The Observer's Handbook 1958

Total Page:16

File Type:pdf, Size:1020Kb

The Observer's Handbook 1958 THE OBSERVER’S HANDBOOK 1958 Fiftieth Year of Publication THE ROYAL ASTRONOMICAL SOCIETY OF CANADA Price 75 cents THE ROYAL ASTRONOMICAL SOCIETY OF CANADA Incorporated 1890 —Royal Charter 1903 The National Headquarters of the Royal Astronomical Society of Canada, seen above, is located at 252 College Street, Toronto 2B, Ontario. The business office of the Society, reading rooms and astronomical library, are housed here, as well as a large room for the accommodation of telescope making groups. Membership in the Society is open to anyone interested in astronomy. Applicants may affiliate with one of the Society’s thirteen centres across Canada, or may join the National Society. Centres of the Society are established in Halifax, Quebec, Montreal, Ottawa, Hamilton, London, Windsor, Winnipeg, Edmonton, Vancouver, Victoria, and Toronto. Addresses of the Centres’ secretaries may be obtained from the National Headquarters. Publications of the Society are free to members, and include the J o u r n a l (6 issues per year) and the O b s e r v e r ’s H a n d b o o k (published annually in November). A n n u a l fees of $5.00 are payable October 1 and include the publications for the following year. Requests for additional information regarding the Society or its publications may be sent to the address above. Communications to the Editor should be sent to Miss Ruth J. Northcott, David Dunlap Observatory, Richmond Hill, Ontario. THE OBSERVER’S HANDBOOK 1958 E d it o r R u t h J . N o r t h c o t t Fiftieth Year of Publication THE ROYAL ASTRONOMICAL SOCIETY OF CANADA 252 C o l l e g e S t r e e t , T o r o n t o 2B, O n t a r io CONTENTS PAGE Acknowledgements ................................................................................3 Anniversaries and F e s tiv a ls ............................................................... 3 Symbols and Abbreviations....................................................................... 4 The Constellations . 5 Miscellaneous Astronomical D a t a ........................................................6 Ephemeris of the S u n ...................................................... 7 Principal Elements of the Solar System . 8 Satellites of the Solar S y ste m ................................................................9 Solar and Sidereal T i m e ..................................................................... 10 Map of Standard Time Z o n e s ..............................................................11 Julian Day C alendar ............................................................................. 11 Times of Rising and Setting of the Sun and Moon . 12 Sunrise and Sunset..............................................................................13 Beginning and Ending of T w ilig h t ...........................................19 Moonrise and M oonset.....................................................................20 The Planets for 1958 26 The Sky and Astronomical Phenomena Month by Month . 32 Phenomena of Jupiter’s S a tellites ............................... 56 Ephemeris for Physical Observation of the Moon . 57 Ephemeris for the Physical Observation of the Sun . 58 Eclipses, 1958 ...................................................................................... 59 Lunar Occultations, 1958 59 Meteors, Fireballs and M eteorites ......................................................61 The Brightest Stars, their magnitudes, types, proper motions, distances and radial velocities and navigation stars . 62 Table of Precession for 50 Years ....... 73 Double and Multiple Stars ..................................................................... 74 Variable S t a r s ............................................................................................ 76 Clusters and Nebulae: Star C lusters .....................................................................................78 Galactic N eb u lae .............................................................................79 External G alaxies ..............................................................................80 Four Circular Star M a p s ..................................................................... 