Download 4949.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Purslane) Plant – Its Nature and Biomedical Benefits
International Journal of Biomedical Research ISSN: 0976-9633 (Online) Journal DOI:10.7439/ijbr CODEN:IJBRFA Review Article A review on Portulaca oleracea (Purslane) plant – Its nature and biomedical benefits Okafor Izuchukwu Azuka*1, Ayalokunrin Mary B. 2 and Orachu Lovina Abu2 1Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nnamdi Azikiwe University Nnewi Campus, Anambra State, Nigeria. 2Department of Botany, Nnamdi Azikiwe University Awka Anambra State Nigeria. *Correspondence Info: Dr. Okafor Izuchukwu Azuka Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nnamdi Azikiwe University Nnewi Campus, Anambra State, Nigeria. E-mail: [email protected] Abstract This paper is a complete review on an all-important phytochemically rich plant. This is to study its nature and expose its rich biomedical importance and medicinal usefulness for its full exploration in the research community. Keywords: Portulaca oleracea, renoprotective, neuroprotective, benefits, pharmacology, antioxidant, anti-atherogenic 1. Introduction Once in a while one comes across a plant that is so outstanding that one wonders how on earth it has been overlooked. Purslane (Portulaca oleracea) is one such plant. It is commonly called purslane or pigweed in English language, papasan in Yoruba, babajibji in Hausa, ntioke, ntilimoke, ntiike or idiridi in Igbo. Portulaca oleracea, is a member of the Portulacaceae family with more than 120 different species. The use of this plant as a vegetable, spice and medicine has been known since the times of the ancient Egyptians and was popular in England during the Middle Ages33, why it has fallen into obscurity is quite strange. -
Tukhme Khurfa (Portulaca Oleraceae Linn.)
Waris Ali et al: Tukhme khurfa (Portulaca oleraceae Linn.) Journal of Pharmaceutical and Scientific Innovation www.jpsionline.com Review Article TUKHME KHURFA (PORTULACA OLERACEAE LINN.) A PLANT ORIGIN DRUG OF UNANI MEDICINE: AN OVERVIEW Waris Ali1*, Hamiduddin2, Nizamul Haque3, Aftab Ahmad4 1PG Scholar, Department of Ilmul Saidla (Unani Pharmacy), National Institute of Unani Medicine (NIUM), Bangalore, Karnataka, India 2Lecturer, Department of Ilmul Saidla (Unani Pharmacy), National Institute of Unani Medicine (NIUM), Bangalore, Karnataka, India 3Lecturer, Department of Ilmul Advia (Pharmacology) Eram Unani Medical Collage and Hospital Lucknow, India 4Reader, Department of Ilmul Advia (Pharmacology), Faculty of Unani Medicine, Jamia Hamdard, New Delhi, India *Corresponding Author Email: [email protected] DOI: 10.7897/2277-4572.04220 Received on: 15/01/15 Revised on: 08/02/15 Accepted on: 04/03/15 ABSTRACT Unani system of medicine has a long therapeutic history for treatment of a variety of diseases. This system comprises of various plant, animal and mineral origin drugs. Tukhme Khurfa, seeds of Portulaca oleraceae Linn. is an important herbal drugs which have hypoglycemic activity, musakkin (sedative), munauwwim (hypnotic), mudirr-i-bawl (diuretic), antioxidant activity, hepatoprotective activity, anticonvulsant activity, anti-inflammatory activity; is recommended for the various disease like Dhayabitus (diabetes), hummiyate harra, sudae harra (headache), shiddate atash (excessive thirst), surfa harra (acute cough), sozish-i-mi’da (inflamation of stomach), sozish-i-jigar (inflammation of liver), sozish-i-bole (urinary tract infection), sarsam (meningitis) etc. The present article reviews the various classical information, chemicals and reported pharmacological activities of the drug and concluded that it is very promising drugs in respect to its traditional claim proven after contemporary research. -
Domesticating the Undomesticated for Global Food and Nutritional Security: Four Steps
