Lithium Price Outlook

Total Page:16

File Type:pdf, Size:1020Kb

Lithium Price Outlook 13 December 2018 METALS & MINING Initiation of Coverage Marketing Communication (Connected Research) Bacanora Lithium# BBG Ticker: BCN LN Price: £26p/sh. Mkt Cap: £35m BUY Back Sonora; Convinced By Site Visit Pilot Plant and Offtakes De-Risk Sonora Company Description Lithium exploration and development company Bacanora Lithium (BCN LN)# has developed and proven through three years of with assets in Mexico and Germany. pilot plant operations that it has a viable extraction process for its soft rock One Year Price Performance polylithionite project in Sonora, Mexico. BCN has consistently produced a 99.5% lithium carbonate and the strategic investment from Hanwa Co. and 10- (GBP/sh) Volume (RHS) (m shs) year offtake for 100% of stage one output verifies this process and confirms 1.60 Price (LHS) 8.0 that the pilot plant has significantly derisked the process design. This 1.40 7.0 1.20 6.0 confidence is further underpinned by the commitment of strategic, specialist 1.00 5.0 investors RK Mining and State General Reserve Fund of Oman. 0.80 4.0 0.60 3.0 Fundamentals, however, remain at the forefront of our investment case and 0.40 2.0 based on a WACC of 8.2% we derive an attributable NPV of US$935m for the 0.20 1.0 two-phase project capable of producing 17.9ktpa and 36ktpa Li2CO3 0.00 0.0 respectively requiring upfront capex of US$420m. Cash costs of US$4,350/t 12/17 3/18 6/18 9/18 12/18 (before by product credits) place the project attractively within the global cost Price % chg 1mn 3mn 12mn curve implying strong margins. The initial 20-year mine life uses just 7% of the -39.4% -31.8% -72.2x% Sonora resource, on our estimates, and remains open to expansion. 12mn high/low 149p/25p Consequently, we believe that one of the most attractive aspects of the project SOURCE: FactSet, as of 12 December 2018 close. for offtakers (and why it will be successful) is the ability to replicate the Market: LSE AIM modular design and scale production in line with rising global demand. Shares in issue 134.5m Target Price (p/sh. 115 Free float: 73.85% Lithium Fundamentals Continue to Strengthen Net cash (Jun 2018): £13.3m Enterprise value: £21.7m The lithium market is expected to grow 25% YoY in 2018 to 260kt LCE as Major shareholders demand for lithium ion batteries continues to grow. The demand outlook M&G Investment Funds 10.0% remains strong and consensus demand for 2025 is now at 1mntpa LCE. Blackrock 9.8% Benchmark Mineral Intelligence now estimate 1,148GWh of battery Hanwa Co Ltd 9.2% manufacturing capacity by 2025. Supply growth is, however, struggling to keep up. SQM (SQM US) will now produce 45kt LCE in 2018, -7% YoY, having initially guided to reaching a run rate of 70ktpa by year-end. Prices have therefore remained supported above US$16,000/t through 2018 for battery-grade lithium carbonate, while the medium term outlook has been strengthened by the rejection of Albemarle (ALB US) and SQM’s plans to raise output at the Salar de Atacama. End users are therefore compelled to seek supply outside of Chile to meet their needs. Recommendation and Target Price The shares are down 76% YTD as weak lithium sentiment has driven lithium equities lower globally while BCN performance was compounded by the pulled financing. However, following our site visit we are convinced of the viability of Oliver O’Donnell, CFA, Natural Resources the Sonora project and that BCN has the expertise to deliver the attractive +44 (0)20 3617 5180 | [email protected] returns and the high quality LCE production promised. We initiate coverage with a Buy recommendation and target price of 115p/sh. #VSA Capital acts as Research Provider for Bacanora Lithium. This research brochure is a MARKETING COMMUNICATION. It is not investment research and has not been prepared in accordance with legal requirements designed to promote investment research independence and is also not subject to any prohibition on dealing ahead of dissemination of investment research. Investment Case We believe that Bacanora Lithium (BCN LN)# has positioned itself as one of the most significant lithium projects globally and has delineated a path to construction and production. The weakness in the shares this year, primarily caused by the decline in off spec lithium prices in China was compounded by the delay in completion of the project financing. However, we are convinced that the fundamentals of the project are robust with attractive economics , a strong operational team and viable processing capability. The decline in valuation therefore offers investors a highly attractive risk reward profile. Although the pilot plant significantly derisks the process risk