Universi^ Micrxsilms International 300 N

Total Page:16

File Type:pdf, Size:1020Kb

Universi^ Micrxsilms International 300 N INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.Tlie sign or “target” for pages apparently lacking from the document photographed is “ Missing Page(s)” . I f it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image o f the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer o f a large sheet and to continue from left to right in equal sections with small overlaps. I f necessary, sectioning is continued again-beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. Universi^ MicrxSilms International 300 N. Zeeb Road Ann Arbor, Ml 48106 8426387 Galemmo, Robert Anthony, Jr. SYNTHETIC STUDIES ON THE STRUCTURE OF SENOXYDENE: A SEQUENTIAL ANNULATION APPROACH TO ANGULAR TRIOUINANE SYNTHESIS The Ohio Stale University Ph.D. 1984 University Microfilms i ntern eti 0n el300 N. zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V 1. Glossy photographs or pages. 2. Colored illustrations, paper or print _____ 3. Photographs with dark background _____ 4. Illustrations are poor copy ______ 5. Pages with black marks, not original copy. 6. Print shows through as there is text on both sides of page 7. Indistinct, broken or small print on several pages ______ 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost in spine______ 10. Computer printout pages with indistinct print. 11. Page(s) 13(Fig. 1) lacking when material received, and not available from school or author. 12. Page(s) ____________ seem to be missing in numbering only as text follows. 13. Two pages numbered ____________ . Text follows. 14. Curling and wrinkled pages______ 15. O t h e r _____________________________________ University Microfilms International SYNTHETIC STUDIES ON THE STRUCTURE OF SENOXYDENE: A SEQUENTIAL ANNULATION APPROACH TO ANGULAR TRiqUINANE SYNTHESIS DISSERTATION Presented, in Partial Fulfillm ent of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robert Anthony Galemmo, J r ., B.A., M.S. ***** The Ohio State University 1984 Reading Committee Approved by Dr. Harold Shechter Dr. John S. Swenton Dr. Leo A. Paquette Dr. Leo A. Paquette, Advisor Department of Chemistry To my Mother and Father, for giving me what i t takes to see something through. ACKNOWLEDGEMENTS I wish to gratefully acknowledge the advice and support of Professor Leo Paquette while working under his direction. I am indebted to my many friends and associates in the Paquette group for their suggestions and technical assistance. Mary, B illy , Ken, Dan and Keith have been responsible for making my stay here a pleasant one. Several individuals have made contributions to the preparation of this manuscript. Ken, Keith, Geoff, Dan, Craig and John have helped to correct my atrocious grammar and spelling. Kay's stamina and endurance in typing this work has served us both w ell. Finally I wish to thank the staff of the Venetian for giving me a quiet place to write on sunny days. r r r VITA May 14, 1954 ................................ Born - Philadelphia, Pennsylvania 1976 ................................................ B.A., State University of New York, College at Potsdam, Potsdam, New York. 1977-1981 .................................... Teaching Associate, Department of Chemistry, The Ohio State University, Columbus, Ohio. 1981 ................................................ M.S., The Ohio State University, Columbus, Ohio. 1981-1984 ........................................ Research Associate, Department of Chemistry, The Ohio State University, Columbus, Ohio. MASTER THESIS The Preparation Of Components Of The 0-Anti genic Si de-Chain Of Pseudomonas Aeruginosa Type V Advisor: Professor Derek Horton PUBLICATIONS ”4.7.7-Trimethyl-cis-bicyclo[3.3.0]oct-3-en-2-one: A Potentially Useful Synthon for Triquinane Natural Products", Leo A. Paquette, Eugene Farkas and Robert A. Galemmo, J r ., J. Org. Chem., 46, 5434 (1981). "Preparative Routes to Methyl 2-acetamido-2,6-dideoxy-a-D-glucopyrano- side", Robert A. Galenmo, Jr. and Derek Horton, CarbohydT Res. , 119, 231 (1983). iv "Synthesis of the Alleged Structure of Senoxydene, the Triquinane Sesquiterpene Derived from Senecio Oxyodontus", Leo A. Paquette, Robert A. Galemmo, J r ., and James P. Springer, J. Am. Chem. Soc., 105, 6976 (1983). FIELD OF STUDY Organic Chemistry TABLE OF CONTENTS Page DEDICATION.......................................................................................................... 11 ACKNOWLEDGEMENTS .............................................................................................. I l l VITA ...................................................................................................................... Iv LIST OF FIGURES............................................................................................... 