A New Cubic Phase of Li3n: Stability of the N3− Ion to 200

Total Page:16

File Type:pdf, Size:1020Kb

A New Cubic Phase of Li3n: Stability of the N3− Ion to 200 3¡ A New Cubic Phase of Li3N: Stability of the N Ion to 200 GPa A. Lazicki1;2, B. Maddox1;2, W. J. Evans, C. -S. Yoo and A. K. McMahan 1Lawrence Livermore National Laboratory, Livermore, California 94550 W. E. Pickett and R. T. Scalettar 2Physics Department, University of California, Davis, California 95616 M. Y. Hu and P. Chow HPCAT/APS, Argonne National Laboratory, Argonne, Illinois 60439 Diamond anvil cell experiments augmented by ¯rst principles calculations have found a remarkable 3¡ stability of the N ion in Li3N to a six-fold volume reduction. A new (γ) phase is discovered above 40(§5) GPa, with an 8% volume collapse and a bandgap quadrupling at the transition determined by synchrotron x-ray di®raction and inelastic x-ray scattering. γ-Li3N (Fm3m, Li3Bi-like structure) remains stable up to 200 GPa, and calculations do not predict metallization until »8 TPa. The high structural stability, wide bandgap and simple electronic structure make this N3¡ based system analogous to lower valency compounds (MgO, NaCl, Ne), meriting its use as an internal pressure standard. PACS numbers: 62.50.+p, 61.10.-i, 64.70.Kb, 71.20.Nr Nitrogen can form compounds with elements from al- particular interest. most every column in the periodic table, with chemi- In this paper, we present the ¯rst concrete experimen- cal bonding ranging from covalent to ionic to metallic. tal evidence that ¯-Li3N indeed transforms to a cubic Lithium nitride is the only known thermodynamically structure (γ-Li3N) in the pressure range of 36-45 GPa. stable alkali metal nitride and is one of the most ionic This transformation represents an increase in structural of all known nitrides. At ambient pressure, the nitrogen and bonding strength and isotropy, and is accompanied 3¡ exists in an anomalous multiply charged (N ) state [1, 2] by a relatively large volume collapse and a fourfold widen- which is stable only because of its crystal environment - ing of the electronic band gap. γ-Li3N is uncommonly + a hexagonal bipyramid of Li ions. This layered struc- stable and quite compressible in this pressure regime and ture (®-Li3N, P6/mmm) consists of Li2N layers, widely up to at least 200 GPa, making it a good candidate for separated and connected by one lithium atom per unit an internal pressure standard. cell occupying a site between the nitrogen atoms in adja- Polycrystalline lithium nitride powder (99.5 % purity, cent layers [3, 4]. This material is a superionic conductor CERAC, Inc) was loaded into a membrane diamond-anvil via vacancy-induced Li+ di®usion within the Li N lay- 2 cell of LLNL design. Several diamond sizes were used to ers. [5{7] Its potential for use as an electrolyte in lithium obtain an extended range of pressure up to 200 GPa. batteries [4], a hydrogen storage medium [8{11] and a In the lower pressure experiments, argon was used as a component in the synthesis of GaN [12] has prompted several studies including an investigation into its behav- ior at high pressure [13]. Cu (111) (220) (200) At »0.5 GPa, ®-Li3N transforms into a second layered Cu Cu (311) hexagonal structure (¯, P63/mmc) with BN-like honey- GPa 201 P= comb LiN layers [14]. In this structure, each nitrogen binds an additional lithium atom above and below the plane and, unlike the Li2N layers in ®-Li3N, adjacent (220) (111) LiN layers are shifted relative to one another. ¯-Li3N (422) is metastable at ambient pressure and is typically found (200) (400) (311) P = 43 GPa 43 P= mixed with the ®-phase. It remains stable up to 35 GPa units) (arbitrary Intensity { the high-pressure limit of experiments on Li3N to date. ¹ A second phase transition to a cubic structure - P43m at 2.5 2.0 1.5 1.0 37.9 GPa [13] or Fm3m at 27.6 GPa [15] - has been pre- d-spacing (A) dicted. If it exists, the similarity of this phase to those of other simple ionic cubic solids such as NaCl makes it an FIG. 1: ADXD diagrams of γ-Li3N at 43 and 201 GPa, with interesting study, particularly in light of its higher ion- re¯ned and di®erence patterns. Miller indices are based on the icity. Understanding the behavior of the unstable and cubic (Fm3m) structure shown, with large atoms representing highly charged N3¡ ions under large compression is of the highly negative nitrogen ions, small representing lithium. 