Photonics North 2014, May 28-30, Montreal Convention Centre

Total Page:16

File Type:pdf, Size:1020Kb

Photonics North 2014, May 28-30, Montreal Convention Centre 2014 TABLE OF CONTENT Let’s Talk Buisness ................................ .....................................................................................................6 Palais des congrès of Montreal .............. .....................................................................................................8 General Information .................................................................................................................................... 9 A word from the Conference Co-Chairs ................................................................................................... 11 Technical Program Committees ................................................................................................................ 12 Plenary and Invited Speakers .................................................................................................................... 14 Conference Schedule ................................................................................................................................ 24 Oral presentations: Plenary Presentations ................................................................................................................................53 Session COMM : Photonics commercialization ....................................................................................... 58 Session DESIGN : Photonics theory design and simulation ................................ ....................................70 Session GREEN : Green photonics, energy, and related technologies ................................................... 112 Session HIGHPOWER : High Power Laser technology, ultrafast optics and applications .................... 129 Session MAT : Photonic materials .......................................................................................................... 169 Session NONLINEAR : Nonlinear optics, nanophotonics and quantum optics ..................................... 186 Session OP-COMM : Optical communications ...................................................................................... 238 Session OPTO : Optoelectronics and integrated optics .......................................................................... 263 Session PLASMO : Plasmonic, hybrid plasmonics and artificial media ................................................ 291 Session SENSORS : Photonic sensors and biomedical optics................................................................ 312 Poster presentations: Session DESIGN : Photonics theory design and simulation .............................. ....................................102 Session HIGHPOWER : High Power Laser technology, ultrafast optics and applications .................... 160 Session MAT : Photonic materials .......................................................................................................... 180 Session NONLINEAR : Nonlinear optics, nanophotonics and quantum optics ..................................... 226 Session OP-COMM : Optical communications ...................................................................................... 257 Session OPTO : Optoelectronics and integrated optics .......................................................................... 290 Session PLASMO : Plasmonic, hybrid plasmonics and artificial media ................................................ 309 Session SENSORS : Photonic sensors and biomedical optics................................................................ 344 Authors Index .......................................................................................................................................... 366 1 THANK YOU TO OUR PARTNERS ! JGR COPL o p t i c s Centre d'optique, photonique et laser • Ultra wide 1260 to 1630nm continuous wavelength range • Resolution of 0.1nm Ask about JGR’s new TLS5 Tunable Laser Source 613 599 1000 I www.jgroptics.com 3 Centre for Advances Systems and Technologies in Communications Agilent’s Electronic Measurement Group, including its 9,500 employees and 12,000 products, is becoming Keysight Technologies. photonscanada.ca Learn more at www.keysight.com 4 5 May 29, 2014 Exhibit Hall Free admission May 29, 2014 Afternoon LET'S TALK BUSINESS Exhibit Hall LET'S TALK BUSINESS Technology Transfer: Free admission From University Laboratories to SMEs Optics-Photonics Around the World: Morning Challenges, Opportunities, Trends Presentation of Quebec Welcome to the first edition of Photonics North's “Let's Talk 10h00 Technology Development and The afternoon is devoted few years and the outlook Business” program Quebec Photonic Network Commercialization Agencies 13:40 to optics-photonics around for optics-photonics as a Always striving to improve the already popular Photonics Québec - Canada the world (challenges, strategic sector. North conference, the Organizing Committee of this year's opportunities, trends...). Representatives will talk How the Quebec model for technology transfer is edition is offering a special program tailored to SMEs of the Company presentation The goal is to paint a manufacturing sector that integrate optic-photonic about their company, their helping SMEs access university technology. picture of the international components. technologies, their goals o p t i c s - p h o t o n i c s Route des lasers for the future and the Orphan technologies seeking adoption At the Quebec Photonic Network, we firmly believe that new 14:10 landscape in 2014. ideas emerge from linking various stakeholders in the optics- Acquitaine - France hurdles they are facing. photonics area. These ideas generate partnerships that in To this end, we have Three technology development and The resulting information turn produce technology with potential economic benefits. Company presentation invited representatives w i l l h o p e f u l l y g u i d e commercialization agencies come together to offer This is the principal motivation behind the “Let's Talk from the United States, e n t r e p r e n e u r s a n d high-tech entrepreneurs six orphan technologies of Business” program. France and the United r e s e a rc h e r s a s t h ey interest. I have enthusiastically accepted to coordinate this first Arizona Optics Industry Association Kingdom to join us and 14:40 ponder the path to follow edition of the “Let's Talk Business” program presented at Arizona - USA provide insight. Each will and the priorities to This will be followed by entrepreneurs relating their Photonics North. We have designed it so that it appeals present their background, identify in their future technology transfer experience with a Quebec equally to scientists, students and entrepreneurs. We hope to Company presentation the current state of affairs strategic planning. technology development and commercialization have risen to the challenge. Now, you be the judge! for photonics in their agency. c o u n t r y , u p c o m i n g 15:10 Break challenges over the next Mireille Jean and visit of exhibitors 10:30 Univalor President and CEO Quebec Photonic Network Orphan technologies offers and Company testimonial Thank you to the partners of the The morning will be devoted commercialization agencies. 15:40 Pôle Rhone Alpes “Let's Talk Business” program 11:00 to the topic of technology Some doubts could be Lyon - France Sovar transfer from university dispelled! The morning will laboratories to SMEs. We conclude with a presentation Company presentation Orphan technologies offers and Company testimonial have chosen a factual of funding programs for approach by inviting the technology transfer. three Quebec technology Representatives from NSERC Presentation of research 11:30 development and commer- will be on hand to facilitate 16:10 Presentation of research Gestion Valeo cialization agencies to each potential negotiations. centres present two of their best Orphan technologies offers and Company testimonial transfer-ready technologies. Ultimately, we hope to set the Two research centres, one from France, one from Interested participants will table for talented entre- Quebec, present their approach to technology get to launch on-the-spot preneurs wishing to get their transfer 12:00 Funding programs for technology negotiations for a possible hands on technology they Organizing committee transfer tech transfer. For more can develop and commer- sceptic participants, we have cialize in order to generate NSERC presents funding programs to invited entrepreneurs to economic benefits and support university technology transfer. share their experience with prosperity. technology development and 6 7 Palais des congrès of Montreal GENERAL INFORMATION Posters 201 Viger St W, Montréal, Québec H2Z 1X7, Canada Palais des congrès of Montreal Poster Session Reception 201 Viger St W, Montréal, Québec Thursday, May 29 6:30 pm to 8:30 pm H2Z 1X7, Canada Exhibition Hall 520 Less than half an hour from the Montreal-Trudeau The poster area opens on May 29 at 10:00 am. Your airport, the Convention Centre is ready to welcome poster must be displayed from 12:00 pm on May large-scale events thanks to its immense and flexible 29 up to 2:00 pm on May 30. If your poster is not venues, state-of-the-art technology and devoted removed at the end of the exhibition it won’t be staff. returned to you. The poster presenters have to be near their poster Parking boards during the poster session to answer questions There are several parking areas at or near the Palais from attendees. des congrès, including: • Indoor parking lot (400 spots) on Viger Ave, via Coffee Breaks Chenneville Street
Recommended publications
  • 21St American Conference on Crystal Growth and Epitaxy (ACCGE-21)
    Program Book 21st American Conference on Crystal Growth and Epitaxy (ACCGE-21) and 18th US Workshop on Organometallic Vapor Phase Epitaxy (OMVPE-18) and 3rd Symposium on 2D Electronic Materials and Symposium on Epitaxy of Complex Oxides July 30 – August 4 1 | P a g e Table of Contents Table of Contents ........................................................................................................... 2 Welcome to Santa Fe, New Mexico………………………………...………………………..3 Maps of Conference Area and Resort ............................................................................ 4 Conference Sponsors & Supporters ............................................................................... 7 Conference Exhibitors .................................................................................................... 7 Conference Organizers .................................................................................................. 8 OMVPE Workshop Committee………………………. ...................................................... 9 AACG Organization (2015-2017) ................................................................................. 10 ACCGE Symposia and Organizers .................................................... ………………….11 Plenary Speakers ............................................................................... ………………….13 Award Recipients ............................................................................... ………………….14 Scope and Purpose of the Conferences ......................................................................