1x LIST OF TABLES.......................................................................................................x lll A CAVEAT FOR THE CHEMIST............................................................................... xlv CHAPTER I. The Angular Triquinane Sesquiterpenes 1. Introduction .................................................................................... 1 2. Angular Triqulnanes .................................................................... 2 3. Isocomene ........................................................................................ 3 3.1 Isolation and Natural Occurrence ................................ 3 3.2 Biogenesis.......................................................................... 5 3.3 Syntheses .............................................................................. 6 4. Sllphlnene........................................................................................ 10 4.1 Isolation and Natural Occurrence .................................... 10 4.2 Biogenesis.......................................................................... 11 4.3 Syntheses .............................................................................. 11 5. SI 1 phiperfolenes............................................................................ 15 5.1 Isolation and Natural Occurrence .................................... 15 5.2 Biogenesis.......................................................................... 16 5.3 Synthesis .............................................................................. 19 6. Rental e n e n e.................................................................................... 20 6.1 Isolation and Natural Occurrence .................................... 20 6.2 Biogenesis.......................................................................... 21 6.3 Syntheses .............................................................................. 23 v1 TABLE OF CONTENTS (Cont.) Page 7. Senoxydene ........................................................................................ 27 7.1 Isolation and Natural Occurrence ................................ 27 7.2 Biogenesis ........................................................................... 27 I I . Two Approaches to Senoxydene ( 56) Based Upon the Favorskii Reaction. 1. Statement of the Problem............................................................ 29 2. Elaboration of a Favorskii Reaction Product ..................... 30 2.1 Retrosynthesis and Methodology .................................... 30 2.2 Synthetic W ork ................................................................... 35 2.3 Previous Preparations of 6 6............................................ 39 3. Attempted Favorskii Ring Contraction of a Bicyclic Precursor ....................................................................................... 41 3.1 Retrosynthesis and Methodology .................................... 41 3.2 Synthetic W ork ................................................................... 43 I I I . The Total Synthesis of Angular Triquinane 5^: Alleged Senoxydene.
Recommended publications
  • ETD Template
    Sulfur Based Cyclizations by Intramolecular Carbometallation and Applications to Natural Product Syntheses by Kai Deng BS, Peking University, 1996 MS, Peking University, 1999 Submitted to the Graduate Faculty of University of Pittsburgh in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2004 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Kai Deng It was defended on Oct. 15, 2004 and approved by Dennis P. Curran Paul E. Floreancig Richard D. McCullough Theodore Cohen Dissertation Director ii Advisor: Professor Theodore Cohen Sulfur Based Cyclizations by Intramolecular Carbometallation and Applications to Natural Product Syntheses Kai Deng, PhD University of Pittsburgh, 2004 The versatility of intramolecular carbolithiation of simple unactivated alkenes to yield cyclopentylmethyllithiums by unconjugated organolithiums is greatly increased (1) by generating the organolithiums by reductive lithiation of phenyl thioethers with aromatic radical anions and (2) by using allylic alcohol groups on the receiving alkenes. This type of reductive lithiation allows virtually any kind of organolithium to be generated, usually in a connective manner. Furthermore, the allylic lithium oxyanionic groups on the alkenes greatly accelerate the reactions and lead, in most cases, to completely stereoselective cyclization at -78 °C. Most significantly, the trans stereoselectivity is the opposite from that observed when the organometallic is allylic. A four-membered ring has also been generated by this method. Using allyl phenyl sulfones instead of using allyl acetates as precursors of Pd-catalyzed allylzinc formation greatly facilitates the efficiency of substrate preparation. The resulting allylzinc smoothly undergoes the Zn-ene cyclization onto a simple alkene or an alkyne.