2 which remains stable up to 201 GPa, the maximum pres- TABLE I: Volume per formula unit V , bulk modulus B , its o o sure achieved in the present study. A possible beginning pressure derivative Bo', volume change at the ¯!γ transition and transition pressure as obtained in experimental(*) and of this transition was reported in [13] and [14]. An addi- theoretical work in present and other studies. Experimental tional transition to an orthorhombic structure predicted errors are primarily a result of non-hydrostaticity in the DAC. at 168 GPa [15] is not seen. Figure 1 shows the measured ¹ The γ-phase predicted in reference [13] is space group P43m. and re¯ned di®raction patterns of γ-Li3N at 43 GPa and Aº3 ¢V 201 GPa. The re¯nement was performed based on the V0 ( f:u: )B0(GPa) B0' V P(GPa) 0 Li Bi structure (Fm3m) with one formula unit per prim- Exp.* ¯ 34.4(.8) 71(19) 3.9(.9) 8(2)% 40(5) 3 itive fcc cell consisting of one lithium and one nitrogen γ 30.8(.8) 78(13) 4.2(.2) ion occupying m3m¹ sites, and the two additional lithium Th. ¯ 34.44(.08) 68(3) 3.6(.1) 6.7% 40.4 ions in the 43m¹ sites, each tetrahedrally coordinated with γ 31.16(.08) 73.1(.8) 3.85(.01) 4 nitrogen ions. Slight changes in relative intensities of [13]* ¯ 35.04 74(6) 3.7(.7) >35 the di®raction peaks appear to be due to increasing oc- [13] ¯ 30.88 78.2 3.77 8% 37.9 cupancy of the Li 43m¹ sites with pressure (92.2% at 43 γ 28.08 82.8 3.84 GPa and 99.9% at 201 GPa). [15] ¯ 33.36 28(5) The pressure-volume data for the ¯ and γ phases and γ 30.44 their 3rd order Birch-Murnaghan equation of state (BM- [14]* ¯ 34.48 >10 EOS) ¯ts are shown in Figure 2, with ¯tting parameters summarized in Table I. The ¯ ! γ transition is accom- panied by an 8% volume collapse and an increase in the pressure medium and internal pressure standard. For coordination number for every atom. In the ¯ phase the high-pressure experiments, no pressure medium was (a»3.20 A,º c»5.71 A,º at the transition), each N3¡ ion is 3+ used, and copper or ruby (Al2O3:Cr ) were included surrounded by 11 Li+ ions (three in the hexagonal planes in the sample chamber as pressure indicators. Under at 1.85 A,º two above and below the plane at 1.90 Aº and non-hydrostatic conditions, the equation of state ¯tting six in trigonal prismatic coordination at 2.1 A).º In the γ parameters di®ered from those obtained under quasi- phase (a»4.5 A),º 14 Li+ ions surround N3¡, eight tetra- hydrostatic conditions by 8.7%, 0.8% and 13% for Bo,Vo hedrally coordinated with N at 1.95 Aº and six octahe- and Bo', respectively. Samples were loaded in an argon drally at 2.25 A.º Across the phase transition there is no environment as Li3N is hygroscopic. High-pressure be- discontinuity in the nearest-neighbor N distance (»3.23 havior was investigated by angle-dispersive powder x-ray A),º and the nearest N-Li distance even increases slightly. di®raction (ADXD) at 16IDB and inelastic x-ray Raman The signi¯cant increase in packing without a decrease scattering (XRS) at 16IDD of the High-Pressure Collabo- in distance between highly charged N ions makes the γ rative Access Team (HPCAT) beamlines at the Advanced phase highly preferred at high pressures. The more pop- Photon Source (APS). For the ADXD experiments, we ulated and symmetric distribution of Li ions serves to used intense monochromatic x-rays (¸ = 0.3683 or 0.4126 e®ectively shield the highly charged N ions from one an- ºA) microfocused to »10 ¹m at the sample using a pair of other and even potentially to compress their ionic radii piezo-crystal controlled bimorphic mirrors. X-ray di®rac- 750 tion patterns were recorded on a high-resolution image ) 3 plate detector (MAR 350) and analyzed with the FIT2D, MgO 500 B B (GPa) XRDA and GSAS programs. For