Magneto-Photonic Phenomena at Terahertz Frequencies
Total Page:16
File Type:pdf, Size:1020Kb
Université du Québec Institut National de la Recherche Scientifique Centre Énergie, Matériaux et Télécommunications Magneto-photonic phenomena at terahertz frequencies by Mostafa Shalaby A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Present affiliation: SwissFEL, Paul Scherrer Institut, Villigen 5232, Switzerland [email protected]; [email protected] The complete thesis was submitted for revision in December 2012. All the results presented here were completed, analyzed, and written before then. A list of publications is included to credit the work of other contributors to each part of the thesis. Sections 3.1 and 4.2 present a hereby copyrighted, but yet unpublished results. These contributions were presented in international conferences, given at the beginning of the thesis. © All rights reserved - Mostafa Shalaby (2013) i ACKNOWLEDGEMENTS I am delighted to thank all those who have helped me grow up and develop intellectually so far, whether on the professional or the personal side of my life. Some of them may not even know much about science-like my parents, random people I met on the course of my life, and even the DPD]LQJ9DUHQQHV¶LQKDELWDQWVZKRXVHGWRSLFNXSDSRRUVWXGHQWKLWFKKLNLQJLQWKHPLGGOHRI nowhere after finishing work so late. «DQGDERYHDOOELJWKDQNVWRP\Iunky awesome friends, who I consider the real treasure in my life. I gratefully acknowledge the support of those who directly contributed to my PhD thesis research; Roberto Morandotti-research director who did his best to put me on the correct career path; Marco Peccianti-who was always there to ask; Yavuz Ozturk-with whom I spent countless nights working in the laboratory and shared so many disgusting T...¶VDQG0...¶VIRRGDWDP Thomas Feurer (Bern Univ.) ±with whom I had many brainstorming discussions; Quebec funding program (FQRNT) -which funded my PhD studies. Specific parts of my projects were performed with fruitful collaborations with: Hannes Merbold and Florian Enderli (Bern Univ.); Anja Weber, Hans Sigg, and Laura Heyderman (PSI, Zurich); Rob Helsten, Francois Vidal, Tsuneyuki Ozaki,Ibraheem Al-Naib, Luca Razzari, Matteo Clerici, Gargi Sharma, Bruno Schmidt, Mathieu Giguere, and François Legare(INRS); Antonio Lotti and Arnaud Couairon (CNRS); Daniele Faccio (HW Univ., Edinburgh); Anna Mazhorova, Maksim Skorobogatiy (Ecole Poly., Montreal); Mathias Klaui (EPFL, Lausanne). Finally, I am deeply thankful to two persons; Larry Carr (BNL, NY) -who proposed a small experimentthat turned into a wonderful research to base my PhD experiments on; Bruce Patterson (PSI, Zurich) -who, in addition of being a trustful friend, simply taught me that science is beautiful! ! ii ABSTRACT Magneto-terahertz phenomena are the main focus of the thesis. This work started as supporting research for the science of an X-ray laser (SwissFEL). X-ray lasers have recently drawn great attention as an unprecedented tool for scientific research on the ultrafast scale. A potential terahertz-pump / X-ray-probe experiment is foreseen to reveal the fundamentals of magnetic systems on the ultrafast time scale and benefits the ultrafast magnetic storage industry. The main objective of this work was to find the conditions and prove that a suitable terahertz pulse can induce ultrafast magnetization dynamics on the picoseconds scale. To answer this fundamental question, we performed original numerical simulations using a coupled Landau- Lifshitz-Gilbert Maxwell model. Calculations showed us that terahertz pulses can trigger ultrafast dynamics, but highlighted the requirements of properly shaped pulses and beyond- current-technology peak field intensities. Those requirements werethe motivations for the experiments performed in the second part of the thesis. To shape the terahertz pulses, we used time-resolved optical-pump / terahertz-probe of free carriers in semiconductors. We managed to temporally shape the terahertz pulses and even extend the technique to spectral shaping as well. Regarding the field intensities, we followed two approaches. The first deals with field enhancement in nanoslits arrays. We designed a sub- wavelength structure characterized by simultaneous high field enhancementand high transmission at terahertz frequencies to suit nonlinear sources. The second approach depended on up-scaling the generation from laser-induced plasma by increasing the pump wavelengths. Numerical calculations have also brought to our attention the importance of linear magneto- terahertz effects. In particular, the simulations showed that the ultrafast dynamics could lead to significant rotation of the polarization plane of the triggering terahertz pulse. Motivated by this finding, we focused in the last part of the thesis on the linear effects. We performed three original studies coming out with first demonstrations of broadband non-reciprocal terahertz phase retarders, terahertzmagnetic modulators, and the non-reciprocal terahertz isolators. In the first two experiments, we extended the unique properties of the magnetic liquids (Ferrofluids) to the terahertz regime. In the latter experiment, we used a permanent magnet (Ferrite) to experimentally show complete isolation (unidirectional transmission) of the terahertz waves. ! iii TABLE OF CONTENTS Introduction «««««««««««««««««««««««««««««««««« Chapter 1. Experimental techniques for terahertz magnetism 1.1 Terahertz generation: optical rectification «««««««««««««««««......