agronomy Essay Domesticating the Undomesticated for Global Food and Nutritional Security: Four Steps Ajeet Singh , Pradeep Kumar Dubey, Rajan Chaurasia , Rama Kant Dubey, Krishna Kumar Pandey, Gopal Shankar Singh and Purushothaman Chirakkuzhyil Abhilash * Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India * Correspondence: [email protected]; Tel.: +91-94156-44280 Received: 8 July 2019; Accepted: 27 August 2019; Published: 28 August 2019 Abstract: Ensuring the food and nutritional demand of the ever-growing human population is a major sustainability challenge for humanity in this Anthropocene. The cultivation of climate resilient, adaptive and underutilized wild crops along with modern crop varieties is proposed as an innovative strategy for managing future agricultural production under the changing environmental conditions. Such underutilized and neglected wild crops have been recently projected by the Food and Agricultural Organization of the United Nations as ‘future smart crops’ as they are not only hardy, and resilient to changing climatic conditions, but also rich in nutrients. They need only minimal care and input, and therefore, they can be easily grown in degraded and nutrient-poor soil also. Moreover, they can be used for improving the adaptive traits of modern crops. The contribution of such neglected, and underutilized crops and their wild relatives to global food production is estimated to be around 115–120 billion US$ per annum. Therefore, the exploitation of such lesser -
Comparative Pharmacognostic Studies on Three Species of Portulaca
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2014-15; 6(4), 806-816 ISSN: 0975-4873 Research Article Comparative Pharmacognostic Studies on Three Species of Portulaca *Silvia Netala1, Asha Priya M2, Pravallika R3, Naga Tejasri S3, Sumaiya Shabreen Md3, Nandini Kumari S3 1Department of Pharmacognosy, Shri Vishnu College of Pharmacy, Bhimavaram, India. 2 Department of Biotechnology, Shri Vishnu College of Pharmacy, Bhimavaram, India. 3Shri Vishnu College of Pharmacy, Bhimavaram, India. Available Online: 21st November, 2014 ABSTRACT To compare the structural features and physicochemical properties of three species of Portulaca. Methods: Different parts of Portulaca were examined for macroscopical, microscopical characters. Physicochemical, phytochemical and fluorescence analysis of the plant material was performed according to the methods of standardization recommended by World Health Organization. Results: The plants are succulent, prostrate herbs. Usually roots at the nodes of the stem. Leaves are opposite with paracytic stomata and characteristic Kranz tissue found in C-4 plants. Abundant calcium oxalate crystals are present in all vegetative parts of the plant. Quantitative determinations like stomatal number, stomatal index and vein islet number were performed on leaf tissue. Qualitative phytochemical screening revealed the presence of alkaloids, carbohydrates, saponins, steroids and triterpenoids. Conclusions: The results of the study could be useful in setting quality parameters for the identification and preparation of a monograph. Key words: Portulaca, physicochemical, standardization, Kranz tissue, quantitative. INTRODUCTION Preparation of extract: The powdered plant material was Genus Portulaca (Purslane) is an extremely tough plant extracted with methanol on a Soxhlet apparatus (Borosil that thrives in adverse conditions and belongs to the Glass Works Ltd, Worli, Mumbai) for 48 h. -
Lipidome and Transcriptome Profiling of Omega-3 Fatty Acid Rich Plant Leaves
Lipidome and transcriptome profiling of omega-3 fatty acid rich plant leaves Thesis submitted to AcSIR for the Award of the Degree of DOCTOR OF PHILOSOPHY In the faculty of BIOLOGICAL SCIENCES By V. VENKATESHWARI Registration No. 10BB12A08013 Under the guidance of Dr. Malathi Srinivasan Prof. Ram Rajasekharan Lipidomic Lab Department of Lipid Science CSIR-CENTRAL FOOD TECHNOLOGICAL RESEARCH INSTITUTE Mysuru-570020 India June 2018 Chapter 5 Discussion 86 Portulaca oleracea and Talinum fruticosum leaves are rich sources of omega-3 fatty acids. Till date, no attempt has been made to study the expression pattern of the genes that are involved in lipid metabolism, especially related to fatty acid biosynthesis in these plants. In the present study, we found that the level of total lipids and the fatty acids were high in the leaves of both Portulaca and Talinum. The total lipid content in Portulaca, particularly that of ALA is approximately three times more than that of earlier reports in plants. Among the total leaf lipids of Portulaca (7.2 g/100 g), significant amounts of galactolipids (GL) 3.0 g/100 g, phospholipids (PL) 2.5g/100 g, and nonpolar lipids (NL) 1.7 g/100 g were present. The total leaf lipids of Talinum is around 7.7 g/100 g, with a remarkable amount constituted by the galactolipids (GL) 3.2 g, followed by phospholipids (PL) 2.4 g, and nonpolar lipids (NL) 2.1 g. The distribution of fatty acids in all the three lipid classes was also found to vary in both the plants. The predominant fatty acid in the galactolipid fractions is ALA. -