    [Show full text]
  • Experimental and Density Functional Theory Studies of Some Novel Piperidine-Containing Acetylene Glycols
    General Papers ARKIVOC 2016 (iv) 86-99 Experimental and density functional theory studies of some novel piperidine-containing acetylene glycols Amina Mirsakiyeva,a, c, e* Darya Botkina,d, f Karim Elgammal,a, c Assel Ten,f Håkan W. Hugosson,a Anna Delin,a, b, c and Valentina Yue, f a Department of Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, SE-16440 Kista, Sweden b Department of Physics and Astronomy, Materials Theory Division, Uppsala University, Box 516, SE-75120 Uppsala, Sweden c Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden d Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden e Kazakh-British Technical University, Department of Chemical Engineering, Tole bi 59, 050000 Almaty, Kazakhstan f Institute of Chemical Sciences, Walikhanov str. 106, 050010, Almaty city, Kazakhstan E-mail: [email protected] DOI: http://dx.doi.org/10.3998/ark.5550190.p009.452 Abstract Synthesis routes of novel piperidine-containing acetylenes are presented. The new molecules are expected to exhibit plant growth stimulation properties. In particular, the yield in a situation of drought is expected to increase. Our synthesis makes use of the Favorskii reaction between cyclohexanone/piperidone and triple-bond containing alcohols. The structures of the obtained molecules were determined using nuclear magnetic resonance (NMR). The electronic structure and geometries of the molecules were studied theoretically using first-principles calculations based on density functional theory. The calculated geometries agree very well with the experimentally determined ones, and also allow us to determine bond lengths, angles and charge distributions inside the molecules.
    [Show full text]
  • Natural Products Chemistry Code: C-402 by Prof. Dr. Ahmed A
    Natural Products Chemistry Code: C-402 By Prof. Dr. Ahmed A. Mahmoud Department of Chemistry - Faculty of Science Minia University By Prof. Dr. Ahmed A. Mahmoud 280 Fats, Oils, Waxes & Terpenes Fats, Oils, and Fatty Acids Fatty acids: refers to long, straight-chain saturated and unsaturated acids, typically from C12 - C20. saturated fatty acids: CH3(CH2)nCO2H n=10, lauric acid (C12) n=12, myristic acid (C14) n=14, palmitic acid (C16) n=16, steric acid (C18) unsaturated fatty acid CO2H C18, oleic acid polyunsaturated fatty acids (PUFA) CO2H C18, linolenic acid 6 CO2H C18, linoleic acid 6 CO2H C20, arachidonic acid 1 Fats and Oils: Triglycerides (triaceylglycerols) are tri-esters of glycerol (1,2,3-trihydroxypropane) and fatty acids. O The R groups can be OH H2C O C R1 fatty O saturated or unsaturated, HO OH + acids - H O HC O C R2 the same or different 2 O glycerol H2C O C R3 O O O when some of H C O C R H2C O C R1 H C O C R 2 1 the R groups are 2 1 O O unsaturated H2, catalyst O HC O C R HC O C R2 HC O C R2 2 H2, catalyst O O O H C O C R H2C O C R3 2 3 H2C O C R3 Partially hydrogenated: Hydrogenated- only saturated some cis double bond are fatty acids isomerized to trans double bonds 2 Waxes Esters of long chain fatty acids (C16 - C36) with long chain alcohols (C24 - C36) CH3(CH2)nCO2–(CH2)nCH3 3 Terpenes and Terpenoids The terpenoids constitute the largest class of natural products.
    [Show full text]
  • Isolation, Characterisation, and Biological Activity Evaluation of Essential Oils of Cymbopogon Validus (Stapf) Stapf Ex Burtt Davy and Hyparrhenia Hirta (L.) Stapf
    Isolation, Characterisation, and biological activity evaluation of essential Oils of Cymbopogon validus (Stapf) Stapf ex Burtt Davy and Hyparrhenia hirta (L.) Stapf A dissertation Submitted in Fulfillment for MSc. Degree in Organic Chemistry. In the Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice By Pamela Rungqu (200800815) Supervisor: Dr. O. O. Oyedeji Co-supervisor: Prof A.O Oyedeji 2014 DECLARATION I declare that this dissertation that I here submit for the award of the degree of Masters of Science in Chemistry is my original work apart from the acknowledged assistance from my supervisors. It has not been submitted to any university other than the University of Fort Hare (Alice). Student signature…..…....... Date………………… Supervisor’s signature…………. Date………………… i ACKNOWLEDGEMENTS First and foremost I would like to thank God the Almighty for allowing me to pursue my studies. My greatest thanks also go to my supervisor Dr O. Oyedeji and co-supervisor Prof A. Oyedeji for their patience, support and guidance throughout my learning process. The knowledge imparted and advice has been invaluable. My sincere appreciation and gratitude also goes to Prof Nkeh-Chungag from Walter Sisulu University for her supervision and assistance with the anti-inflammation tests. Not forgetting Mongikazi “Makoti” and Kayode Aremu also from Walter Sisulu University for assisting me with the rats (I must say it wasn’t good experience at first, but I ended up enjoying what I was doing) I also want to thank them for helping me out with the anti-inflammation tests, and for making my stay in WSU to be worthwhile during the few days I was there.
