure and Function 1. Function of enzymes in catalyzing biological reactions 2. Reduction of activation energy 3. Substrates and enzyme specificity B. Control of Enzyme Activity 1. Feedback inhibition 2. Competitive inhibition 3. Noncompetitive inhibition C. Basic Metabolism 1. Glycolysis (anaerobic and aerobic, substrates and products) 2. Krebs cycle (substrates and products, general features of the pathway) 3. Electron transport chain and oxidative phosphorylation (substrates and products, general features of the pathway) 4. Metabolism of fats and proteins MOLECULAR BIOLOGY: DNA AND PROTEIN SYNTHESIS DNA Structure and Function A. DNA Structure and Function 1. Double-helix structure 2. DNA composition (purine and pyrimidine bases, deoxyribose, phosphate) 3. Base-pairing specificity, concept of complementarity 4. Function in transmission of genetic information B. DNA Replication 1. Mechanism of replication (separation of strands, specific coupling of free nucleic acids, DNA polymerase, primer required) 2. Semiconservative nature of replication C. Repair of DNA 1. Repair during replication 2. Repair of mutations D. Recombinant DNA Techniques 1. Restriction enzymes 2. Hybridization © 2009 AAMC. May not be reproduced without permission. 1 Content Outline for Biological Science Section of the MCAT 3. Gene cloning 4. PCR Protein Synthesis A. Genetic Code 1. Typical information flow (DNA → RNA → protein) 2. Codon–anticodon relationship, degenerate code 3. Missense and nonsense codons 4. Initiation and termination codons (function, codon sequences) B. Transcription 1. mRNA composition and structure (RNA nucleotides, 5′ cap, poly-A tail) 2.
    [Show full text]
  • Zoology (ZOOLOGY) 1
    Zoology (ZOOLOGY) 1 ZOOLOGY/BIOLOGY/BOTANY 152 — INTRODUCTORY BIOLOGY ZOOLOGY (ZOOLOGY) 5 credits. Second semester of a two semester course designed for majors in ZOOLOGY/BIOLOGY 101 — ANIMAL BIOLOGY biological sciences. Continuation of 151. Topics include: selected topics 3 credits. in plant physiology, a survey of the five major kingdoms of organisms, speciation and evolutionary theory, and ecology at multiple levels of the General biological principles. Topics include: evolution, ecology, animal biological hierarchy. Enroll Info: Biology/Botany/ZOOLOGY/BIOLOGY/ behavior, cell structure and function, genetics and molecular genetics BOTANY 151. Not recommended for students with credit already in and the physiology of a variety of organ systems emphasizing function in Zoology/BIOLOGY/ZOOLOGY 101,102 or Botany/BIOLOGY/BOTANY 130 humans. Enroll Info: Not recommended for students with credit already in Requisites: ZOOLOGY/BIOLOGY/BOTANY 151 Zoology/Biology/BOTANY/BIOLOGY/ZOOLOGY 151 or 152 Course Designation: Gen Ed - Communication Part B Requisites: None Breadth - Biological Sci. Counts toward the Natural Sci req Course Designation: Breadth - Biological Sci. Counts toward the Natural Level - Elementary Sci req L&S Credit - Counts as Liberal Arts and Science credit in L&S Level - Elementary Repeatable for Credit: No L&S Credit - Counts as Liberal Arts and Science credit in L&S Last Taught: Spring 2021 Repeatable for Credit: No Last Taught: Summer 2021 ZOOLOGY 153 — INTRODUCTORY BIOLOGY 3 credits. ZOOLOGY/BIOLOGY 102 — ANIMAL BIOLOGY LABORATORY 2 credits. One-semester course designed for engineering majors including chemical and biological engineering. Topics include: cell structure and function, General concepts of animal biology at an introductory level.
    [Show full text]
  • Kin Selection and Sexual Selection
    Downloaded from rstb.royalsocietypublishing.org on July 16, 2012 Phil. Trans. R. Soc. B (2012) 367, 2314–2323 doi:10.1098/rstb.2011.0281 Review The sociobiology of sex: inclusive fitness consequences of inter-sexual interactions Tommaso Pizzari1,* and Andy Gardner2,3 1Edward Grey Institute, Department of Zoology and 2Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3Balliol College, University of Oxford, Broad St., Oxford OX1 3BJ, UK The diversity of social interactions between sexual partners has long captivated biologists, and its evolution has been interpreted largely in terms of ‘direct fitness’ pay-offs to partners and their des- cendants. Inter-sexual interactions also have ‘indirect effects’ by affecting the fitness of relatives, with important consequences for inclusive fitness. However, inclusive fitness arguments have received limited consideration in this context, and definitions of ‘direct’ and ‘indirect’ fitness effects in this field are often inconsistent with those of inclusive fitness theory. Here, we use a sociobiology approach based on inclusive fitness theory to distinguish between direct and indirect fitness effects. We first consider direct effects: we review how competition leads to sexual conflict, and discuss the conditions under which repression of competition fosters sexual mutualism. We then clarify indirect effects, and show that greenbeard effects, kin recognition and population viscosity can all lead to episodes of indirect selection on sexual interactions creating potential for sexual altruism and spite. We argue that the integration of direct and indirect fitness effects within a sociobiology approach enables us to consider a more diverse spectrum of evolutionary outcomes of sexual interactions, and may help resolving current debates over sexual selection and sexual conflict.