81 C a le n d a r ............................................................................. Cover p. iii PRINTED IN CANADA BY THE UNIVERSITY OF TORONTO PRESS CLARENCE AUGUSTUS CHANT, 1865-1956 Since the last issue of the Observer’s Handbook went to press death has claimed Dr. C. A. Chant who conceived the Handbook in the year 1907 and who edited it continuously for fifty years. ACKNOWLEDGEMENTS The Observer’s Handbook for 1958 is the 50th and largest yet published. In preparing this volume the Editor has had invaluable assistance with the manu­ script and the proof. For the expenditure of much time and effort our cordial thanks are offered to Gustav Bakos, Barbara Gaizauskas, Charles M. Good, James Hogg, Helge Mairo, Kulli Milles, Donald Morton, Isabel K. Williamson and Dorothy Yane. Special thanks are due Margaret W. Mayall, A.A.V.S.O. Director, for the predictions of times of maxima of the long-period variables. Our deep indebtedness to the British Nautical Almanac and the American Ephemeris is thankfully acknowledged. R u t h J. N o r t h c o t t ANNIVERSARIES AND FESTIVALS, 1958 New Year’s Day........ Wed. Jan. 1 Pentecost (Whit Sunday). May 25 Epiphany..................... Mon. Jan. 6 Trinity Sunday........... .June 1 Septuagesima Sunday. .Feb. 2 Corpus Christi............ Thu. June 5 Accession of Queen St. John Baptist (Mid- Elizabeth (1952). .Thu. Feb. 6 summer Day)........ .Tue. June 24 Quinquagesima (Shrove Dominion Day............ Tue. July 1 Sunday)................... Feb. 16 Birthday of Queen Mother Ash Wednesday.......... .Feb. 19 Elizabeth (1900). Mon. Aug. 4 St. David..................... .Sat. Mar. 1 Labour D ay................ Mon. Sept. 1 St. Patrick................... Mon. Mar. 17 Hebrew New Year Palm Sunday.............. Mar. 30 (Rosh Hashanah). Mon. Sept. 15 Good Friday................ .Apr. 4 St. Michael Easter Sunday............ .Apr. 6 (Michaelmas Day) . Mon. Sept. 29 Birthday of Queen Thanksgiving Day. .. Mon. Oct. 13 Elizabeth (1926) . Mon. Apr. 21 All Saints’ D ay........... .Sat. Nov. 1 St. George.................... Wed. Apr. 23 Remembrance Day. .. Tue. Nov. 11 Rogation Sunday........ May 11 St. Andrew Sun Nov. 30 Ascension D ay............ Thu. May 15 First Sunday in Advent........ .Nov. 30 Empire Day (Victoria Christmas Day............. Thu. Dec. 25 D ay)......................... Mon. May 19 SYMBOLS AND ABBREVIATIONS SUN, MOON AND PLANETS ASPECTS AND ABBREVIATIONS SIGNS OF THE ZODIAC THE GREEK ALPHABET Rho Sigma Tau Upsilon Phi Chi Psi Omega THE CONFIGURATIONS OF JUPITER’S SATELLITES In the Configurations of Jupiter’s Satellites (pages 33, 35, etc.), O represents the disk of the planet, d signifies that the satellite is on the disk, * signifies that the satellite is behind the disk or in the shadow. Configurations are for an inverting telescope. CALCULATIONS FOR ALGOL The calculations for the minima of Algol are based on the epoch J.D. 2434576.5110 and period 2.86731 days as published in the 1954 International Supplement, Kracow Observatory. CELESTIAL DISTANCES Celestial distances given herein are based on the standard value of 8.80" for the sun’s parallax, not the more recent value 8.790" determined by Sir Harold Spencer Jones. THE CONSTELLATIONS L a t in a n d E n g l is h N a m e s w it h A bbreviations Andromeda, Leo, Lion..........................Leo Leon (Chained Maiden) ...And Andr Leo Minor, Lesser Lion.. LMi LMin Antlia, Air Pum p...........Ant Antl Lepus, Hare.....................Lep Leps Apus, Bird of Paradise.. Aps Apus Libra, Scales.................... Lib Libr Aquarius, Water-bearer.. Aqr Aqar Lupus, Wolf.....................Lup Lupi Aquila, Eagle...................Aql Aqil Lynx, L ynx...................... Lyn Lync Ara, Altar........................ Ara Arae Lyra, Lyre........................Lyr Lyra Aries, Ram.......................Ari Arie Mensa, Table (Mountain)Men Mens Auriga, (Charioteer). .Aur Auri Microscopium, Bootes, (Herdsman) . Boo Boot Microscope...................Mic Micr Caelum, Chisel................ Cae Cael Monoceros, Unicorn... .Mon Mono Camelopardalis, Giraffe..Cam Caml Musca, F ly......................Mus Musc Cancer, Crab................... Cnc Canc Norma, Square................Nor Norm Canes Venatici, Octans, Octant.................Oct Octn Hunting Dogs.............. CVn CVen Ophiuchus, Canis Major, Greater Dog.CMa CMaj Serpent-bearer..............Oph Ophi Canis Minor, Lesser Dog.CMi CMin Orion, (Hunter).............. Ori Orio Capricornus, Sea-goat. .Cap Capr Pavo, Peacock..................Pav Pavo Carina, Keel. Car Cari Pegasus, (Winged Horse)Peg Pegs Cassiopeia, Perseus, (Champion).. .Per Pers (Lady in Chair)..........Cas Cass Phoenix, Phoenix............Phe Phoe Centaurus, Centaur........ Cen Cent Pictor, Painter................ Pic Pict Cepheus, (K ing)........... Cep Ceph Pisces, Fishes.................. Psc Pisc Cetus, Whale................... Cet Ceti Piscis Australis, Chamaeleon, ChamaeleonCha Cham Southern Fish.............. PsA PscA Circinus, Compasses...... Cir Circ Puppis, Poop...................Pup Pupp Columba, Dove................ Col Colm Pyxis, Compass............... Pyx Pyxi Coma Berenices, Reticulum, Net................Ret Reti Berenice's Hair............Com Coma Sagitta, Arrow.................Sge Sgte Corona Australis, Sagittarius, Archer......... Sgr Sgtr Southern Crown.......... CrA CorA Scorpius, Scorpion.........