with a market capitalisation of just £35m we believe that investors are deeply compensated for risks surrounding execution and the perception surrounding BCN being the first lithium producer to commercially exploit a soft rock deposit. Investors should be reassured by the already strong list of expert shareholders and industry specialist groups that are backing the Sonora project. The initial drawdown of US$25m from the RK Mining facility means final engineering work is underway, along with preparations for construction. Project financing does, however, remain the key hurdle. Although following our recent site visit, we are convinced of the asset potential and ability of the management team to execute development. Sonora Project Location SOURCE: Company data, VSA Capital Research. Our interpretation of the Definitive Feasibility Study (DFS) along with current macro assumptions results in a post-tax NPV of US$935m. Upfront capital cost of US$420m and cash costs of US$4,350/tpa imply strong free cash flow particularly once the capital intensive period is over after year five and stage two commences. We anticipate that first production will be mid-2021, (FY 2022) having assumed an additional six months of construction time given the inherent nature of delays in the industry. This assumes that the remainder of the project finance is secured in H1 2019. Sonora Project, Overview Stage 1 Stage 2 LoM Average Li2CO3 Production, kt 17.9 36.0 31.3 Operating Cost (before by-product credits), US$/t 4,542 4,298 4,350 Operating Cost (after by-product credits), US$/t 4,097 3,862 3,912 Capex Requirement, US$m 420 370 15pa sustaining Attributable Post Tax NPV Combined (8.2% WACC), US$m 935 SOURCE: Company data, VSA Capital Research. - 2 - Currently the two phase project anticipates a design capacity of around 35ktpa although resource grades indicate that this can be exceeded. However, the resource defined to date which remains open has contained lithium carbonate of 8.8mnt LCE. This implies just 7% of the resource is used in the initial 20 years at these production rates. Therefore, given the expectations for lithium demand growth of the next two decades, BCN is in a strong position to further expand its capacity. Stage two involves replicating the processing plant of phase two and this modular design could be repeated to increase output in line with growing demand. This is a key reason we believe offtakers have found the project attractive because they can rely on a consistent supply of product where output can be scaled up. Given the importance of consistency in the lithium carbonate used in lithium ion batteries this is a key part of the investment case, in our view. Sonora Project Overview 2020F 2021F 2022F 2023F 2024F 2025F 2026F 2027F 2028F 2029F 2030F LCE output, kt - - 11 19 19 18 23 36 36 36 36 LCE price, US$/t 17,500 18,000 17,000 16,000 15,000 14,000 14,000 14,000 14,000 14,000 14,000 Revenue - - 153 345 292 261 332 521 521 521 521 EBITDA (12) (12) 69 249 196 165 158 331 330 330 330 Operating Profit (12) (12) 69 249 196 165 158 331 330 330 330 Net Income (12) (57) 26 151 105 84 79 200 199 199 199 Capex, US$m (200) (200) (21) (15) (175) (225) (15) (15) (15) (15) (15) FCF, US$m (200) (200) 28 159 (38) (109) 96 216 216 216 216 SOURCE: Company data, VSA Capital Research. Our assumptions on cash costs, which we believe are conservative at US$4,350/t (DFS US$3,900/t) over the LoM imply strong EBITDA margins typically above 60% each year and an attractive position on the cost curve. SOP production of 35ktpa provides a modest boost to the economics however, our assumptions for cash costs before by-product credits of US$4,350/t are attractive in their own right, in our view. These assumptions would comfortably place BCN at the lower end of the cost curve in contrast to much of the near term supply growth which is primarily spodumene concentrate production. Once the cost of conversion of spodumene concentrate is included, hard rock production occupies the fourth quartile of the cost curve which to produce an end product is now as high as US$12,000/t in some cases. Forecast Free Cash Flow and Capex, US$m 250 Capex, US$m FCF, US$m 200 150 100 50 - (50) (100) (150) (200) (250) 2020F 2021F 2022F 2023F 2024F 2025F 2026F 2027F 2028F 2029F 2030F SOURCE: Company data, VSA Capital Research. Therefore BCN stands out versus its peer group. Brine processing relies on an arid climate and evaporation and takes months to produce a lithium carbonate product, whereas BCN’s pyromet and hydromet process, which has been - 3 - extensively proven in its pilot plant and verified by multiple offtakers, combines attractive cash costs with a rapid production process which is not reliant on climatic conditions.