    [Show full text]
  • SYNTHESIS of MODIFIED RIBOSE SPIN-LABEL by KE-WEI CHANG
    SYNTHESIS OF MODIFIED RIBOSE SPIN-LABEL by KE-WEI CHANG Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN CHEMISTRY THE UNIVERSITY OF TEXAS AT ARLINGTON December 2015 Copyright © by Ke-wei Chang 2015 All Rights Reserved ii Acknowledgements I would like to thank Dr. Frank Foss for giving me the opportunity to work in the field of organic chemistry. He is an excellent teacher and has powerful knowledge of chemistry. He led me to finish our project and gave me tons of advice to improve our experiments. With his guidance, I have learned more than I can learn from classes. Without his instruction, this thesis could not have been completed. I would like to thank my committee members, Dr. Carl J. Lovely and Dr. Junha Jeon, for their support and advice. I would also like to thank other organic faculty members, Dr. Alejandro Bugarin, who have taught me a lot of chemistry. I would like to thank my group members Dr. Andra Corder, Diego Lopez, Mohammad Hossain, Pawan Thapa, Shakar Afzal, and Amanda Dark for their teamwork, support and knowledge sharing. I would like to thank Dr. Ching-Yuh Chen for giving me the opportunity to know what organic synthesis is. Without her enlightenment, I might not know how interesting. organic chemistry is. I would like to thank my family who have given me eternal support and love. They have given me the opportunity to come to the United States of America to pursue my higher education and know a variety of people who come from different countries.
    [Show full text]
  • Revisiting Marine Bioprospecting of Tropical Indonesian Macroalgae from West Timor
    REVISITING MARINE BIOPROSPECTING OF TROPICAL INDONESIAN MACROALGAE FROM WEST TIMOR Turupadang, Welem Linggi A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Master of Science in Chemistry. Victoria University of Wellington 2018 Abstract Marine algae are an important and historically rich source of new marine-based natural products. This thesis describes the screening of 40 Indonesian macroalgal samples using liquid chromatography-mass spectrometry (LC-MS) based molecular networking, and the subsequent nuclear magnetic resonance (NMR)-guided isolation and structural elucidation of a 6-deoxy-6-aminoglycoglyrecolipid (60). Molecular networking was performed using LC-MS/MS data through the online Global Natural Product Social Molecular Networking (GNPS) platform directly from crude extracts. NMR spectroscopy-guided screening was also employed targeting unique peaks detected by 1H NMR to validate any hits from GNPS. Out of 40 macroalgae specimens collected from West Timor waters, six samples were prioritised by the molecular networking screening. Proton NMR revealed three specimens with significantly interesting peaks but only one specimen, Laurencia snackeyi was purified further, which yielded compound 60. i Acknowledgements I am humbly grateful to Abba Father throughout my study at Victoria University of Wellington, how much knowledge and experience that has been passed on by academics (especially during my formative year doing my graduate Diploma), fellow students and postgrads, as well as technicians over the past two-and-a-half year in the School of Chemical and Physical Sciences (SCPS). Thank you very much. My fabulous supervisor Dr Rob Keyzers, thank you for your guidance, patience and wisdom; also, for being a guru and mentor during my study; I benefit not only academically and through laboratory skills but also how you have inspired me to be a good teacher and serve students from different backgrounds.
    [Show full text]
  • REACTIONS of HALOCYCLOPROPANES. The
    This dissertation has been microfilmed exactly as received 69-11,652 HOUSER, Charles W., 1934- REACTIONS OF HALOCYCLOPROPANES. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan REACTIONS OF HALOCYCLOPROPANES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School o f The Ohio State U niversity By Charles W. Houser, B.A. ******** The Ohio State U niversity 1968 Approved hy /Adviser Department of Chemistry Dedicated to Jane and Brian i l ACKNOWLEDGMENTS The author wishes to express sincere appreciation to Professor Harold Shechter for the inception of this problem and for his helpful discussions throughout the course of this research. His editorial guidance during preparation of this manuscript is also gratefully acknowledged. National Science Foundation and Petroleum Research Fund are thanked for their financial assistance to this research. The author owes a special debt of gratitude to his wife, Jane, for her patience and encouragement during completion of this work. i i i VITA October 20, 1934 Born - Parkersburg, West Virginia 1954-1958 U. S. Marine Corps 1962 B.A., David Lipscomb College, Nashville, Tennessee 1962-1965 Teaching Assistant, The Ohio State University, Columbus, Ohio I965-I968 Research Associate, The Ohio State University, Columbus, Ohio iv CONTENTS Page ACKNOWLEDGMENTS.......................................................................................................... i i i VITA .........................................................................
