SOLAR ENERGY in PORTUGAL - Development Perspectives Based on a Comparison with Germany

Total Page:16

File Type:pdf, Size:1020Kb

SOLAR ENERGY in PORTUGAL - Development Perspectives Based on a Comparison with Germany SOLAR ENERGY IN PORTUGAL - Development perspectives based on a comparison with Germany - Rodrigo Pedro da Piedade Coelho Virgilio Project submitted as partial requirement for the conferral of Master in International Management Supervisor: Prof. António Robalo, Prof. Catedrático, ISCTE Business School, Departamento de Gestão September 2009 Resumo A energia solar é uma das energias renováveis que apresenta maior potencial de desenvolvimento futuro. Portugal é um dos países da Europa com melhores condições para a utilização da energia solar, mas não é certamente um dos países que melhor as têm aproveitado. Interessa, pois, saber porque é que Portugal não tem aproveitado a energia solar e potenciado o seu desenvolvimento de acordo com a sua vasta disponibilidade. Por outro lado, a Alemanha tem aproveitado a energia solar como nenhum outro país e é actualmente uma das nações líderes neste sector. Através de um estudo comparativo dos mercados de energia solar fotovoltaica e solar termal de Portugal e da Alemanha, concluiu-se que a diferença de desenvolvimento entre os dois países é em grande parte resultado das diferentes políticas adoptadas. Ou seja, o desenvolvimento da energia solar depende não só da radiação solar de cada país, mas sobretudo das políticas adoptadas para promover o seu desenvolvimento e dinamizar os respectivos mercados. De acordo com as conclusões deste estudo comparativo e tendo em consideração as futuras tendências do sector da energia solar, foram definidas uma série de orientações estratégicas para o futuro desenvolvimento da indústria solar em Portugal. Palavras-chave : Energias Renováveis, Energia Solar, Políticas de Desenvolvimento, Portugal-Alemanha JEL Classification : Q42 – Fontes de Energia Alternativa Q43 – Política Governamental Abstract Solar energy is one of the renewable energies that has greater potential for future development. Portugal is one of the European countries with better solar conditions, but is certainly not one of the countries that has been taking the best advantage of it. It is therefore appropriate to know why Portugal is not using and developing solar energy in accordance with its wide availability. On the other hand, Germany is using solar energy as no other country and is currently one of the leading nations in this sector. After a comparative study of the photovoltaic and solar thermal markets in Portugal and Germany, the conclusion is that the different stage of development between the two countries is largely the result of the different policies adopted. That is, the development of solar energy depends not only on the solar radiation of each country, but above all on the policies adopted to promote its development and enhance these markets. According to the findings of this comparative study and taking in consideration the trends in the solar energy sector, a set of strategic guidelines for the future development of solar industry in Portugal was defined. Keywords : Renewable Energies, Solar Energy, Development Policies, Portugal-Germany JEL Classification : Q42 - Alternative energy sources Q43 - Government Policy Acknowledgements The Author wishes to thank those who through their contribution, support, availability and information provided have made the elaboration of this document possible in particular to Mr. Jorge Borrego, Mr. Paulo Mendonça and Mr. Diogo Martins of Galp Energia, Mr. António Sá da Costa of the Renewable Energies Association, Mr. António Joyce of the National Laboratory for Energy and Geology, Mrs. Ana Rita Antunes of the National Association of Nature Conservation, Mr. Daniel Rosende Völker of the Fraunhofer Institute for Systems and Innovation Research, Mr. Ronald Van Selm and Mr. Michiel Sluimers of Spring Associates, and Mr. Cristovão Byrne and Mr. José Novais Gonçalves of EDP. The Author also wishes to thank to all professors, students and other persons contacted in Germany, for their extreme courtesy and availability, to Mrs. Leonor Gorgulho for her contribution in the revision of the text, and to Prof. António Robalo for his orientation and guidance throughout the elaboration of this project. Solar energy in Portugal Index List of Abbreviations ............................................................................................ iii List of tables.......................................................................................................... v List of Figures ....................................................................................................... v Sumário Executivo ............................................................................................... vi Executive Summary ............................................................................................. viii Introduction .......................................................................................................... 1 Scope and objectives...................................................................................... 1 Data collection methodology......................................................................... 3 1. - Renewable Energies ............................................................................................. 5 1.1. - Renewable Energies in Portugal................................................................... 10 2. - Solar Energy ......................................................................................................... 13 2.1. - Quick Facts about solar energy history......................................................... 