Recommended publications
  • Explosion of Lithium-Thionyl-Chloride Battery Due to Presence of Lithium Nitride
    Downloaded from orbit.dtu.dk on: Sep 25, 2021 Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride Hennesø, E.; Hedlund, Frank Huess Published in: Journal of Failure Analysis and Prevention Link to article, DOI: 10.1007/s11668-015-0004-y Publication date: 2015 Document Version Early version, also known as pre-print Link back to DTU Orbit Citation (APA): Hennesø, E., & Hedlund, F. H. (2015). Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride. Journal of Failure Analysis and Prevention, 15(5), 600-603. https://doi.org/10.1007/s11668-015-0004-y General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. This article appeared in Journal of Failure Analysis and Prevention, ISSN 1547-7029 http://dx.doi.org/10.1007/s11668-015-0004-y Explosion of lithium-thionyl- chloride battery due to presence of lithium nitride Document no.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta Et Al
    USOO74491.61B2 (12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta et al. (45) Date of Patent: Nov. 11, 2008 (54) PRODUCTION OF LITHIUM COMPOUNDS 4,207,297 A * 6/1980 Brown et al. ............. 423,179.5 DIRECTLY FROM LITHIUM CONTAINING 4,243,641 A * 1/1981 Ishimori et al. .......... 423/179.5 BRINES 4.261,960 A * 4/1981 Boryta ............. ... 423,179.5 4,271,131. A * 6/1981 Brown et al. ...... ... 423,179.5 4,274,834. A 6/1981 Brown et al. .............. 23,302 R (75) Inventors: Daniel Alfred Boryta, Cherryville, NC 4,463,209 A * 7/1984 Kursewicz et al. .......... 585/467 (US); Teresita Frianeza Kullberg, 4,465,659 A * 8/1984 Cambridge et al. ......... 423,495 Gastonia, NC (US); Anthony Michael 4,588,565 A * 5/1986 Schultze et al. .......... 423,179.5 Thurston, Edmond, OK (US) 4,747.917 A * 5/1988 Reynolds et al. ............ 205,512 4,859,343 A * 8/1989 Frianeza-Kullberg (73) Assignee: Chemetall Foote Corporation, Kings et al. .......................... 210,679 Mountain, NC (US) 4,980,136 A * 12/1990 Brown et al. ... 423,179.5 5,049,233 A 9, 1991 Davis .......................... 216.93 (*) Notice: Subject to any disclaimer, the term of this 5,219,550 A * 6/1993 Brown et al. ............. 423 (419.1 patent is extended or adjusted under 35 5,599,516 A * 2/1997 Bauman et al. .......... 423/179.5 U.S.C. 154(b) by 0 days. 5,939,038 A * 8/1999 Wilkomirsky ............... 423,276 5.993,759 A * 1 1/1999 Wilkomirsky ...........