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • College of San Mateo Observatory Stellar Spectra Catalog ______
    College of San Mateo Observatory Stellar Spectra Catalog SGS Spectrograph Spectra taken from CSM observatory using SBIG Self Guiding Spectrograph (SGS) ___________________________________________________ A work in progress compiled by faculty, staff, and students. Stellar Spectroscopy Stars are divided into different spectral types, which result from varying atomic-level activity on the star, due to its surface temperature. In spectroscopy, we measure this activity via a spectrograph/CCD combination, attached to a moderately sized telescope. The resultant data are converted to graphical format for further analysis. The main spectral types are characterized by the letters O,B,A,F,G,K, & M. Stars of O type are the hottest, as well as the rarest. Stars of M type are the coolest, and by far, the most abundant. Each spectral type is also divided into ten subtypes, ranging from 0 to 9, further delineating temperature differences. Type Temperature Color O 30,000 - 60,000 K Blue B 10,000 - 30,000 K Blue-white A 7,500 - 10,000 K White F 6,000 - 7,500 K Yellow-white G 5,000 - 6,000 K Yellow K 3,500 - 5,000 K Yellow-orange M >3,500 K Red Class Spectral Lines O -Weak neutral and ionized Helium, weak Hydrogen, a relatively smooth continuum with very few absorption lines B -Weak neutral Helium, stronger Hydrogen, an otherwise relatively smooth continuum A -No Helium, very strong Hydrogen, weak CaII, the continuum is less smooth because of weak ionized metal lines F -Strong Hydrogen, strong CaII, weak NaI, G-band, the continuum is rougher because of many ionized metal lines G -Weaker Hydrogen, strong CaII, stronger NaI, many ionized and neutral metals, G-band is present K -Very weak Hydrogen, strong CaII, strong NaI and many metals G- band is present M -Strong TiO molecular bands, strongest NaI, weak CaII very weak Hydrogen absorption.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • The NTT Provides the Deepest Look Into Space 6
    The NTT Provides the Deepest Look Into Space 6. A. PETERSON, Mount Stromlo Observatory,Australian National University, Canberra S. D'ODORICO, M. TARENGHI and E. J. WAMPLER, ESO The ESO New Technology Telescope r on La Silla has again proven its extraor- - dinary abilities. It has now produced the "deepest" view into the distant regions of the Universe ever obtained with ground- or space-based telescopes. Figure 1 : This picture is a reproduction of a I.1 x 1.1 arcmin portion of a composite im- age of forty-one 10-minute exposures in the V band of a field at high galactic latitude in the constellation of Sextans (R.A. loh 45'7 Decl. -0' 143. The individual images were obtained with the EMMI imager/spectrograph at the Nas- myth focus of the ESO 3.5-m New Technolo- gy Telescope using a 1000 x 1000 pixel Thomson CCD. This combination gave a full field of 7.6 x 7.6 arcmin and a pixel size of 0.44 arcsec. The average seeing during these exposures was 1.0 arcsec. The telescope was offset between the indi- vidual exposures so that the sky background could be used to flat-field the frame. This procedure also removed the effects of cos- mic rays and blemishes in the CCD. More than 97% of the objects seen in this sub- field are galaxies. For the brighter galax- ies, there is good agreement between the galaxy counts of Tyson (1988, Astron. J., 96, 1) and the NTT counts for the brighter galax- ies.
    [Show full text]
  • Pos(MULTIF2017)001
    Multifrequency Astrophysics (A pillar of an interdisciplinary approach for the knowledge of the physics of our Universe) ∗† Franco Giovannelli PoS(MULTIF2017)001 INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] We will discuss the importance of the "Multifrequency Astrophysics" as a pillar of an interdis- ciplinary approach for the knowledge of the physics of our Universe. Indeed, as largely demon- strated in the last decades, only with the multifrequency observations of cosmic sources it is possible to get near the whole behaviour of a source and then to approach the physics governing the phenomena that originate such a behaviour. In spite of this, a multidisciplinary approach in the study of each kind of phenomenon occurring in each kind of cosmic source is even more pow- erful than a simple "astrophysical approach". A clear example of a multidisciplinary approach is that of "The Bridge between the Big Bang and Biology". This bridge can be described by using the competences of astrophysicists, planetary physicists, atmospheric physicists, geophysicists, volcanologists, biophysicists, biochemists, and astrobiophysicists. The unification of such com- petences can provide the intellectual framework that will better enable an understanding of the physics governing the formation and structure of cosmic objects, apparently uncorrelated with one another, that on the contrary constitute the steps necessary for life (e.g. Giovannelli, 2001).
