Terahertz Radiation for the Characterization of Plasmonic Nanoparticles and Its Biomedical Applications
Total Page:16
File Type:pdf, Size:1020Kb
Institut National de la Recherche Scientifique (INRS) Centre Énergie, Matériaux et Télécommunications (EMT) TERAHERTZ RADIATION FOR THE CHARACTERIZATION OF PLASMONIC NANOPARTICLES AND ITS BIOMEDICAL APPLICATIONS by Holger Breitenborn A thesis submitted to obtain the degree of Philosophy Doctor (Ph.D.) in Energy and Materials Science Jury Members President of the Jury and Prof. Annie Castonguay Internal Reviewer Armand-Frappier Santé Biotechnologie (AFSB) Institut National de la Recherche Scientifique, Laval, Canada External Reviewer Prof. Anie Philip Department of Surgery, Faculty of Medicine McGill University, Montreal, Canada External Reviewer Prof. Alina Karabchevsky Department of Electrooptics and Photonics Ben-Gurion University of the Negev, Beersheba, Israel Research Director Prof. Roberto Morandotti Énergie, Matériaux et Télécommunications (EMT) Institut National de la Recherche Scientifique, Montreal, Canada Research Co-Director Prof. Rafik Naccache Department of Chemistry and Biochemistry and Centre for NanoScience Research Concordia University, Montreal, Canada © Reserved rights of “Holger Breitenborn,” submitted on August 11th, 2020 ACKNOWLEDGMENTS I am fortunate and grateful for having had the chance to pursue my Ph.D. in the group of my supervisor Prof. Roberto Morandotti. I benefitted from a wealth of opportunities and experiences, which helped me to develop various laboratory skills and diverse knowledge in optics and photonics, especially in ultrafast lasers and terahertz technology. Additionally, I want to thank my co-supervisor, Prof. Rafik Naccache, for his guidance, suggestions, and the opportunity to use his characterization equipment often on short notice. Moreover, I also would like to acknowledge the generous support and insightful discussions with Prof. Luca Razzari and Prof. Fiorenzo Vetrone, who allowed me to use their laboratory and equipment as well. My deepest gratitude goes to Dr. Junliang Dong and Dr. Riccardo Piccoli for their invaluable theoretical and practical support, companionship, and tremendous patience and effort in guiding me throughout my doctoral studies. Their contributions to conceptual and experimental activities were crucial for the success of my Ph.D. work. Many pleasurable and thought-provoking discussions with them have led to new ideas and personal growth. I am indebted to Dr. Andrew Bruhacs and Dr. Lucas Vazquez Besteiro for their priceless contributions to the success of my thesis. It would have been impossible to get the study done without their assistance and expertise. A special acknowledgment goes to Dr. Alessandro Tomasino, with whom I spent numerous nights in the laboratory. He taught me many useful and practical skills while I was taking my first steps within the field of experimental optics at the beginning of my Ph.D. I also want to thank him for his friendship, invaluable support, and precious help in many other academic concerns. Moreover, I want to acknowledge Artiom Skripka and Dr. Riccardo Marin for the supply of nanoparticles, characterization work, as well as for sharing their knowledge about a scientific field that had been new to me. Additionally, I want to thank Dr. Diego Caraffini for his programming efforts and resilience to help me make our THz-TDS system operating. My special thanks go to Robin Helsten for the unconventional technical support, to Dr. Anna Mazhorova for her guidance at the beginning of my Ph.D. project, and Giacomo Balistreri for limitless coffee preparation. I also would like to thank Dr. Yoann Jestin, Dr. Christian Reimer, and Piotr Roztocki, with whom I co-founded the university-spin off company Ki3 Photonics Technologies Inc. iii I wish to thank my colleagues at Friedrich Schiller University and Fraunhofer Institute for Applied Optics and Precision Engineering IOF for a great time that we spent together during numerous activities in the framework of the international research training group of the DFG and the NSERC CREATE program in collaboration with INRS-EMT, University of Toronto and Laval University. In particular, I want to mention and acknowledge the support and friendship of Prof. Andreas Tünnermann and Prof. Stefan Nolte, who initiated my fruitful collaboration with Prof. Roberto Morandotti in 2013 and have generously supported my work and studies since then. Finally, I wish to thank my parents, Adelheid and Jürgen Breitenborn, without whom my whole path would have been impossible. I am also deeply thankful to my wife, Maria Jose Lopez Perez, for her tremendous emotional and practical support, especially in difficult times during my Ph.D. iv ABSTRACT The precise evaluation of the photothermal effect of nanomaterials is an essential