    [Show full text]
  • Reactions of Lithium Nitride with Some Unsaturated Organic Compounds. Perry S
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1963 Reactions of Lithium Nitride With Some Unsaturated Organic Compounds. Perry S. Mason Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mason, Perry S. Jr, "Reactions of Lithium Nitride With Some Unsaturated Organic Compounds." (1963). LSU Historical Dissertations and Theses. 898. https://digitalcommons.lsu.edu/gradschool_disstheses/898 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—5058 microfilmed exactly as received MASON, Jr., Perry S., 1938- REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS. Louisiana State University, Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requireiaents for the degree of Doctor of Philosophy in The Department of Chemistry by Perry S. Mason, Jr. B. S., Harding College, 1959 August, 1963 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • 1 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Wi
    © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Williams,1 and Karthish Manthiram1* 1Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge, MA 02139, USA *Corresponding Author: [email protected] 1 © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Summary Ammonia is a large-scale commodity chemical that is crucial for producing nitrogen- containing fertilizers. Electrochemical methods have been proposed as renewable and distributed alternatives to the incumbent Haber-Bosch process, which utilizes fossils for ammonia production. Herein, we report a mechanistic study of lithium-mediated electrochemical nitrogen reduction to ammonia in a non-aqueous system. The rate laws of the main reactions in the system were determined. At high current densities, nitrogen transport limitations begin to affect the nitrogen reduction process. Based on these observations, we developed a coupled kinetic-transport model of the process, which we used to optimize operating conditions for ammonia production. The highest Faradaic efficiency observed was 18.5 ± 2.9%, while the highest production rate obtained was (7.9 ± 1.6) × 10-9 mol cm-2 s-1. Our understanding of the reaction network and the influence of transport provides foundational knowledge for future improvements in continuous lithium- mediated ammonia synthesis.
    [Show full text]
  • Lithium Nitride
    TECHNICAL DATA SHEET Date of Issue: 2016/12/12 Lithium Nitride CAS-No. 26134-62-3 EC-No. 247-475-2 Molecular Formula Li3N Product Number 401121 SPECIFICATION Lithium Nitride: min. 94% METHOD OF ANALYSIS Assay by determination of nitrogen by the method of Kjeldahl. A detailed laboratory instruction is available on request. PHYSICAL PROPERTIES Appearance fine powder Color red brown Melting point/ range ca. 840 - 845 °C Density ca. 1.38 g/cm3 at 20 °C Water solubility (Not applicable) Molecular weight 34.82 g/mol Additional Physical Theoretical lithium weight: 59.8 % Properties The information presented herein is believed to be accurate and reliable, but is presented without guarantee or responsibility on the part of Albemarle Corporation and its subsidiaries and affiliates. It is the responsibility of the user to comply with all applicable laws and regulations and to provide for a safe workplace. The user should consider any health or safety hazards or information contained herein only as a guide, and should take those precautions which are necessary or prudent to instruct employees and to develop work practice procedures in order to promote a safe work environment. Further, nothing contained herein shall be taken as an inducement or recommendation to manufacture or use any of the herein materials or processes in violation of existing or future patent. Technical data sheets may change frequently. You can download the latest version from our website www.albemarle-lithium.com. Please contact us at www.albemarle-lithium.com/contact with questions. Lithium Nitride Page 2 / 3 Product Number: 401121 Date of Issue: 2016/12/12 HANDLING & STORAGE Handling Lithium Nitride should be handled under inert gas atmosphere.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,871,843 B2 Lee (45) Date of Patent: Oct