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Superflares and Giant Planets
    Superflares and Giant Planets From time to time, a few sunlike stars produce gargantuan outbursts. Large planets in tight orbits might account for these eruptions Eric P. Rubenstein nvision a pale blue planet, not un- bushes to burst into flames. Nor will the lar flares, which typically last a fraction Elike the Earth, orbiting a yellow star surface of the planet feel the blast of ul- of an hour and release their energy in a in some distant corner of the Galaxy. traviolet light and x rays, which will be combination of charged particles, ul- This exercise need not challenge the absorbed high in the atmosphere. But traviolet light and x rays. Thankfully, imagination. After all, astronomers the more energetic component of these this radiation does not reach danger- have now uncovered some 50 “extra- x rays and the charged particles that fol- ous levels at the surface of the Earth: solar” planets (albeit giant ones). Now low them are going to create havoc The terrestrial magnetic field easily de- suppose for a moment something less when they strike air molecules and trig- flects the charged particles, the upper likely: that this planet teems with life ger the production of nitrogen oxides, atmosphere screens out the x rays, and and is, perhaps, populated by intelli- which rapidly destroy ozone. the stratospheric ozone layer absorbs gent beings, ones who enjoy looking So in the space of a few days the pro- most of the ultraviolet light. So solar up at the sky from time to time. tective blanket of ozone around this flares, even the largest ones, normally During the day, these creatures planet will largely disintegrate, allow- pass uneventfully.
    [Show full text]
  • Discovery of a Magnetic Field in the Early B-Type Star Sigma Lupi
    Astronomy & Astrophysics manuscript no. Henrichs˙sigmaLup˙Printed c ESO 2018 July 10, 2018 Discovery of a magnetic field in the early B-type star σ Lupi⋆ H.F. Henrichs1,2, K. Kolenberg3,4, B. Plaggenborg1, S.C. Marsden5,6, I.A. Waite7, J.D. Landstreet8,9, G.A. Wade10, J.H. Grunhut10, M.E. Oksala11, and the MiMeS collaboration 1 Astronomical Institute ’Anton Pannekoek’, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands 2 Department of Astrophysics/IMAPP Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands 3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA 4 Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 5 Australian Astronomical Observatory, PO Box 296, Epping, NSW 1710, Australia 6 Centre for Astronomy, School of Engineering and Physical Sciences, James Cook University, Townsville, 4811, Australia 7 Faculty of Sciences, University of Southern Queensland, Toowoomba, Qld 4350 Australia 8 Dept. of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 Canada 9 Armagh Observatory, College Hill, Armagh, Northern Ireland BT61 9DG 10 Dept. of Physics, Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, Ontario, Canada 11 Dept. of Physics and Astronomy, University of Delaware, Newark, DE, USA Received date / Accepted date ABSTRACT Context. Magnetic early B-type stars are rare. Indirect indicators are needed to identify them before investing in time-intensive spectropolari- metric observations. Aims. We use the strongest indirect indicator of a magnetic field in B stars, which is periodic variability of ultraviolet (UV) stellar wind lines occurring symmetric about the approximate rest wavelength.
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]
  • Probing Dust Grain Evolution in IM Lupi's Circumstellar Disc
    A&A 489, 633–650 (2008) Astronomy DOI: 10.1051/0004-6361:200810121 & c ESO 2008 Astrophysics Probing dust grain evolution in IM Lupi’s circumstellar disc Multi-wavelength observations and modelling of the dust disc C. Pinte1,2,D.L.Padgett3, F. Ménard2, K. R. Stapelfeldt4,G.Schneider5, J. Olofsson2,O.Panic´ 6,J.C.Augereau2, G. Duchêne2,7, J. Krist4, K. Pontoppidan8, M. D. Perrin9,C.A.Grady10, J. Kessler-Silacci11,E.F.vanDishoeck6,12, D. Lommen6, M. Silverstone13,D.C.Hines14,S.Wolf15,G.A.Blake8, T. Henning16, and B. Stecklum17 1 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK e-mail: [email protected] 2 Laboratoire d’Astrophysique de Grenoble, CNRS/UJF UMR 5571, 414 rue de la Piscine, BP 53, 38041 Grenoble Cedex 9, France 3 Spitzer Science Center, Caltech, Pasadena, CA 91125, USA 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 5 Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 6 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 7 Astronomy Dept, UC Berkeley, Berkeley CA 94720-3411, USA 8 Division of Geological and Planetary Sciences 150-21, California Institute of Technology, Pasadena, CA 91125, USA 9 Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1562, USA 10 Eureka Scientific and Goddard Space Flight Center, Code 667, Greenbelt, MD 20771, USA 11 The University of Texas at Austin, Department of Astronomy, 1 University Station C1400, Austin, Texas 78712–0259, USA 12 Max Planck
    [Show full text]