13 2.2. - The Present.................................................................................................... 15 2.2.1. - Passive Heat......................................................................................... 15 2.2.2. - Solar Thermal....................................................................................... 16 2.2.3. - Photovoltaic......................................................................................... 18 2.2.4. - Concentrating Solar Power.................................................................. 21 2.3. - The Future.................................................................................................... 23 3. - Solar Energy in Portugal and Germany ............................................................ 25 3.1. - Solar Energy in Portugal............................................................................... 25 3.1.1. - Photovoltaic in Portugal....................................................................... 26 3.1.2. - Solar Thermal in Portugal.................................................................... 32 3.2. - Solar Energy in Germany.............................................................................. 36 3.2.1. - Photovoltaic in Germany..................................................................... 37 3.2.2. - Solar Thermal in Germany................................................................... 41 3.3. - Comparing Portugal with Germany............................................................. 45 i Solar energy in Portugal 4. - Strategies for Solar Energy in Portugal ............................................................. 57 4.1. - Strategic Framework..................................................................................... 57 4.2. - Strategic Guidelines...................................................................................... 61 4.2.1. - Political/Environmental....................................................................... 61 4.2.2. - Economic............................................................................................. 65 4.2.3. - Social.................................................................................................... 68 4.2.4. - Technological....................................................................................... 70 4.2.5. - Legal.................................................................................................... 72 Conclusion ............................................................................................................ 74 Bibliography ......................................................................................................... 76 Annexes ................................................................................................................. 81 Annex 1 - Examples of different types of renewable energies...................... 82 Annex 2 - Electricity generated from renewable energy sources in the European Union............................................................................. 83 Annex 3 - Examples of different solar systems.............................................. 84 Annex 4 - Important solar projects in Portugal.............................................. 85 Annex 5 - Photovoltaic cumulative installed capacity in Portugal and Germany........................................................................................ 87 Annex 6 - Solar Thermal cumulative installed area in Portugal and Germany........................................................................................ 88 Annex 7 - Examples of the promotion of the incentive programme for solar thermal in Portugal............................................................... 89 Annex 8 - Drivers for a common energy policy in Europe............................ 90 Annex 9 - Sahara's relative solar potential..................................................... 91 Annex 10 - Details of the comparison of the discounted
Recommended publications
  • PV Markets Spain & Portugal
    PHOTOVOLTAICS IBERIA PV markets Spain & Portugal: Better than feared The PV farm Lo Illan, connected to the grid in the second Spain’s PV sector faces enormous challenges. The modification of the feed- quarter of 2011, is a project in tariff scheme and the economic crisis are seen as the main reasons. In of Gehrlicher Solar. Located in the Murcia province, the Portugal, the government has newly discovered PV and is now eager to get ground-mounted system has a total rated power of 2,065 kW. its piece of the cake. PV modules are made by First Solar, inverters by SMA. he conference “Conferencia de la Industria Spanish solar industry is able to compete on the glo- Photos (2): Gehrlicher Solar Solar-España 2011”, which took place in mid- bal stage, said Antonio Navarro of the European TOctober, reflected the situation of the Spanish Photovoltaic Industry Association (EPIA). solar sector – and it was said that it seems to be sur- According to the conference participants, the new prisingly good. In the opinion of Javier Anta of the target markets for the Spanish manufacturers will be Spanish Photovoltaic Industry Association ( Asociación mainly the United States, India, Australia, Latin de la Industria Fotovoltaica, ASIF), “the Spanish PV America and Morocco. They all agreed that the PV sector has shown that it is strong and steadfast even sector is in need of stability and a regulatory frame- under difficult external conditions including the un- work that will provide industry participants and in- stable regulatory framework and the economic cri- vestors with the necessary planning security.