the XRS experiments, -Li N 28 3 Ne -Li N we used monochromatic x-rays (9.687 keV) focused to 3 »20 x 50 ¹m at the sample through an x-ray translucent 250 NaCl (B2) Be gasket by a pair of 1 m-long Kirkpatrick-Baez focusing 24 V/V ~ 8 % 0 mirrors. Six spherically bent Si(660) single crystal ana- 0 50 100 150 200 lyzers (50 mm in diameter) were vertically mounted on a P (GPa) 20 -Li N 870 mm Rowland circle to refocus inelastically scattered 3 x-ray photons onto a Si detector (Amp Tek) at a scat- Experimental data tering angle of 25± in a nearly back scattering geometry Volume per formula unit (A 16 (Bragg angle of 88.6±). This con¯guration corresponds to Birch-Murnaghan fit a momentum transfer of q »2.2 Aº¡1. The overall system 0 50 100 150 200 provides an energy resolution of »1 eV.
Recommended publications
  • Explosion of Lithium-Thionyl-Chloride Battery Due to Presence of Lithium Nitride
    Downloaded from orbit.dtu.dk on: Sep 25, 2021 Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride Hennesø, E.; Hedlund, Frank Huess Published in: Journal of Failure Analysis and Prevention Link to article, DOI: 10.1007/s11668-015-0004-y Publication date: 2015 Document Version Early version, also known as pre-print Link back to DTU Orbit Citation (APA): Hennesø, E., & Hedlund, F. H. (2015). Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride. Journal of Failure Analysis and Prevention, 15(5), 600-603. https://doi.org/10.1007/s11668-015-0004-y General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. This article appeared in Journal of Failure Analysis and Prevention, ISSN 1547-7029 http://dx.doi.org/10.1007/s11668-015-0004-y Explosion of lithium-thionyl- chloride battery due to presence of lithium nitride Document no.
    [Show full text]
  • Reactions of Lithium Nitride with Some Unsaturated Organic Compounds. Perry S
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1963 Reactions of Lithium Nitride With Some Unsaturated Organic Compounds. Perry S. Mason Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mason, Perry S. Jr, "Reactions of Lithium Nitride With Some Unsaturated Organic Compounds." (1963). LSU Historical Dissertations and Theses. 898. https://digitalcommons.lsu.edu/gradschool_disstheses/898 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—5058 microfilmed exactly as received MASON, Jr., Perry S., 1938- REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS. Louisiana State University, Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requireiaents for the degree of Doctor of Philosophy in The Department of Chemistry by Perry S. Mason, Jr. B. S., Harding College, 1959 August, 1963 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • 1 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Wi
    © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Williams,1 and Karthish Manthiram1* 1Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge, MA 02139, USA *Corresponding Author: [email protected] 1 © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Summary Ammonia is a large-scale commodity chemical that is crucial for producing nitrogen- containing fertilizers. Electrochemical methods have been proposed as renewable and distributed alternatives to the incumbent Haber-Bosch process, which utilizes fossils for ammonia production. Herein, we report a mechanistic study of lithium-mediated electrochemical nitrogen reduction to ammonia in a non-aqueous system. The rate laws of the main reactions in the system were determined. At high current densities, nitrogen transport limitations begin to affect the nitrogen reduction process. Based on these observations, we developed a coupled kinetic-transport model of the process, which we used to optimize operating conditions for ammonia production. The highest Faradaic efficiency observed was 18.5 ± 2.9%, while the highest production rate obtained was (7.9 ± 1.6) × 10-9 mol cm-2 s-1. Our understanding of the reaction network and the influence of transport provides foundational knowledge for future improvements in continuous lithium- mediated ammonia synthesis.