    USOO887 1843B2 (12) United States Patent (10) Patent No.: US 8,871,843 B2 Lee (45) Date of Patent: Oct. 28, 2014 (54) HALOGEN-FREE FLAME RETARDANT 5,456,984 A 10/1995 Bishop et al. MATERAL 5,484,830 A 1/1996 Staendeke 5,648.436 A 7/1997 Janowitz et al. 5,925,700 A 7/1999 Imahashi (75) Inventor: Jean L. Lee, San Jose, CA (US) 5,955, 184 A 9, 1999 Honda et al. 5,994,429 A 11/1999 Honda et al. (73) Assignee: Apple Inc., Cupertino, CA (US) 6,140,411 A 10/2000 Schwanborn et al. 6,355,767 B1 * 3/2002 Takagi .......................... 528,196 (*) Notice: Subject to any disclaimer, the term of this 6,440,567 B1 8, 2002 Choate et al. 6,495,244 B1 12/2002 Andresakis et al. patent is extended or adjusted under 35 6,518,336 B1 2/2003 Yabuhara et al. U.S.C. 154(b) by 190 days. 6,642,288 B1 1 1/2003 Hulskotte 6,755,995 B1 6/2004 Hasegawa et al. (21) Appl. No.: 12/638,489 6,767,941 B2 7/2004 Van Der Speket al. 6,809,130 B2 10/2004 Chiou et al. 6,894, 101 B2 5, 2005 Paul et al. (22) Filed: Dec. 15, 2009 6,916,539 B2 7/2005 Cooray et al. 6,998,536 B2 2/2006 Barusseau et al. (65) Prior Publication Data 7,053,145 B1 5/2006 Tasaka et al. US 2011/O144244A1 Jun. 16, 2011 7,115,678 B2 10/2006 Ihara et al.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1: CHEMICAL PRODUCT and COMPANY IDENTIFICATION Product Name: Lithium nitride 99.5% Li -60 Mesh Product Code: L04310 Supplier: Pfaltz & Bauer, Inc. 172 E. Aurora Street Waterbury, CT 06708 USA Phone: 203-574-0075 FAX: 203-574-3181 Emergency Phone: INFOTRAC, US: 1-800-535-5053 INFOTRAC, INTERNATIONAL: +1-352-323-3500 SECTION 2: HAZARDS IDENTIFICATION Statement of Hazard: Corrosive, Dangerous when wet, Irritant, Reacts violently with water, Respiratory irritant Acute Health Hazard: Irritant to eyes, skin, mucous membranes and respiratory system. May be harmful by ingestion, skin absorption and inhalation. Chronic Health Hazard: Not Available HMIS Rating: H: 3 F: 3 P: 2 NFPA Rating: H: 3 F: 0 R: 2 To the best of our knowledge, the toxicological properties of this chemical have not been thoroughly investigated. Use appropriate procedures and precautions to prevent or minimize exposure. GHS Classification in accordance with 29 CFR 1910 (OSHA HCS): Page 1 of 7 Acute toxicity, dermal (Category 4), H312 Acute toxicity, inhalation (Category 4), H332 Acute toxicity, oral (Category 4), H302 Serious eye damage/eye irritation (Category 2A), H319 Skin corrosion/irritation (Category 1A), H314 Specific target organ toxicity, single exposure; Respiratory tract irritation (Category 3), H335 Substances and mixtures which, in contact with water, emit flammable gases (Category 1), H260 Pictogram: Signal Word: Danger Hazard Statement(s): H260 In contact with water releases flammable gases which may ignite spontaneously. H302 Harmful if swallowed. H312 Harmful in contact with skin. H314 Causes severe skin burns and eye damage. H319 Causes serious eye irritation. H332 Harmful if inhaled.
    [Show full text]
  • Pfs Update Confirms Potential of Low-Cost Lithium Hydroxide Production
    For immediate release 17 June 2019 EUROPEAN METALS HOLDINGS LIMITED PFS UPDATE CONFIRMS POTENTIAL OF LOW-COST LITHIUM HYDROXIDE PRODUCTION European Metals Holdings Limited (“European Metals” or “the Company”) is pleased to announce the results from the successful update of the process flowsheet previously developed to enable the production of lithium hydroxide (LiOH.H2O). This work has been completed in conjunction with test-work confirming the production of battery grade lithium hydroxide from Cinovec ore. These results significantly enhance the forecast economics of the Cinovec Project. HIGHLIGHTS (all $ figures in this release are US Dollars and increases refer to the 2017 PFS Lithium Carbonate study): • Net estimated overall cost of production post credits: $3,435 / tonne LiOH.H2O • Project Net Present Value (“NPV”) increases 105% to: $1.108B (post tax, 8%) • Internal Rate of Return (“IRR”) increased 37% to 28.8% (post tax) • Total Capital Cost: $482.6M • Annual production of Battery Grade Lithium Hydroxide: 25,267 tonnes • Studies are based on only 9.3% of reported Indicated Mineral Resource and a mine life of 21 years processing an average of 1.68 Mtpa ore • The process used to produce lithium hydroxide allows for the staging of lithium carbonate and then lithium hydroxide production to minimize capital and startup risk and enables the production of either battery grade lithium hydroxide or carbonate as markets demand European Metals Managing Director Keith Coughlan said, “I am very pleased to report to shareholders on the completion of this update to our 2017 Preliminary Feasibility Study for the Cinovec project which adds significantly to the already robust forecast economics for the project.