    [Show full text]
  • Portugal 2021 Energy Policy Review INTERNATIONAL ENERGY AGENCY
    Portugal 2021 Energy Policy Review INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, Canada Indonesia electricity markets, Czech Republic Morocco energy efficiency, Denmark Singapore access to energy, Estonia South Africa demand side Finland Thailand management and France much more. Through Germany its work, the IEA Greece advocates policies Hungary that will enhance the reliability, affordability Ireland and sustainability of Italy energy in its Japan 30 member countries, Korea 8 association Luxembourg countries and beyond. Mexico Netherlands New Zealand Norway Poland Portugal Please note that this Slovak Republic publication is subject to Spain specific restrictions that limit Sweden its use and distribution. The terms and conditions are Switzerland available online at Turkey www.iea.org/t&c/ United Kingdom United States This publication and any The European map included herein are without prejudice to the Commission also status of or sovereignty over participates in the any territory, to the work of the IEA delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Foreword The International Energy Agency (IEA) has conducted energy policy reviews of its member countries since 1976. This peer review process supports energy policy development and encourages the exchange of international best practices. By seeing what has worked – or not – in the “real world”, these reviews help to identify policies that deliver concrete results.
    [Show full text]
  • FACTBOOK Concentrating Solar Power SBC Energy
    LEADING THE ENERGY TRANSITION FACTBOOK Concentrating Solar Power SBC Energy Institute June 2013 © 2013 SBC Energy Institute. All Rights Reserved. FACTBOOK SERIES LEADING THE ENERGY TRANSITION Compiled by the SBC Energy Institute About SBC Energy Institute The SBC Energy Institute, a non-profit organization founded in 2011 at the initiative of Schlumberger Business Consulting (SBC), is a center of excellence for scientific and technological research into issues pertaining to the energy industry in the 21st century. Through its unique capability to leverage both Schlumberger’s technological expertise and SBC’s global network of energy leaders, the SBC Energy Institute is at the forefront of the search for solutions to today’s energy supply challenges. It is overseen by a scientific committee comprised of highly experienced individuals in the areas of natural and applied sciences, business, and petroleum engineering. About Leading the Energy Transition series “Leading the energy transition” is a series of publicly available studies on low-carbon energy technologies conducted by the SBC Energy Institute that aim to provide a comprehensive overview of their development status through a technological and scientific prism. About the Concentrating Solar Power factbook This factbook seeks to capture the current status and future developments of Concentrating Solar Power, detail the main technological hurdles and the areas for Research and Development, and finally analyze the economics of this technology. This factbook has been reviewed by Prof. Dr.-Ing. Robert Pitz-Paal, Co-Director of the Institute of Solar Research from the German Aerospace Center (DLR) and his team. For further information about SBC Energy Institute and to download the report, please visit http://www.sbc.slb.com/sbcinstitute.aspx, or contact us at [email protected] 1 © 2013 SBC Energy Institute.
    [Show full text]
  • Assessment Report on Technical, Legal, Institutional and Policy Conditions
    Deliverable 2.1 ASSESSMENT REPORT ON TECHNICAL, LEGAL, INSTITUTIONAL AND POLICY CONDITIONS This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 953040. The sole responsibility for the content of this document lies with the COME RES project and does not necessarily reflect the opinion of the European Union. Public SUMMARY WP: 2 Name of the WP: Starting conditions, potentials, barriers and drivers for the uptake of RES based community energy Dissemination Public Due delivery date: 28 February 2021 level: Type: Report Actual delivery date: 26 February 2021 Lead beneficiary: CICERO – Center for International Climate Research Contributing beneficiaries: FUB, VITO, BBH, RESCoop.eu, ECOAZIONI, ENEA, LEIF, TU/e, KAPE, INEGI, ECORYS Lead authors: Lead authors: Karina Standal and Stine Aakre Contributing authors: Irene Alonso (ECORYS); Isabel Azevedo (INEGI); Massimo Bastiani (Ecoazioni); Nicoletta del Bufalo (ECORYS); Martina Caliano (ENEA); Sarah Delvaux (VITO); Rosaria Di Nucci (FUB); Dörte Fouquet (BBH); Vincenzo Gatta (FUB); Xenia Gimenez (ACER); Gaidis Klāvs (IPE); Michael Krug (FUB); Ivars Kudreņickis (IPE); Erik Laes (TU/e); Kristin Linnerud (CICERO); Elena De Luca (ENEA), Pouyan Maleki (ECORYS); Erika Meynaerts (VITO); Piotr Nowakowski (KAPE); Maria Grazia Oteri (ENEA); Stavroula Pappa (REScoop.eu); Roland Schumann (ACER); Dirk Vansintjan (REScoop.eu); Virna Venerucci (Ecoazioni); Ryszard Wnuk (KAPE); Aija Zučika (LEIF); Solveig Aamodt (CICERO) Document history Submitted Version Date Reviewed/approved by Date for review by V0 Karina 18.02.2021 Kristin Linnerud, CICERO 19.02.2021 Standal, CICERO V1 Stine Aakre, 19.02.2021 Pouyan Maleki, ECORYS 22.02.2021 CICERO Rosaria Di Nucci FUB-FFU 24.02.2021 V2 Karina 26.02.2021 Rosaria Di Nucci FUB-FFU 26.02.2021 Standal, CICERO i COME RES 953040 - D2.1: ASSESSMENT REPORT ON TECHNICAL, LEGAL, INSTITUTIONAL AND POLICY CONDITIONS Public ABOUT COME RES COME RES - Community Energy for the uptake of renewables in the electricity sector.