    [Show full text]
  • Lithium Nitride
    TECHNICAL DATA SHEET Date of Issue: 2016/12/12 Lithium Nitride CAS-No. 26134-62-3 EC-No. 247-475-2 Molecular Formula Li3N Product Number 401121 SPECIFICATION Lithium Nitride: min. 94% METHOD OF ANALYSIS Assay by determination of nitrogen by the method of Kjeldahl. A detailed laboratory instruction is available on request. PHYSICAL PROPERTIES Appearance fine powder Color red brown Melting point/ range ca. 840 - 845 °C Density ca. 1.38 g/cm3 at 20 °C Water solubility (Not applicable) Molecular weight 34.82 g/mol Additional Physical Theoretical lithium weight: 59.8 % Properties The information presented herein is believed to be accurate and reliable, but is presented without guarantee or responsibility on the part of Albemarle Corporation and its subsidiaries and affiliates. It is the responsibility of the user to comply with all applicable laws and regulations and to provide for a safe workplace. The user should consider any health or safety hazards or information contained herein only as a guide, and should take those precautions which are necessary or prudent to instruct employees and to develop work practice procedures in order to promote a safe work environment. Further, nothing contained herein shall be taken as an inducement or recommendation to manufacture or use any of the herein materials or processes in violation of existing or future patent. Technical data sheets may change frequently. You can download the latest version from our website www.albemarle-lithium.com. Please contact us at www.albemarle-lithium.com/contact with questions. Lithium Nitride Page 2 / 3 Product Number: 401121 Date of Issue: 2016/12/12 HANDLING & STORAGE Handling Lithium Nitride should be handled under inert gas atmosphere.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,871,843 B2 Lee (45) Date of Patent: Oct
    USOO887 1843B2 (12) United States Patent (10) Patent No.: US 8,871,843 B2 Lee (45) Date of Patent: Oct. 28, 2014 (54) HALOGEN-FREE FLAME RETARDANT 5,456,984 A 10/1995 Bishop et al. MATERAL 5,484,830 A 1/1996 Staendeke 5,648.436 A 7/1997 Janowitz et al. 5,925,700 A 7/1999 Imahashi (75) Inventor: Jean L. Lee, San Jose, CA (US) 5,955, 184 A 9, 1999 Honda et al. 5,994,429 A 11/1999 Honda et al. (73) Assignee: Apple Inc., Cupertino, CA (US) 6,140,411 A 10/2000 Schwanborn et al. 6,355,767 B1 * 3/2002 Takagi .......................... 528,196 (*) Notice: Subject to any disclaimer, the term of this 6,440,567 B1 8, 2002 Choate et al. 6,495,244 B1 12/2002 Andresakis et al. patent is extended or adjusted under 35 6,518,336 B1 2/2003 Yabuhara et al. U.S.C. 154(b) by 190 days. 6,642,288 B1 1 1/2003 Hulskotte 6,755,995 B1 6/2004 Hasegawa et al. (21) Appl. No.: 12/638,489 6,767,941 B2 7/2004 Van Der Speket al. 6,809,130 B2 10/2004 Chiou et al. 6,894, 101 B2 5, 2005 Paul et al. (22) Filed: Dec. 15, 2009 6,916,539 B2 7/2005 Cooray et al. 6,998,536 B2 2/2006 Barusseau et al. (65) Prior Publication Data 7,053,145 B1 5/2006 Tasaka et al. US 2011/O144244A1 Jun. 16, 2011 7,115,678 B2 10/2006 Ihara et al.