    [Show full text]
  • Low Power CW Nonlinear Optics in Silica Glass Photonic Integrated Circuit
    A Review of New CMOS Material Platforms for Integrated Nonlinear Optics Roberto Morandotti INRS-EMT, 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada, J3X 1S2 David J. Moss School of Electrical and Computer Engineering (SECE) RMIT University, Melbourne, Australia 3001 Alexander L. Gaeta School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA Michal Lipson School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA Nonlinear photonic chips have enabled the generation and processing of signals using only light, with performance far superior to that possible electronically - particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. We review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. This review highlights their potential impact as well as the challenges to achieving practical solutions for many key applications. 1 Introduction All-optical signal generation and processing [1,2] have been highly successful at enabling a vast array of capabilities, such as switching and de-multiplexing of signals at unprecedented speeds [3,4], parametric gain [5] on a chip, Raman lasing [6], wavelength conversion [7], optical logic [8], all-optical regeneration [9,10], radio-frequency (RF) spectrometry at THz speeds [11,12], as well as entirely new functions such as ultra-short pulse measurement [13,14] and generation [15] on a chip, optical temporal cloaking [16], and many others.
    [Show full text]
  • Molecular Beam Epitaxial Growth, Characterization, and Nanophotonic Device Applications of Inn Nanowires on Si Platform
    Molecular Beam Epitaxial Growth, Characterization, and Nanophotonic Device Applications of InN Nanowires on Si Platform Songrui Zhao Department of Electrical and Computer Engineering Faculty of Engineering McGill University, Montreal April 2013 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Songrui Zhao 2013 To my wife, Rubing Table of Contents Acknowledgement ................................................................................................ vi Contribution of Authors .................................................................................... viii List of Figures ....................................................................................................... ix List of Acronyms ................................................................................................ xiii Abstract ............................................................................................................... xiv Abrégé .................................................................................................................. xv 1. Introduction ................................................................................................... 1-1 1.1. The importance of InN to the III-nitride family .................................... 1-2 1.1.1. The importance of InN to In(Ga)N-based devices: An example….. ............................................................................................ 1-3 1.2. Challenges in InN planar structures
    [Show full text]
  • RF and Microwave Photonic Based Signal Processors of Integral Order Using Kerr Integrated Micro-Combs David Moss
    RF and microwave photonic based signal processors of integral order using Kerr integrated micro-combs David Moss To cite this version: David Moss. RF and microwave photonic based signal processors of integral order using Kerr inte- grated micro-combs. 2021. hal-03318808 HAL Id: hal-03318808 https://hal.archives-ouvertes.fr/hal-03318808 Preprint submitted on 11 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RF and microwave photonic based signal processors of integral order using Kerr integrated micro-combs David J. Moss Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. Abstract Soliton crystal micro-combs are powerful tools as sources of multiple wavelength channels for radio frequency (RF) signal processing. They offer a compact device footprint, large numbers of wavelengths, very high versatility, and wide Nyquist bandwidths. Here, we demonstrate integral order RF signal processing functions based on a soliton crystal micro-comb, including a Hilbert transformer and first- to third-order differentiators. We compare and contrast results achieved and the tradeoffs involved with varying comb spacing, tap design methods, as well as shaping methods. Keywords: RF photonics, Optical resonators passive devices and so can achieve very low power 1.