    [Show full text]
  • BIOL 1501 Principles of Biology I
    Common Course Outline for: BIOL 1501 Principles of Biology I A. Course Description 1. Number of credits: 5 2. Lecture hours per week: 4 Lab hours per week: 3 3. Prerequisites: Math 1080 or 1090 or eligible for 1100; Eligible for READ 1106 4. Co-requisites: None 5. MnTC Goal: 3 This course is designed for students majoring in biology and other science related fields, including the health professions. Students will explore major biological processes occurring at the cellular level, with emphasis on cell structure and function, metabolism, reproduction, development, genetics and gene expression, and evolution. Students will engage in techniques appropriate to the study of biological processes and gain experience in experimental design, data analysis and interpretation, and the communication of results. This course meets a requirement for the Biology (Minnesota State Transfer Pathway) AS-P degree and is a prerequisite for BIOL 1502. It is strongly recommended that students have successfully completed (C or higher) a college level biology lab course, or a high school biology course within the past three years, before enrolling in this course. Lecture 4 hours per week. Lab 3 hours per week. B. Date last revised: August 2019 C. Outline of Major Content Areas Lecture: Subtopics listed under each main topic may vary due to recent developments in the field and current events. 1. Introduction a. The scientific process, the nature of biological inquiry, and data analysis and interpretation b. Hypotheses, predictions, and scientific theories c. Evolution and natural selection d. Unity and diversity of life e. Systematics – taxonomy, classification, phylogeny f. Organic molecules g.
    [Show full text]
  • Science: Biology Unit #7: Cell Structure and Function (4
    Youngstown City Schools SCIENCE: BIOLOGY UNIT #7: CELL STRUCTURE AND FUNCTION (4 weeks) SYNOPSIS: Students will consider the scientific evidence that scientists used to understand that the cell is the smallest unit that is classified as a living thing and it is the basic structural and functional unit of all known living organisms. Students will consider the intricate network of organelles within cells that all have unique functions which allow the cell to function properly and maintain its living condition. Students will explain what would happen if a specific organelle malfunctioned and how it would impact the entire cell. Enablers: Cell Theory STANDARDS IV. CELLS A. Cell structure and function [Note: This topic focuses on the cell as a system itself (single-celled organism); as a part of larger systems (multicellular organism), and sometimes as part of a multicellular organism. But they are always as part of an ecosystem.] 1. The living conditions is dependent on the structure, function and interrelatedness of cell parts. A living cell is composed of a small number of elements - - mainly carbon, hydrogen, nitrogen, oxygen, phosphorous and sulfur. a. because of its small size and four available bonding electrons, carbon can join to other carbon atoms in chains and rings to form large and complex molecules (macromolecules; organic building blocks / amino acids) b. the essential functions of cells involve chemical reactions that involve water and carbohydrates, proteins, lipids and nucleic acids c. cell functions are regulated; complex interactions among the different kinds of molecules in the cell cause distinct cycles of activities - - such as growth and division d.
    [Show full text]
  • The Use of Multiple Cues in Mate Choice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Biol. Rev. (2003), 78, pp. 575–595. f Cambridge Philosophical Society 575 DOI: 10.1017/S1464793103006158 Printed in the United Kingdom The use of multiple cues in mate choice ULRIKA CANDOLIN Department of Ecology and Systematics, P.O. Box 65, University of Helsinki, Helsinki FIN-00014, Finland (e-mail: ulrika.candolin@helsinki.fi) (Received 28 February 2002; revised 12 December 2002; accepted 18 December 2002) ABSTRACT An increasing number of studies find females to base their mate choice on several cues. Why this occurs is debated and many different hypotheses have been proposed. Here I review the hypotheses and the evidence in favour of them. At the same time I provide a new categorisation based on the adaptiveness of the preferences and the information content of the cues. A few comparative and empirical studies suggest that most multiple cues are Fisherian attractiveness cues or uninformative cues that occur alongside a viability indicator and facilitate de- tection, improve signal reception, or are remnants from past selection pressures. However, much evidence exists for multiple cues providing additional information and serving as multiple messages that either indicate general mate quality or enable females that differ in mate preferences to choose the most suitable male. Less evidence exists for multiple cues serving as back-up signals. The importance of receiver psychology, multiple sensory environments and signal interaction in the evolution of multiple cues and preferences has received surprisingly little attention but may be of crucial importance.
    [Show full text]