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1: CHEMICAL PRODUCT and COMPANY IDENTIFICATION Product Name: Lithium nitride 99.5% Li -60 Mesh Product Code: L04310 Supplier: Pfaltz & Bauer, Inc. 172 E. Aurora Street Waterbury, CT 06708 USA Phone: 203-574-0075 FAX: 203-574-3181 Emergency Phone: INFOTRAC, US: 1-800-535-5053 INFOTRAC, INTERNATIONAL: +1-352-323-3500 SECTION 2: HAZARDS IDENTIFICATION Statement of Hazard: Corrosive, Dangerous when wet, Irritant, Reacts violently with water, Respiratory irritant Acute Health Hazard: Irritant to eyes, skin, mucous membranes and respiratory system. May be harmful by ingestion, skin absorption and inhalation. Chronic Health Hazard: Not Available HMIS Rating: H: 3 F: 3 P: 2 NFPA Rating: H: 3 F: 0 R: 2 To the best of our knowledge, the toxicological properties of this chemical have not been thoroughly investigated. Use appropriate procedures and precautions to prevent or minimize exposure. GHS Classification in accordance with 29 CFR 1910 (OSHA HCS): Page 1 of 7 Acute toxicity, dermal (Category 4), H312 Acute toxicity, inhalation (Category 4), H332 Acute toxicity, oral (Category 4), H302 Serious eye damage/eye irritation (Category 2A), H319 Skin corrosion/irritation (Category 1A), H314 Specific target organ toxicity, single exposure; Respiratory tract irritation (Category 3), H335 Substances and mixtures which, in contact with water, emit flammable gases (Category 1), H260 Pictogram: Signal Word: Danger Hazard Statement(s): H260 In contact with water releases flammable gases which may ignite spontaneously. H302 Harmful if swallowed. H312 Harmful in contact with skin. H314 Causes severe skin burns and eye damage. H319 Causes serious eye irritation. H332 Harmful if inhaled.
    [Show full text]
  • Low Temperature and Pressure Synthesis of Lithium–Nitride
    Materials Transactions, Vol. 54, No. 12 (2013) pp. 2233 to 2237 ©2013 The Japan Institute of Metals and Materials Low Temperature and Pressure Synthesis of Lithium­Nitride Compound with H2O Addition on Lithium Target for BNCT Shintaro Ishiyama1,+, Yuji Baba1, Ryo Fujii2, Masaru Nakamura2 and Yoshio Imahori2 1Quantum Beam Science Directorate, Japan Atomic Energy Agency, Naka-gun, Ibaraki 319-1195, Japan 2Cancer Intelligence Care Systems, Inc., Tokyo 135-0063, Japan Low temperature synthesis of lithium­nitride compound was conducted on the lithium target for BNCT by N2/H2O mixing gas squirt in the ultra high vacuum chamber, and the following results were derived. (1) Lithium­nitride compound was synthesized on the lithium target ¹8 under 101.3 Pa N2 gas squirt at room temperature and in the ultra high vacuum chamber under the pressure of 1 © 10 Pa. (2) Remarkable contamination by O and C was observed on the lithium­nitride compound synthesized under the squirt pressure of 13.3­80 Pa/1.33­4.7 Pa N2/ H2O mixing gas. (3) No contamination and synthesis of Li­N compound was observed under the squirt pressure of 0.013­0.027 Pa/0­0.005 Pa N2/H2O mixing gas. (4) Contamination by O and C was enhanced with excessive addition of H2O at the pressure of over 1.33 Pa. [doi:10.2320/matertrans.M2013242] (Received June 26, 2013; Accepted September 25, 2013; Published November 9, 2013) Keywords: boron neutron capture therapy, neutron source, lithium target, lithium nitride, nitrogen gas, contamination, H2O addition 1. Introduction Implemented deployment of accelerator-driven neutron source for Boron Neutron Capture Therapy (BNCT) is scheduled in 2013 in National Cancer Center, Japan.