    [Show full text]
  • Micro-Combs: a Novel Generation of Optical Sources
    Micro-combs: a novel generation of optical sources Article (Published Version) Pasquazi, Alessia, Peccianti, Marco, Razzari, Luca, Moss, David J, Coen, Stéphane, Erkintalo, Miro, Chembo, Yanne K, Hansson, Tobias, Wabnitz, Stefan, Del’Haye, Pascal, Xue, Xiaoxiao, Weiner, Andrew M and Morandotti, Roberto (2018) Micro-combs: a novel generation of optical sources. Physics Reports, 729 (2018). pp. 1-81. ISSN 03701573 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/78041/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Physics Reports 729 (2018) 1–81 Contents lists available at ScienceDirect Physics Reports journal homepage: www.elsevier.com/locate/physrep Micro-combs: A novel generation of optical sources Alessia Pasquazi b,a, *, Marco Peccianti b,a , Luca Razzari a, David J.
    [Show full text]
  • Arxiv:1312.5538V1 [Quant-Ph] 19 Dec 2013 in Bulk [32], fiber Optics [40, 41] and Coupled Waveguide This Paper Is Organised As Follows
    Quantum simulation of bosonic-fermionic non-interacting particles in disordered systems via quantum walk Francesco De Nicola,1 Linda Sansoni,1, ∗ Andrea Crespi,2, 3 Roberta Ramponi,2, 3 Roberto Osellame,2, 3 Vittorio Giovannetti,4 Rosario Fazio,4, 5 Paolo Mataloni,1, 6 and Fabio Sciarrino1, 6 1Dipartimento di Fisica, Sapienza Universit`adi Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy 2Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy 3Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy 4NEST, Scuola Normale Superiore and Istituto di Nanoscienze - CNR, I-56126 Pisa, Italy 5Center for Quantum Technologies, National University of Singapore, 117542 Singapore, Singapore 6Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (INO-CNR), Largo Enrico Fermi, 6, I-50125 Firenze, Italy We report on the theoretical analysis of bosonic and fermionic non-interacting systems in a discrete two-particle quantum walk affected by different kinds of disorder. We considered up to 100-step QWs with a spatial, temporal and space-temporal disorder observing how the randomness and the wavefunction symmetry non-trivially affect the final spatial probability distribution, the transport properties and the Shannon entropy of the walkers. In statistical physics random walks describe the prop- 32] and experimentally [11, 33, 38] in orderered and dis- agation of a particle (the walker) under the action of ordered systems. Depending on the symmetry of the in- a probabilistic process which forces the latter to move put entangled state it is possible to simulate the particles along preassigned directions (say one step on the left or obeying different (boson/fermion) statistics.
    [Show full text]
  • Nobel Molecules Number 2 Summer 2007
    AMERICAN CRYSTALLOGRAPHIC ASSOCIATION Number 2 Summer 2007 Nobel Molecules American Crystallographic Association ACA HOME PAGE: www.amercrystalassn.org Table of Contents 2 President’s Column 2-3 Guest Editorial - Making the ACA Meeting Climate Neutral 4 News from the Evolution/Creationism Front 4-6 News from Canada 8-9 AIP Update 9 2008 ACA Patterson Award to Bi-Cheng Wang 10 Awards to ACA Members 12-20 2006 Warren Award Lecture - Determining the Structures of Layered Materials by Neutron Diffration 21 ACA Corporate Members 24-36 Candidates for ACA Offices in 2008 36 What's on the Cover 36 Contributors to this Issue 38-39 Notes of a Protein Crystallographer 37 ACA 2007 - Travel Grantees - Sponsors - Exhibitors 39-40 John Backus - Father of Fortran (1915-2007) 41-42 SER-CAT Symposium 43 ACA Balance Sheet 44 Index of Advertisers 44 Calendar of Meetings Contributions to ACA RefleXions may be sent to either of the Editors: Please address matters pertaining to advertisements, membership inquiries, or use of the ACA mailing list to: Connie Chidester ...................................... Judith L. Flippen-Anderson 2115 Glenwood Dr. ............................................. 3521 Launcelot Way Marcia J. Colquhoun, Director of Administrative Services Kalamazoo, MI 49008 ...................................... Annandale, VA 22003 American Crystallographic Association tel. 269-342-1600 ..................................................tel. 703-346-2441 P.O. Box 96, Ellicott Station Buffalo, NY 14203-0906 fax 716-898-8695 ...................................................fax 716-898-8695 phone: 716-898-8692; fax: 716-898-8695 [email protected] ..................... [email protected] email: [email protected] Deadlines for contributions are: February 1 (Spring), May 1 (Summer), August 1 (Fall) and November 1 (Winter) ACA RefleXions (ISSN 1958-9945) Number 2, 2007.