    [Show full text]
  • Low Temperature and Pressure Synthesis of Lithium–Nitride
    Materials Transactions, Vol. 54, No. 12 (2013) pp. 2233 to 2237 ©2013 The Japan Institute of Metals and Materials Low Temperature and Pressure Synthesis of Lithium­Nitride Compound with H2O Addition on Lithium Target for BNCT Shintaro Ishiyama1,+, Yuji Baba1, Ryo Fujii2, Masaru Nakamura2 and Yoshio Imahori2 1Quantum Beam Science Directorate, Japan Atomic Energy Agency, Naka-gun, Ibaraki 319-1195, Japan 2Cancer Intelligence Care Systems, Inc., Tokyo 135-0063, Japan Low temperature synthesis of lithium­nitride compound was conducted on the lithium target for BNCT by N2/H2O mixing gas squirt in the ultra high vacuum chamber, and the following results were derived. (1) Lithium­nitride compound was synthesized on the lithium target ¹8 under 101.3 Pa N2 gas squirt at room temperature and in the ultra high vacuum chamber under the pressure of 1 © 10 Pa. (2) Remarkable contamination by O and C was observed on the lithium­nitride compound synthesized under the squirt pressure of 13.3­80 Pa/1.33­4.7 Pa N2/ H2O mixing gas. (3) No contamination and synthesis of Li­N compound was observed under the squirt pressure of 0.013­0.027 Pa/0­0.005 Pa N2/H2O mixing gas. (4) Contamination by O and C was enhanced with excessive addition of H2O at the pressure of over 1.33 Pa. [doi:10.2320/matertrans.M2013242] (Received June 26, 2013; Accepted September 25, 2013; Published November 9, 2013) Keywords: boron neutron capture therapy, neutron source, lithium target, lithium nitride, nitrogen gas, contamination, H2O addition 1. Introduction Implemented deployment of accelerator-driven neutron source for Boron Neutron Capture Therapy (BNCT) is scheduled in 2013 in National Cancer Center, Japan.
    [Show full text]
  • Sonora Project)
    SONORA LITHIUM PROJECT FS TECHNICAL REPORT TECHNICAL REPORT ON THE FEASIBILITY STUDY FOR THE SONORA LITHIUM PROJECT, MEXICO January 2018 January 2018 Prepared For Bacanora Minerals Ltd Prepared by Ausenco Services Pty Ltd 144 Montague Rd South Brisbane Australia Effective Date: December 12, 2017 Issue Date: January 25, 2018 101304-FS-0004-Tech Report rev 0.docx SONORA LITHIUM PROJECT FS TECHNICAL REPORT CERTIFICATE OF QUALIFIED PERSON I, Joel A. Carrasco, P.E., do hereby certify thhat: 1. I am a Principal Engineer, Solum Consulting Group, 350 S Jackson st. #454 Denver, Colorado 80209 USA. 2. This certificate applies to the technical report titled “Technical Report on the Feasibility Study for the Sonora Lithium Project, Mexico, January 2018” (the “Technical Report”), prepared for Bacanora Minerals Limited; 3. The Effective Date of the Technical Report is 12 December 2017. 4. I am a graduate of Texas Tech Univerrsity, Texas with a Bachelor of Scieence degree in Civil Engineering. I have worked as a Civil Engineer continuously for a total off 15 years since my graduation from University. My relevant experience has been working as Project Manager for multi-national engineering companies on feasibility studies and engineering designs of tailings facilities; 5. I am registered as a Professional Engineer in the State of Arizona (Licence # 52000). 6. I havve read the definition of “Qualified Person” set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experrience, I fulfil the requirements to bee a “Qualified Person” for the purposes of NI 43-101.