Vascular Plants of Negelle-Borona Kallos
US Forest Service Technical Assistance Trip Federal Democratic Republic of Ethiopia In Support to USAID-Ethiopia for Assistance in Rangeland Management Support to the Pastoralist Livelihoods Initiative for USAID-Ethiopia Office of Business Environment Agriculture & Trade Vascular Plants of Negelle-Borona Kallos Mission dates: November 19 to December 21, 2011 Report submitted June 6, 2012 by Karen L. Dillman, Ecologist USDA Forest Service, Tongass National Forest [email protected] Vascular Plants of Negelle-Borona, Ethiopia, USFS IP Introduction This report provides supplemental information to the Inventory and Assessment of Biodiversity report prepared for the US Agency for International Development (USAID) following the 2011 mission to Negelle- Borona region in southern Ethiopia (Dillman 2012). As part of the USAID supported Pastoralist Livelihood Initiative (PLI), this work focused on the biodiversity of the kallos (pastoral reserves). This report documents the vascular plant species collected and identified from in and around two kallos near Negelle (Oda Yabi and Kare Gutu). This information can be utilized to develop a comprehensive plant species list for the kallos which will be helpful in future vegetation monitoring and biodiversity estimates in other locations of the PLI project. This list also identifies plants that are endemic to Ethiopia and East Africa growing in the kallos as well as plants that are non-native and could be considered invasive in the rangelands. Methods Field work was conducted between November 28 and December 9, 2011 (the end of the short rainy season). The rangeland habitats visited are dominated by Acacia and Commifera trees, shrubby Acacia or dwarf shrub grasslands. -
Atlas of Pollen and Plants Used by Bees
AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer. -
Leaf Epidermal Micromorphology of Portulaca L. Species Found in Vadodara, Gujarat, India
Hindawi Publishing Corporation Journal of Botany Volume 2013, Article ID 368238, 5 pages http://dx.doi.org/10.1155/2013/368238 Research Article Leaf Epidermal Micromorphology of Portulaca L. Species Found in Vadodara, Gujarat, India Archana Srivastava, Aruna Girish Joshi, and Vinay Madhukar Raole Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India Correspondence should be addressed to Aruna Girish Joshi; [email protected] Received 8 July 2013; Revised 2 September 2013; Accepted 22 September 2013 Academic Editor: Philip J. White Copyright © 2013 Archana Srivastava et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Micromorphology of three species of Portulaca was carried out with the help of light microscopy to determine variations within the species which would aid in correct identification of the plants. Epidermal cells are polygonal with sinuous anticlinal walls in all the three species. Length of epidermal cells of P. g randifl ora Hook. is higher than P. ol e racea Linn. and P. qu adr ifi d a Linn. The leaves of P. qu adr ifi d a are epistomatic while the remaining species are amphistomatic with paracytic stomata in all the three species. Mean stomatal index and stomatal frequency are more in P. qu adr ifi d a while the mean size of stomata (both length and width) is larger in P. g randifl ora for both adaxial and abaxial surfaces. Based on the diagnostic features, an artificial indented key is prepared. -
Proximate Analysis and Nutritive Values of Ten Common Vegetables in South
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by InfinityPress Communications in Applied Sciences ISSN 2201-7372 Volume 4, Number 2, 2016, 79-91 Proximate Analysis and Nutritive Values of Ten Common Vegetables in South -West (Yoruba Land) Nigeria Akinwunmi, O.A.1, and Omotayo, F.O.2 1Department of Chemistry, Faculty of Science, Ekiti State University, PMB 5363, Ado-Ekiti, Ekiti State, Nigeria 2Department of Plant Science (Botany), Faculty of Science, Ekiti State University, PMB 5363, Ado-Ekiti, Ekiti State, Nigeria Corresponding author: Akinwunmi, O.A., Department of Chemistry, Faculty of Science, Ekiti State University, PMB 5363, Ado-Ekiti, Ekiti State, Nigeria ABSTRACT: The proximate and mineral compositions of ten commonly eaten leafy vegetables in South-West Nigeria were determined. The vegetables varied in their composition both