    [Show full text]
  • Cyclopentane Synthesis
    Cyclopentane Synthesis Dan O’Malley Baran Group Meeting Cyclopentane Synthesis Group Meeting O'Malley 2/9/2005 This presentation is broken down into the following catagories. Some reactions either fit more than one Students of organic chemistry are taught a number of reactions for the synthesis of category or do not fit easily into any of them. Efforts have been made to place all such reactions in the cyclohexanes at a very early stage of their careers. Techniques for the creation of cyclopentanes, most appropriate category. however, are generally taught at a much later stage and are rarely given the same detailed treatment. This may be the result of the fact that there are no equivalents of reactions such as the Diels-Alder and I. General Information Robinson Annulation in terms of generality, extent of use, and historical importance. This may, in turn, II. Ionic Reactions be caused by the fact that the cyclopentane is an inherintly "umpoled" functionality, as illustrated below. III. Metal Mediated Reactions IV. Radical Reactions FG V. Pericyclic and Pseudo-pericyclic Reactions VI. Ring Expansion and Contraction Reactions I. General Information This situation is further exacerbated by the general lack of cheaply available cyclopentane compounds Baldwin's rules in the chiral pool; wheras a number of cyclohexane terpenes are readily available for elaboration, there Baldwin has divided ring closure reactions into those that are "favored" and those that are "disfavored". are no analogous cylcopentane natural products. Cyclopentanes are however, present in many Those that are disfavored are not always impossible, but are frequently much more difficult to effect.
    [Show full text]
  • Inhibitory Effect of Dihydroaustrasulfone Alcohol On
    Mar. Drugs 2014, 12, 196-213; doi:10.3390/md12010196 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Inhibitory Effect of Dihydroaustrasulfone Alcohol on the Migration of Human Non-Small Cell Lung Carcinoma A549 Cells and the Antitumor Effect on a Lewis Lung Carcinoma-Bearing Tumor Model in C57BL/6J Mice Shuo-Chueh Chen 1,2,3, Yi-Chung Chien 4,5, Chun-Hsu Pan 5, Jyh-Horng Sheu 6,*, Chih-Yi Chen 7,* and Chieh-Hsi Wu 5,* 1 Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan 2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan 3 School of Medicine, China Medical University, Taichung 404, Taiwan; E-Mail: [email protected] 4 School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan; E-Mail: [email protected] 5 College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 110, Taiwan; E-Mail: [email protected] 6 Department of Marine Biotechnology and Resources, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan 7 Division of Chest Surgery and Cancer Center, Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan * Authors to whom correspondence should be addressed; E-Mails: [email protected] (C.-H.W.); [email protected] (J.-H.S.); [email protected] (C.-Y.C.); Tel.: +886-2-2736-1661 (ext. 6100) (C.-H.W.); Fax: +886-2-2739-0671 (C.-H.W.); Tel.: +886-7-5252000 (ext.