    [Show full text]
  • Gemological ABSTRACTS 2002
    Gemological ABSTRACTS 2002 EDITOR COLORED STONES AND A. A. Levinson ORGANIC MATERIALS University of Calgary Characterization of beryl (aquamarine variety) by Mössbauer Calgary, Alberta, Canada spectroscopy. R. R. Viana, G. M. da Costa, E. De Grave, H. Jordt-Evangelista, and W. B. Stern, Physics and REVIEW BOARD Chemistry of Minerals, Vol. 29, No. 1, 2002, pp. 78–86. Five aquamarine samples were analyzed by Mössbauer spec- Anne M. Blumer troscopy to find a correlation between their dark blue to green- Bloomington, Illinois ish blue colors and the locations of iron atoms in the beryl Jo Ellen Cole structure. An asymmetric Fe2+ doublet was observed in the Vista, California spectra of all samples at room temperature. The asymmetry is D. Darmour related to a relaxation process involving Fe2+ ions and water GIA Gem Trade Laboratory, Carlsbad molecules in structural channels. At higher temperatures, the Vladislav Dombrovskiy spectra indicated at least two Fe2+ components. At very low GIA Gem Trade Laboratory, Carlsbad temperatures, the spectra of a deep blue specimen showed that 2+ 2+ R. A. Howie Fe was in structural channels. Fe also occupied octahedral Royal Holloway, University of London and tetrahedral sites, whereas Fe3+ was only located in the octa- hedral site. The authors conclude that the color of green-to-blue Alethea Inns 3+ GIA Gem Trade Laboratory, Carlsbad beryls is determined by the relative proportions of Fe in the octahedral sites and of Fe2+ in the channels. Thus, deep blue Taijin Lu beryls have little Fe3+, whereas greener beryls have more octahe- GIA Research, Carlsbad dral Fe3+ or less channel Fe2+.
    [Show full text]
  • A New Cubic Phase of Li3n: Stability of the N3− Ion to 200
    3¡ A New Cubic Phase of Li3N: Stability of the N Ion to 200 GPa A. Lazicki1;2, B. Maddox1;2, W. J. Evans, C. -S. Yoo and A. K. McMahan 1Lawrence Livermore National Laboratory, Livermore, California 94550 W. E. Pickett and R. T. Scalettar 2Physics Department, University of California, Davis, California 95616 M. Y. Hu and P. Chow HPCAT/APS, Argonne National Laboratory, Argonne, Illinois 60439 Diamond anvil cell experiments augmented by ¯rst principles calculations have found a remarkable 3¡ stability of the N ion in Li3N to a six-fold volume reduction. A new (γ) phase is discovered above 40(§5) GPa, with an 8% volume collapse and a bandgap quadrupling at the transition determined by synchrotron x-ray di®raction and inelastic x-ray scattering. γ-Li3N (Fm3m, Li3Bi-like structure) remains stable up to 200 GPa, and calculations do not predict metallization until »8 TPa. The high structural stability, wide bandgap and simple electronic structure make this N3¡ based system analogous to lower valency compounds (MgO, NaCl, Ne), meriting its use as an internal pressure standard. PACS numbers: 62.50.+p, 61.10.-i, 64.70.Kb, 71.20.Nr Nitrogen can form compounds with elements from al- particular interest. most every column in the periodic table, with chemi- In this paper, we present the ¯rst concrete experimen- cal bonding ranging from covalent to ionic to metallic. tal evidence that ¯-Li3N indeed transforms to a cubic Lithium nitride is the only known thermodynamically structure (γ-Li3N) in the pressure range of 36-45 GPa. stable alkali metal nitride and is one of the most ionic This transformation represents an increase in structural of all known nitrides.
    [Show full text]