in terms of major food, classes (proximate) and the mineral compositions. The proximate range (%): 5.69-24.70(ash), 8.53-17.32(moisture), 1.21-30.59(fat), 10.40-21.15(fibre), 14.60-26.33(crude protein) and 4.72-56.50(carbohydrate). Pb was not detected in any of the samples, while Na, K, Ca, Mg, Zn, Fe, Cu, Mn and P were present in appreciable levels. The ten leafy vegetables were found to be good sources of nutrients to human body. The vegetables might play major roles in the economy of the farmers and rural dwellers. Efforts have to be made to cultivate these vegetables in large quantities so that they will be readily available for people in cities and towns. -
Determination of Major Carotenoids in Processed Tropical Leafy Vegetables Indigenous to Africa
Food and Nutrition Sciences, 2011, 2, 793-802 793 doi:10.4236/fns.2011.28109 Published Online October 2011 (http://www.SciRP.org/journal/fns) Determination of Major Carotenoids in Processed Tropical Leafy Vegetables Indigenous to Africa Viviane Nkonga Djuikwo1, Richard Aba Ejoh1,2, Inocent Gouado3, Carl Moses Mbofung1, 2 Sherry A. Tanumihardjo 1Department of Food Science & Nutrition, University of Ngaoundéré, Ngaoundéré, Cameroon; 2Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, USA; 3Biochemistry Department, Faculty of Science, University of Douala, Cameroon. Email: [email protected] Received April 14th, 2011; revised August 1st, 2011; accepted August 8th, 2011. ABSTRACT Tropical leafy-vegetables (n = 21) indigenous to Cameroon, Africa, were collected, processed, and analyzed for caro- tenoids by HPLC. The processing techniques used were oven drying; sun-drying; squeeze-washing and boiling; and a combination of boiling in alkaline salt and squeeze-washing. Carotenoids included lutein, α-carotene, zeaxanthin, β-cryptoxanthin, and β-carotene (all-trans, 13-cis, and 9-cis), which varied by species (P < 0.001). With the exception of P. purpureum and H. sabdarifa, lutein and β-carotene were the predominant carotenoids. In the oven dried vegeta- bles, β-carotene was between 15% and 30% of total carotenoids and the values ranged from 7.46 ± 0.04 in T. indica to 39.86 ± 2.32 mg/100 gDW in V. oleifera. Lutein concentrations for these leafy vegetables ranged from 11.87 ± 0.7 in H. sabdarifa to 75.0 ± 3.6 mg/100 g DW in V. colorata and made up >40% of total carotenoids. Traditional preparation and processing procedures led to significant losses of carotenoids and β-carotene was most affected during sun-drying with a maximum of 73.8% loss observed in A. -
Flora-Lab-Manual.Pdf
LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae -
Establishment and Early Regeneration of Stem Cuttings from Chicken Weed (Portulaca Quadrifida L.) As Influenced by Soil Types *1
PRINT ISSN 1119-8362 Full-text Available Online at J. Appl. Sci. Environ. Manage. Electronic ISSN 1119-8362 https://www.ajol.info/index.php/jasem Vol. 24 (9) 1575-1581 September 2020 http://ww.bioline.org.br/ja Establishment and Early Regeneration of Stem Cuttings from Chicken Weed (Portulaca quadrifida L.) as Influenced by Soil Types *1GARBA, Y; 2MUSA, M; 3MUSTAPHA, AB; 2BAGUDO, HA; 1MAJIN, NS; 4GANA, M *1Department of Crop Production, Ibrahim Badamasi Babangida University, Lapai, Niger State. Nigeria 2Department of Crop Science, Usmanu Danfodiyo University, Sokoto, Nigeria 3Department of Crop production Modibo Adama University of Technology Yola, Adamawa State, Nigeria 4Department of Crop Production, University of Maiduguri, Nigeria *Corresponding Author Email: [email protected] ABSTRACT: Differences in the ability of soil are a requirement for early regeneration of a plant. It was a pot experiment carried out at Sokoto in the Sudano Sahelian agro-ecological Zone of Nigeria. The objective was to investigate the regenerative ability of stem cuttings of Chicken weed on different soil type as a strategy for the weed control. The experimental set up was 3 × 7 factorial arrangement in a Completely Randomized Design. The treatments consisted of seven stem cuttings types namely (NLA-D - node leaf attached at distal stem location, NLR-D - node leaf removed from distal stem location, NLA-P- node leaf attached at proximal stem location, NLR-P- node leaf removed from proximal stem location, IN-D - internodes at distal stem location, IN-P- internodes from proximal stem location and SRA- stem roots attached) and three soil textural class (Sandy, Silty clay and Loamy sand).