    [Show full text]
  • Digital Solutions to Optimize PV's LCOE
    小三相最终用户主打广告5.pdf 1 2019/4/22 16:44:37 Special | 2019 | 78538 FusionSolar Residential Smart PV Solution Digital PV Solution for Ultimate Safety & Better Experience Solar grid parity French solar explorers accelerates with AI Next generation solar expands ULTRA SAFETY domestically and to new frontiers AI Powered AFCI to Proactively Mitigate Fire Risk Huawei plays a significant role in digitalization for smart PV Pages 26 – 29 Pages 4 – 7 HIGHER YIELDS The bifacial boost Shedding light Optimizing Each Module's Performance Independently AI algorithms crunch big data on oil kingdom to maximize energy yields Saudi Arabia’s first utility-scale Pages 9 – 11 PV project and the CEO behind it BATTERY READY Pages 32 – 35 Integrated Battery Interface for Future Quick Expansion C M Y CM Digital solutions MY CY CMY K to optimize PV’s LCOE SPECIAL EDITION DEVELOPED IN PARTNERSHIP WITH HUAWEI solar.huawei.com @ Huawei FusionSolar SUN2000-3-10KTL Optimizer Editorial The Force of Digitalization Photo: pv magazine/Thomas Beetz Located high up in the Himalayas, a 20 MW solar PV proj- ect rests upon the mountains. The ground-mounted installa- tion is a challenging one, also for people like Matthias Wagner, not acquainted with such elevations. Wagner is the Executive Director of Global Channel Sales Management in the Smart PV Business Unit at Huawei. In this position, he has to travel to countries around the globe to meet customers and colleagues to handle a wide variety of PV projects. When we met with Wagner in March, he highlighted how such a project poses challenges for the equipment used, be it the solar panels or the inverters.
    [Show full text]
  • Addressing Social & Institutional Barriers for Wind Energy Installations
    Informes Técnicos Ciemat 922 febrero, 2000 Addressing Social & Institutional Bamers for Wind Energy Installations L. Ramírez* R. González* M. Várela* R. Sáez* I. Ramírez** F.Vicente** * CIEMAT ** Consejería de Medio Ambiente, Agricultura y Agua. Comunidad Autónoma de Murcia Departamento de Energías Renovables Toda correspondenica en relación con este trabajo debe dirigirse al Servicio de Información y Documentación, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Ciudad Universitaria, 28040-MADRID, ESPAÑA. Las solicitudes de ejemplares deben dirigirse a este mismo Servicio. Los descriptores se han seleccionado del Thesauro del DOE para describir las materias que contiene este informe con vistas a su recuperación. La catalogación se ha hecho utilizando el documento DOE/TIC-4602 (Rev. 1) Descriptive Cataloguing On-Line, y la clasificación de acuerdo con el documento DOE/TIC.4584-R7 Subject Categories and Scope publicados por el Office of Scientific and Technical Information del Departamento de Energía de los Estdos Unidos. Se autoriza la reproducción de los resúmenes analíticos que aparecen en esta publicación. Depósito Legal: M -14226-1995 ISSN: 1135-9420 ÑIPO: 238-00-002-0 Editorial CIEMAT CLASIFICACIÓN DOE Y DESCRIPTORES S17 WMD POWER; WIND POWER PLANTS; WIND TURBINE ARRAYS; SOCIAL IMPACT; SOCIO-ECONOMIC FACTORS; EUROPEAN UNION Addressing Social & Institutional Barriers for Wind Energy Installations Ramírez, L. *; González, R. *; Várela, M. *; Sáez, R. *; Ramírez, 1. **; Vicente, F. ** * Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid ** Consejería de Medio Ambiente, Agricultura y Agua. Comunidad autónoma de Murcia 130 pp. 7 fig. 12refs. Abstract: This project has been jointly financed by the European Commission and developed within the Programme «Thermie- B».