    [Show full text]
  • Magneto-Photonic Phenomena at Terahertz Frequencies
    Université du Québec Institut National de la Recherche Scientifique Centre Énergie, Matériaux et Télécommunications Magneto-photonic phenomena at terahertz frequencies by Mostafa Shalaby A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Present affiliation: SwissFEL, Paul Scherrer Institut, Villigen 5232, Switzerland [email protected]; [email protected] The complete thesis was submitted for revision in December 2012. All the results presented here were completed, analyzed, and written before then. A list of publications is included to credit the work of other contributors to each part of the thesis. Sections 3.1 and 4.2 present a hereby copyrighted, but yet unpublished results. These contributions were presented in international conferences, given at the beginning of the thesis. © All rights reserved - Mostafa Shalaby (2013) i ACKNOWLEDGEMENTS I am delighted to thank all those who have helped me grow up and develop intellectually so far, whether on the professional or the personal side of my life. Some of them may not even know much about science-like my parents, random people I met on the course of my life, and even the DPD]LQJ9DUHQQHV¶LQKDELWDQWVZKRXVHGWRSLFNXSDSRRUVWXGHQWKLWFKKLNLQJLQWKHPLGGOHRI nowhere after finishing work so late. «DQGDERYHDOOELJWKDQNVWRP\Iunky awesome friends, who I consider the real treasure in my life. I gratefully acknowledge the support of those who directly contributed to my PhD thesis research; Roberto Morandotti-research director who did his best to put me on the correct career path; Marco Peccianti-who was always there to ask; Yavuz Ozturk-with whom I spent countless nights working in the laboratory and shared so many disgusting T...¶VDQG0...¶VIRRGDWDP Thomas Feurer (Bern Univ.) ±with whom I had many brainstorming discussions; Quebec funding program (FQRNT) -which funded my PhD studies.
    [Show full text]
  • Semiconductor Nanowires: Characterization and Surface Modification
    Semiconductor Nanowires: Characterization and surface modification Yngman, Sofie 2019 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Yngman, S. (2019). Semiconductor Nanowires: Characterization and surface modification. Lund University (Media-Tryck). Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Semiconductor Nanowires Characterization and surface modification SOFIE YNGMAN SYNCHROTRON RADIATION RESEARCH | FACULTY OF SCIENCE | LUND UNIVERSITY Even mobile phone cameras can take pictures of nanowires! Lund University Faculty of Science 952854 Department of Physics Division of Synchrotron Radiation Research 789178 ISBN 978-91-7895-285-4 9 Semiconductor Nanowires: Characterization and surface modification Sofie Yngman DOCTORAL THESIS by due permission of the Faculty of Science, Lund University, Sweden.