    [Show full text]
  • Gemological ABSTRACTS 2002
    Gemological ABSTRACTS 2002 EDITOR COLORED STONES AND A. A. Levinson ORGANIC MATERIALS University of Calgary Characterization of beryl (aquamarine variety) by Mössbauer Calgary, Alberta, Canada spectroscopy. R. R. Viana, G. M. da Costa, E. De Grave, H. Jordt-Evangelista, and W. B. Stern, Physics and REVIEW BOARD Chemistry of Minerals, Vol. 29, No. 1, 2002, pp. 78–86. Five aquamarine samples were analyzed by Mössbauer spec- Anne M. Blumer troscopy to find a correlation between their dark blue to green- Bloomington, Illinois ish blue colors and the locations of iron atoms in the beryl Jo Ellen Cole structure. An asymmetric Fe2+ doublet was observed in the Vista, California spectra of all samples at room temperature. The asymmetry is D. Darmour related to a relaxation process involving Fe2+ ions and water GIA Gem Trade Laboratory, Carlsbad molecules in structural channels. At higher temperatures, the Vladislav Dombrovskiy spectra indicated at least two Fe2+ components. At very low GIA Gem Trade Laboratory, Carlsbad temperatures, the spectra of a deep blue specimen showed that 2+ 2+ R. A. Howie Fe was in structural channels. Fe also occupied octahedral Royal Holloway, University of London and tetrahedral sites, whereas Fe3+ was only located in the octa- hedral site. The authors conclude that the color of green-to-blue Alethea Inns 3+ GIA Gem Trade Laboratory, Carlsbad beryls is determined by the relative proportions of Fe in the octahedral sites and of Fe2+ in the channels. Thus, deep blue Taijin Lu beryls have little Fe3+, whereas greener beryls have more octahe- GIA Research, Carlsbad dral Fe3+ or less channel Fe2+.
    [Show full text]
  • LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, E.G. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE {(Roofi
    CPC - C04B - 2021.08 C04B LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE {(roofing granules E04D 7/005)}; CERAMICS (devitrified glass-ceramics C03C 10/00); REFRACTORIES; TREATMENT OF NATURAL STONE Definition statement This place covers: Chemical aspects of the processing of lime, magnesia or dolomite and of molten slag. Compositional aspects of: • inorganic binders, such as hydraulic cements ; • mortars, concrete and artificial stone, e.g. the choice of fillers or active ingredients therefore; • shaped ceramic products, e.g. clay-wares, refractories , non-oxides. Physico-chemical aspects of methods for obtaining mortars, concrete, artificial stones or ceramics , e.g. for delaying the setting time of mortar compositions. Treatment including defibrillating of materials such as fillers , agglomerated or waste materials, or refuse to enhance their filling properties in mortars, concrete or artificial stone. Porous mortars, concrete, artificial stone or ceramic ware, and the preparation thereof. Methods and apparatus for: • burning or slaking lime; • obtaining mineral binders, e.g. Portland cement or hemihydrate plaster; • the expansion of mineral fillers , such as clay, perlite or vermiculite. After- treatment of artificial stones, mortars, concrete and ceramics , e.g. coating or impregnation of green concrete after primary shaping. Non-mechanical treatment of natural stone. Processing powders of inorganic compounds in preparation to the manufacturing of ceramic products . 1 C04B (continued) CPC - C04B - 2021.08 Definition statement The joining of burned ceramics with other articles by heating. References Limiting references This place does not cover: Granulating apparatus B01J 2/00 Mechanical features relating to the working of mortars, concrete, stone, B28 clay-wares or ceramics , e.g.
    [Show full text]
  • Lithium 200 Years Fathi Habashi
    Laval University From the SelectedWorks of Fathi Habashi September, 2017 Lithium 200 years Fathi Habashi Available at: https://works.bepress.com/fathi_habashi/242/ METALL-RUBMETALL-HISTORIKRISCH statesman. He was greatly honoured (Fig- Two Hundred Years Lithium ure 3). Discovery of Lithium Habashi, F. (1) When the French chemist Vauquelin ana- In 1800, Jozé Bonifacio de Andrade e Silva (1763-1838) a Brazilian scientist was lyzed spodumene in 1801 he showed a loss sent on a journey through Europe to study chemistry, mineralogy, and metallurgy. of 9.5% which he could not account for. In He was appointed as the first professor of metallurgy at the University of Coimbra 1817, the Swedish chemist Johan August in Portugal. Arfwedson (1792-1841) (Figure 4) while hile in Scandinavia he reported that he had discovered an infusible, laminated mineral from Wthe iron mine in Udö Island near Stock- holm which he called “petalite” (Figure 1) from Greek, leaf, alluding to its cleavage and another which he called “spodumene” (Figure 2) from a Greek word meaning ash colored. Fig. 4: Johan August Arfwedson (1792- 1841) working in Berzelius’ laboratory in Stock- holm analyzed petalite and spodumene and reported the presence of a new alkali Fig. 1: Petalite, LiAlSi4O10 or metal which he called “lithium” to indi- . Li2O Al2O3 8SiO2 cate that the metal was discovered in the mineral kingdom whereas the other alkali After returning to Brazil in 1819 he was metals were found in the vegetable king- appointed Minister of State and was dom. Both minerals are now known to instrumental in the independence of be lithium aluminum silicates.