    [Show full text]
  • Sustainability Report 2006
    Project1 07/06/01 12:36 Page 1 SUSTAINABILITY REPORT 2006 ‘06 Sustentabilidade_Vol III_Inglês_soctip 07/06/01 12:10 Page 1 SUSTAINABILITY REPORT ‘06 Sustentabilidade_Vol III_Inglês_soctip 07/06/01 12:10 Page 2 ‘CONTENTS Sustentabilidade_Vol III_Inglês_soctip 07/06/01 12:10 Page 3 04 SCOPE 57 Audit ‘ 59 Supervision and Regulation 06 MESSAGE FROM THE CHAIRMAN 59 Risk Management ‘ 61 Procedures 10 MILLENNIUM BCP 62 A good place to work 12 ‘Vision and Values 62 People Management 12 Vision 68 Equal Opportunities 12 Mission 69 Working Environment 12 Codes of Conduct 69 Social benefits and family-responsible company 13 Functional Model 16 Multidomestic Culture 74 COMMITMENT TO FUTURE GENERATIONS 16 Rebranding 76 ‘Commitment to the environment 18 Main facts of social responsibility in the subsidiary companies 76 Millennium bcp Environment Project 76 Consumption of resources 22 INCLUDING SUSTAINABILITY 78 Pollutant Emissions 24 ‘Dialogue with Stakeholders 80 Nature Preservation 25 Contact Centre – The Customer’s Voice 80 Compliance 26 Ombudsman 81 Commitment to Society 27 Consumer Associations 81 Promoting Knowledge 27 Investor Relations 83 Promoting Culture 29 Communication 84 Supporting the Community 33 Culture of involvement 36 Relationship with Suppliers 90 SUMMARY OF INDICATORS 38 Products and Services 92 ‘Summary of Indicators 38 Socially responsible products 94 Geographical Presence 39 Scope 96 Organisational Structure 41 Trust 97 Memberships in National and International Organisations 42 Credit 98 Verification Report Issued by KPMG 43 Project
    [Show full text]
  • European Energy Security the New Role of the Atlantic and the Portuguese Speaking Countries of the Region
    European Energy Security The new role of the Atlantic and the Portuguese Speaking Countries of the Region The European Union (EU), namely after its expansion in the East, is proportionally much more dependent on Russia and Eurasia than the Middle East/Persian Gulf region, counting on an energy province within it, although facing a decline in production – the North Sea -, and with two regions of proximity – the North of Africa and West Africa. Security of an energy supply encompasses all Member-States, even if some regions are more vulnerable than others; in particularly the less integrated and connected regions, such as the Baltic region and Eastern Europe. Simultaneously, the Atlantic region is becoming the scene of important transformations, such as those arising from the discovery of new energy resources and technological advances that will impact the future. To this effect, the present work focuses its attention on the Atlantic, proposing to observe, analyze, and attempt to comprehend, as much as possible, the future of its influence in geopolitical and geo-economics terms, highlighting the role of Portugal and the Lusophone countries of the Atlantic could potentially take regarding energy as an alternative route to the Russian supply for the EU, allowing for a more energy secure Europe. This research paper consists of five chapters, including a vast bibliography revised. The period studied is from present time until 2030. We begin by presenting the current energy landscape. Following by analyzing the evolution of energy policy in the EU, from the institutionalization of the European Community to present time, especially focusing in more recent developments, namely the “Magic Triangle”, the European Strategy for Energy 1 Security, and the Energy Union Package.
    [Show full text]
  • Concentrating Solar Power Clean Power on Demand 24/7 Concentrating Solar Power: Clean Power on Demand 24/7
    CONCENTRATING SOLAR POWER CLEAN POWER ON DEMAND 24/7 CONCENTRATING SOLAR POWER: CLEAN POWER ON DEMAND 24/7 © 2020 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW | Washington DC 20433 | USA 202-473-1000 | www.worldbank.org This work is a product of the staff of the World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of the World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries Rights and Permissions The material in this work is subject to copyright. Because the World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for non-commercial purposes as long as full attribution to this work is given. Any queries on rights and licenses, including subsidiary rights, should be addressed to World Bank Publications, World Bank Group, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2625; [email protected]. All images remain the sole property of their source and may not be used for any purpose without written permission from the source. Attribution—Please cite the work as follows: World Bank. 2021. Concentrating Solar Power: Clean Power on Demand 24/7.