« 1.2 Terahertz detection: electro-optical sampling ««««««««««««««.....«« 1.3 Terahertz time domain spectroscopy (THz-TDS) «««««««««««.....«««« 1.4 Time-resolved terahertz spectroscopy ««««««««««««««««....«««« 1.5 Terahertz magnetic ellipsometry ««««««««««««««««««....«««« Chapter 2. Terahertz magnetization dynamics 2.1 Magnetism at low frequency «««««««««««««««««««..«««« 2.2 Effective field in a magnetic system ««««««««««««««««««««...« 2.3 Precessional and damping mechanisms ««««««««««««««««««....« 2.4 Model for terahertz-magnetization dynamics «««««««««««««««««....... 25 2.5 Coupled LLG-Maxwell ««««««««««««««««««««««««««.... 26 2.6 Ferromagnetic resonance ««««««««««««««««««««««««...« 2.7 Terahertz-triggered magnetization dynamics ««««««««««««««««.....« 2.8 Magnetization dynamics: effect of crystal anisotropy ««««««««««««........« 2.9 Magnetization dynamics: effect of pulse shape ««««««««««««««.....«« 2.10 Terahertz probe: magnetization dynamics-induced polarization rotation ««.........««« Chapter 3. Harnessing terahertz pulses for nonlinear magnetic experiments 3.1 Temporal and spectral shaping of terahertz pulses ««««««««««.......«««.« 3.1.1 Terahertz pulse shaping techniques««««««««««««««««««.« 3.1.2 Photo-excitation of semiconductors«««««««««««««««««.«« 3.1.3 Gabor-limit and the speed of temporal shaping«««««««««««««.« 3.1.4 Temporal shaping««««««««««««««««««««««««.«« 3.1.5 Spectral shaping .......................««««««««««««««««««««« ! iii TABLE OF CONTENTS Introduction «««««««««««««««««««««««««««««««««« Chapter 1. Experimental techniques for terahertz magnetism 1.6 Terahertz generation: optical rectification «««««««««««««««««......« 1.7 Terahertz detection: electro-optical sampling ««««««««««««««.....««12 1.8 Terahertz time domain spectroscopy (THz-TDS) «««««««««««.....«««« 1.9 Time-resolved terahertz spectroscopy ««««««««««««««««....«««« 1.10 Terahertz magnetic ellipsometry ««««««««««««««««««....«««« Chapter 2. Terahertz magnetization dynamics 2.1 Magnetism at low frequency «««««««««««««««««««..«««« 2.2 Effective field in a magnetic system ««««««««««««««««««««...« 2.3 Precessional and damping mechanisms ««««««««««««««««««....« 2.4 Model for terahertz-magnetization dynamics «««««««««««««««««....... 25 2.5 Coupled LLG-Maxwell ««««««««««««««««««««««««««.... 26 2.6 Ferromagnetic resonance ««««««««««««««««««««««««...« 2.7 Terahertz-triggered magnetization dynamics ««««««««««««««««.....« 2.8 Magnetization dynamics: effect of crystal anisotropy ««««««««««««.....« 2.9 Magnetization dynamics: effect of pulse shape ««««««««««««««....«« 2.10 Terahertz probe: magnetization dynamics-induced polarization rotation ««.........««« Chapter 3. Harnessing terahertz pulses for nonlinear magnetic experiments 3.1 Temporal and spectral shaping of terahertz pulses ««««««««««.......«««« 3.1.1 Terahertz pulse shaping techniques««««««««««««««««««.« 3.1.2 Photo-excitation of semiconductors«««««««««««««««««.«« 3.1.3 Gabor-limit and the speed of temporal shaping«««««««««««««.« 3.1.4 Temporal shaping«««««««««««««««««««««««««« 3.1.5 Spectral shaping .......................«««««««««««««««««««««45 ! iv 3.2 Concurrent high terahertz field enhancement and transmission in nanoslits arrays ««««««««««««««««««««««««««««.«««««50 3.2.1 7KHFKDOOHQJHRIKLJKO\WUDQVPLVVLYHKLJKO\HQKDQFLQJQDQRVOLWVVWUXFWXUHV«««« 3.2.2 Structure and design approaches«««««««««««««««««««« 3.2.3 Parametric dependence««««««««««««««««««««««.«« 3.2.4 Sample preparation and fabrication imperfection«««««««««««.««« 3.2.5 Sample characterization: spatiotemporal field evolution««««««««.««« 3.2.6 Sample characterization: far field measurement«««««««««««««« 3.3 Intense generation: wavelength scaling of the terahertz generated from laser-induced plasmas««««««««««««««««««««««««««.««««««« 3.3.1 Intense terahertz sources: a comparative look««««««««««««««« 61 3.3.2 Mechanism for terahertz generation from laser-induced plasmas..«««««««« 3.3.3 Experimental setup«««««««««««««««««.«««««««« 3.3.4 Energy measurement«««««.«««««««««««««««««««« 3.3.5 Broadband Detection: Air Biased Coherent Detection..............«««««.«««