    [Show full text]
  • The Reactions of Lithium with Nitrogen and Water Vapour By
    The Reactions Of Lithium With Nitrogen And Water Vapour by Wayne Ronald Irvine A Thesis Submitted In Partial Fulfillment ' Of The Requirements For The Degree Of Master Of Science in the Department of Mining and Metallurgy We accept'this thesis as conforming to the standard required from candidates for the degree of Master Of Science Members of the Department of Mining and Metallurgy The University Of British Columbia April, 1961 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Mining and Metallurgy, The University of British Columbia, Vancouver $, Canada. Date May 3rd, 196l ABSTRACT The reactions of lithium disks with dry and moist nitrogen and with water-vapour were investigated at temperatures from 22 to 70 degrees Centigrade with the use of a thermal balance. The reaction in nitrogen commenced with nucleation of lithium nitride at corners and edges of the sample and the reaction proceeded by lateral growth of these nuclei through the specimen. In moist gas, this reaction was accompanied by the simultaneous formation of lithium hydroxide at the plane surface of the specimen. Based on visual observations of the samples during the reaction, a model describing the geometry of nucleus formation was constructed and was used to calculate growth velocities from the reaction curves obtained with the thermal balance.The dependence of growth velocity on temperature, nitrogen partial pressure, and the moisture content of the reaction gas was investigated.
    [Show full text]
  • Ammonia Synthesis Via Non-Equilibrium Reaction of Lithium Nitride in Hydrogen Flow Condition+1
    Materials Transactions ©2015 The Japan Institute of Metals and Materials EXPRESS REGULAR ARTICLE Ammonia Synthesis via Non-Equilibrium Reaction of Lithium Nitride in Hydrogen Flow Condition+1 Kiyotaka Goshome1,+2, Hiroki Miyaoka2, Hikaru Yamamoto1,+3, Tomoyuki Ichikawa3, Takayuki Ichikawa1,4,+4 and Yoshitsugu Kojima1,4 1Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan 2Institute for Sustainable Sciences and Development, Hiroshima University, Higashi-Hiroshima 739-8530, Japan 3Hydrolabo Inc., Higashi-Hiroshima 739-8530, Japan 4Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima 739-8530, Japan Lithium nitride Li3N is hydrogenated below 300°C under 0.5 MPa of H2, and then LiNH2 and LiH are formed as products. Furthermore, the reaction between LiNH2 and H2 proceeds below 250°C under 0.5 MPa of H2 flow condition, which forms NH3 and LiH. In this study, we proposed and investigated another synthesis method of ammonia by combining these two reactions, which proceed in laboratory-scale under more moderate conditions than those of Haber­Bosch process. As a result, it was experimentally clarified that the ammonia synthesis were able to be operated below 300°C with realistic reactions rate by non-equilibrium reaction field under 0.5 MPa H2 flow condition, where a gas circuit system and a larger scale NH3 synthesis system were designed and assembled for the experiments. [doi:10.2320/matertrans.M2014382] (ReceivedAdvance October 29, 2014; Accepted December 17, 2014; Published February 6, 2015) Keywords: ammonia synthesis, lithium nitride, non-equilibrium reaction 1. Introduction Therefore, it is an important issue how to dissociate N2 fi Viewef ciently for NH3 synthesis under mild condition.
    [Show full text]