    [Show full text]
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Enhanced four-wave mixing in hybrid integrated waveguides with graphene oxide Jiayang Wu, Yunyi Yang, Xingyuan Xu, Linnan Jia, Yao Liang, et al. Jiayang Wu, Yunyi Yang, Xingyuan Xu, Linnan Jia, Yao Liang, Sai T. Chu, Brent E. Little, Roberto Morandotti, Baohua Jia, David Moss, "Enhanced four-wave mixing in hybrid integrated waveguides with graphene oxide," Proc. SPIE 10920, 2D Photonic Materials and Devices II, 109200K (27 February 2019); doi: 10.1117/12.2508120 Event: SPIE OPTO, 2019, San Francisco, California, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11 Mar 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Enhanced four-wave-mixing in hybrid integrated waveguides with graphene oxide Jiayang Wua, Yunyi Yanga, Xingyuan Xua, Linnan Jiaa, Yao Lianga, Sai T. Chub, Brent E. Littlec, Roberto Morandottid, e, f, Baohua Jiaa, and David Mossa, * aCentre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia bCity University of Hong Kong, Tat Chee Avenue, Hong Kong, China cXi’an Institute of Optics and Precision Mechanics Precision Mechanics of CAS, Xi’an, China dINRS –Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada eNational Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia fUniversity of Electronic Science and Technology of China, Chengdu 610054, China. * Electronic mail: [email protected] ABSTRACT Owing to the ease of preparation as well as the tunability of its material properties, graphene oxide (GO) has become a rising star of the graphene family. In our previous work, we found that GO has an ultra-high Kerr nonlinear optical response - several orders of magnitude higher than that of silica and even silicon.
    [Show full text]
  • High Performance Photonic Microwave Filters Based on a 50Ghz Optical Soliton Crystal Kerr Micro-Comb
    8 First Author et al.: Title High performance photonic microwave filters based on a 50GHz optical soliton crystal Kerr micro-comb Xingyuan Xu,1 Mengxi Tan,1 Jiayang Wu,1 Member, IEEE, Thach G. Nguyen,2 Sai T. Chu,3 Brent E. Little,4 Roberto Morandotti,5 Senior Member, IEEE, Arnan Mitchell,2 Member, IEEE, and David J. Moss,1 Fellow, IEEE 1 X. Y. Xu, M. X. Tan, J. Y. Wu, and D. J. Moss are with Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. (Corresponding e-mail: [email protected]). 2 T. G. Thach and A. Mitchell are with the School of Engineering, RMIT University, Melbourne, VIC 3001, Australia. 3 S. T. Chu is with Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China. 4 B. E. Little is with State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an, China. 5 R. Morandotti is with INSR-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada, with ITMO University, St. Petersburg, Russia, and also with Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China. Abstract—We demonstrate a photonic radio frequency (RF) transversal filter based on an integrated optical micro-comb source featuring a record low free spectral range of 49 GHz yielding 80 micro-comb lines across the C-band. This record-high number of taps, or wavelengths for the transversal filter results in significantly increased performance including a QRF factor more than four times higher than previous results.
    [Show full text]
  • Roadmap on Multimode Light Shaping
    Journal of Optics (2021) ###### Roadmap Roadmap on multimode light shaping Marco Piccardo1,2,26, Vincent Ginis2,3,26, Andrew Forbes4, Simon Mahler5, Asher A. Friesem5, Nir Davidson5, Haoran Ren6, Ahmed H. Dorrah2, Federico Capasso2, Firehun T. Dullo7, Balpreet S. Ahluwalia7, Antonio Ambrosio1, Sylvain Gigan8, Nicolas Treps8, Markus Hiekkamäki9, Robert Fickler9, Michael Kues10, David Moss11, Roberto Morandotti12, Johann Riemensberger13, Tobias J. Kippenberg13, Jérôme Faist14, Giacomo Scalari14, Nathalie Picqué15, Theodor W. Hänsch15, Giulio Cerullo16, Cristian Manzoni16, Luigi A. Lugiato17, Massimo Brambilla18, Lorenzo Columbo19, Alessandra Gatti17,20, Franco Prati17, Abbas Shiri21,22, Ayman F. Abouraddy21,22, Andrea Alù23, Emanuele Galiffi24, J.B. Pendry24 and Paloma A. Huidobro25 1 Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Milano, Italy 2 Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA 3 Data Lab/Applied Physics, Vrije Universiteit Brussel, Belgium 4 School of Physics, University of the Witwatersrand, Johannesburg, South Africa 5 Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel 6 MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie Park NSW, Australia 7 Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway 8 Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, Sorbonne Université, Collège de France, Paris,
    [Show full text]