    [Show full text]
  • Solar Thermal Electricity Global Outlook 2016 2
    1 SOLAR THERMAL ELECTRICITY GLOBAL OUTLOOK 2016 2 This type of solar thermal power has an inexhaustible energy source, proven technology performance, and it is environmentally safe. It can be generated in remote deserts and transported to big populations who already have power supply problems. So what are we waiting for? Solar Thermal Electricity: Global Outlook 2016 Solar Image: Crescent Dunes, 10,347 tracking mirrors (heliostats), each 115.7 square meters, focus the sun’s energy onto the receiver ©SolarReserve Content 3 For more information, please contact: Foreword ........................................................ 5 [email protected] Executive Summary ......................................... 8 [email protected] 1. Solar Thermal Electricity: The Basics ............. 17 The Concept .........................................................18 Project manager & lead authors: Dr. Sven Requirements for STE .............................................19 Teske (Greenpeace International), Janis Leung How It Works – the STE Technologies.......................21 (ESTELA) Dispatchability and Grid Integration .........................21 Other Advantages of Solar Thermal Electricity ...........23 Co-authors: Dr. Luis Crespo (Protermosolar/ ESTELA), Marcel Bial, Elena Dufour (ESTELA), 2. STE Technologies and Costs ....................... 25 Dr. Christoph Richter (DLR/SolarPACES) Types of Generators ...............................................26 Editing: Emily Rochon (Greenpeace Parabolic Trough ....................................................28
    [Show full text]
  • Thermal Load Calculation for a Single-Family Home in Portugal
    FEUP Thermal load Calculation for a single-family home in Portugal Thermal load Calculation for a single-family home in Portugal Zahra Noorbakhsh A Thesis in the Field of Energy Technology For the Degree of Master of Science in Environmental Science and Technology Supervisor: Dr. Szabolcs Varga July 2020 FEUP Thermal load Calculation for a single-family home in Portugal Abstract: This work is carried within the framework of the Hybrid – BioVGE project, funded by the European Commission under the program “Building a Low-Carbon, Climate Resilient Future: Secure, Clean and Efficient Energy”. The major target of this project is to develop and design a highly integrated solar/biomass hybrid air conditioning system for cooling and heating demands of residential and commercial buildings. Calculating the heating and cooling load is the first step in designing a suitable HVAC system. A complete HVAC design is more than just a load estimate. Proper measurement of the HVAC system, selection of HVAC equipment, and design of the air distribution system to respond to the predicted precise heating and cooling loads begin with an accurate understanding of the heating and cooling loads in a space. In this work, firstly, try to investigate the importance of using renewable energy, precisely solar one, in the achievement of energy and climate European goals, and share of Portugal as member of European Union in decreasing co2 emission and reaching to EU sustainable development goals. In next stage all elements which have effects on calculation of building loads have been defined and explain that how proper heating loads and cooling loads in a building can be estimated.
    [Show full text]
  • D1.1 Performance Criteria & Requirements
    SportE2 - Intelligent Management System to integrate and control energy generation, consumption and exchange for European Sport and Recreation Buildings Start: 1 September 2010 Duration: 36 months FP7 ICT-EEB Grant Agreement 260124 Deliverable D 1.1 Performance Criteria and Requirements Date Delivery date: M6 Deliverable Number D 1.1 WP Number WP 1: Sport Facilities Energy Assessment & System Architecture Status Final Dissemination level (*) PU (*) PU = Public PP = Restricted to other programme participants RE = Restricted to a group specified by the consortium CO = Confidential, only for members of the consortium SportE2 D 1.1 11-03-2011 Page 2 of 115 TABLE OF CONTENTS Table of Contents .................................................................................................................2 1. Introduction ......................................................................................................................4 1.1 Project objectives and D1.1 aims ................................................................................4 1.2 Definition of the 4 modules.........................................................................................5 2. Sport Facilities in the Energy Efficiency Context .........................................................6 2.1 Aspects related to the sport facility sector at large......................................................6 2.1.1 Project Motivation: The need for SportE2, the justification of public funding, and the opportunities it presents ...................................................................................6
    [Show full text]