    [Show full text]
  • Synthesis and Reactivity of Small Ring Bicyclic Compounds Raymond Lee Welch Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Synthesis and reactivity of small ring bicyclic compounds Raymond Lee Welch Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Welch, Raymond Lee, "Synthesis and reactivity of small ring bicyclic compounds " (1969). Retrospective Theses and Dissertations. 3807. https://lib.dr.iastate.edu/rtd/3807 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-7767 WELCH, Raymond Lee, 1948- SYNTHESIS AND REACTIVITY OF SMALL RING BICYCLIC COMPOUNDS. Iowa State University, PhJD., 1969 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan SYNTHESIS AND REACTIVITY OF SMALL RING BICYCLIC COMPOUNDS by Raymond Lee Welch A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved : Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Of Science and Technology
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,135,581 B2 Agoston Et Al
    US007135581B2 (12) United States Patent (10) Patent No.: US 7,135,581 B2 Agoston et al. (45) Date of Patent: Nov. 14, 2006 (54) ANTIANGIOGENICAGENTS 4.212,864 T. 1980 Tax 4,307,086 12, 1981 Tax (75) Inventors: Gregory E. Agoston, Germantown, MD 4,444,767 4, 1984 Torelli et al. (US); Jamshed H. Shah, Brookeville, 4,522,758 6, 1985 Ward et al. 4.552,758 11, 1985 Murphy et al. MD (US); Kimberly A. Hunsucker, 4,634,705 1, 1987 DeBernardis et al. Germantown, MD (US); Victor S. 4,743,597 5, 1988 Javitt et al. Pribluda, Silver Spring, MD (US); 4,808.402 2, 1989 Leibovich et al. Theresa M. LaVallee, Rockville, MD 4,994.443 2, 1991 Folkman et al. (US); Shawn J. Green, Vienna, VA 5,001,116 3, 1991 Folkman et al. (US); Christopher J. Herbstritt, 5,135,919 8, 1992 Folkman et al. Rockville, MD (US); Xiaoguo H. 5,504,074 4, 1996 D'Amato et al. Zhan, Montgomery Village, MD (US); 5,521,168 5, 1996 Clark Anthony M. Treston, Rockville, MD 5,621,124 4, 1997 Seilz et al. (US) 5,629,340 5, 1997 Kuwano et al. 5,639,725 6, 1997 O'Reilly et al. (73) Assignee: Entremed, Inc., Rockville, MD (US) 5,643,900 7/1997 Fotsis et al. 5,661,143 8, 1997 D'Amato et al. (*) Notice: Subject to any disclaimer, the term of this 5,716.981 2, 1998 Hunter et al. patent is extended or adjusted under 35 5,733,876 3, 1998 O'Reilly et al.
    [Show full text]
  • Table of Contents 1. Acyloin Condensation 1 2
    Contents |(vii) TABLE OF CONTENTS 1. Acyloin Condensation 1 2. Alder-Ene Reaction (Conia Reaction) 3 3. Alder-Rickert Reaction 5 4. Allan-Robinson Condensation 6 5. Aldol Condensation 8 6. Allylic Rearrangement 11 7. Amdori Glucosamine Rearrangement 14 8. Angeli-Remini Reaction 16 9. Anschutz Anthracene Synthesis 17 10. Appel Reaction 19 11. Arndt-Eistert Synthesis 21 12. Aston-Greenburg Rearrangement 24 13. Aza-Claisen Rearrangement 26 14. Baeyer Indole Synthesis 27 15. Baeyer Oxindole Synthesis 29 16. Baeyer Pyridine Synthesis 30 17. Baeyer-Villiger Oxidation 32 18. Baltz-Schiemann Reaction 34 19. Baker-Venkataraman Rearrangement 36 20. Bamberger Rearrangement 38 21. Barbier Reaction 40 22. Barton Reaction 42 23. Barton-Zard Pyrrole Synthesis 44 24. Bartoli Indole Synthesis 47 25. Baumann-Fromm Thiophene Synthesis 49 26. Beckmann Rearrangement 51 27. Benzidine Rearrangement 53 28. Benzilic Acid Rearrangement 56 29. Benzoin Condensation 58 30. Birch Reduction (Metal – Ammonia Reduction) 60 31. Bischler-Napieralski Reaction 63 32. Blaise Reaction 66 33. Bohlmann-Rahtz Pyridine Synthesis 68 (vii) (viii)| Contents 34. Bodroux Amide Synthesis 70 35. Bouveault Aldehydes Synthesis 72 36. Bouveault-Blanc Reduction 74 37. Bruckner Isoquinoline Synthesis 77 38. Bucherer Carbazole Synthesis 80 39. Cadiot-Chodkiewicz Coupling 82 40. Cannizzaro Reaction 84 41. Carbylamine Reaction 87 42. Carroll Rearrangement 89 43. Chichibabin Amination Reaction 91 44. Chichibabin Pyridine Synthesis 93 45. Chugaev Elimination 96 46. Claisen Condensation 98 47. Claisen Rearrangement 101 48. Claisen-Schimdt Reaction 104 49. Clemmensen Reduction 107 50. Combes Quinoline Synthesis 110 51. Cope Elimination 113 52. Cope, Oxy-Cope, and Anionic Oxy-Cope Rearrangements 115 53.
    [Show full text]