prerequisite for a variety of fields, such as biology, chemistry, and nanomedicine. In particular, photothermal therapies to destroy cancer cells require an accurate determination of the light conversion capabilities of plasmonic nanoparticles to attain the necessary temperature-induced effects in biological tissue. In this Ph.D. work, a new method has been developed for the quantification of the photothermal effect of nanoparticles in aqueous solutions. The photothermal conversion efficiency linked to the morphology of plasmonic nanoparticles was evaluated in a non-contact and non-invasive manner by combining spatial and temporal thermal dynamics derived at terahertz frequencies. The method is extendable to the characterization of all nanomaterials that experience a temperature-dependent variation of their refractive index in the terahertz frequency regime. Moreover, the capabilities of the new method were extended to the biomedical realm to observe and evaluate nanoparticle-assisted laser tissue interaction. For example, laser tissue soldering assisted by plasmonic nanoparticles is a minimally invasive wound closure procedure that could replace commonly used, highly invasive sutures. The tissue fusing process is assisted by a nanoparticle-containing solder gel, which facilitates the absorption and transformation of laser energy into heat locally confined in the tissue edges. Meticulous monitoring of the photothermally heated solder and the tissue underneath is vital to minimize or even prevent photothermal damage inflicted by the intense laser radiation as well as optimize the tensile strength of the fused tissue. The new method constitutes a non-contact, non-invasive, and non-ionizing modality for evaluating photothermally induced damage enabled by the high sensitivity of terahertz radiation to the humidity content of biological tissue. Terahertz radiation was utilized to trace the evolution of the photothermal damage during the soldering procedure and to create a tomographic image allowing a quantitative evaluation of the incurred damage as a function of depth. In the future, this method could be implemented in a variety of medical applications that involve laser tissue interaction, including laser ablation and photothermal therapies. Keywords: Terahertz Radiation, Terahertz Time-Domain Spectroscopy, Nanoparticles, Plasmonic Heating, Photothermal Heating, Photothermal Therapy, Photothermal Conversion Efficiency, Laser Tissue Interaction, Terahertz Biomedical Imaging, Terahertz Tomography v RÉSUMÉ L'évaluation précise de l'effet photo-thermique des nanomatériaux est une condition fondamentale pour diverses applications, telles que la biologie, la chimie et la nano-médecine. En particulier, les thérapies photo-thermiques visant à détruire les cellules cancéreuses nécessitent une détermination précise des capacités de conversion lumineuse des nanoparticules plasmoniques utilisées, afin obtenir les effets nécessaires induits par la température dans les tissus biologiques considérés. Dans cette étude de doctorat, une nouvelle méthode a été développée pour la quantification de l'effet photo-thermique de nanoparticules dans des solutions aqueuses. L'efficacité de la conversion photo-thermique liée à la morphologie des nanoparticules plasmoniques a été évaluée de manière non-invasive et sans contact en combinant des dynamiques thermiques spatiales et temporelles dérivées à des fréquences térahertz. La méthode peut être étendue à la caractérisation de tous les nanomatériaux qui subissent une variation de leur indice de réfraction en fonction de la température dans le régime de fréquence térahertz. De plus, les capacités de la nouvelle méthode ont été étendues au domaine biomédical pour observer et évaluer les interactions laser-tissu assistées par nanoparticules. Par exemple, le soudage laser des tissus assisté par des nanoparticules plasmoniques est une procédure de fermeture de plaie peu invasive capable de remplacer les sutures très invasives couramment utilisées. Le processus de fusion tissulaire est assisté par un gel d’assemblage contenant des nanoparticules, ce qui facilite l'absorption et la transformation de l'énergie laser en chaleur localement confinée dans les bords du tissu. Un contrôle méticuleux de la soudure chauffée par photo-thermie et du tissu sous-jacent est essentiel pour minimiser ou même empêcher les dommages photo-thermiques causés par le fort rayonnement laser, ainsi que pour optimiser la résistance à la traction du tissu fondu. Par conséquent, la nouvelle méthode constitue une modalité sans contact, non-invasive et non-ionisante pour évaluer les dommages induits par photo-thermie rendus possibles par la sensibilité élevée du rayonnement térahertz à la teneur en humidité du tissu biomédical. Le rayonnement térahertz a été utilisé pour suivre l'évolution des dommages