Molecular Beam Epitaxial Growth, Characterization, and Nanophotonic Device Applications of Inn Nanowires on Si Platform

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Beam Epitaxial Growth, Characterization, and Nanophotonic Device Applications of Inn Nanowires on Si Platform Molecular Beam Epitaxial Growth, Characterization, and Nanophotonic Device Applications of InN Nanowires on Si Platform Songrui Zhao Department of Electrical and Computer Engineering Faculty of Engineering McGill University, Montreal April 2013 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Songrui Zhao 2013 To my wife, Rubing Table of Contents Acknowledgement ................................................................................................ vi Contribution of Authors .................................................................................... viii List of Figures ....................................................................................................... ix List of Acronyms ................................................................................................ xiii Abstract ............................................................................................................... xiv Abrégé .................................................................................................................. xv 1. Introduction ................................................................................................... 1-1 1.1. The importance of InN to the III-nitride family .................................... 1-2 1.1.1. The importance of InN to In(Ga)N-based devices: An example….. ............................................................................................ 1-3 1.2. Challenges in InN planar structures ....................................................... 1-4 1.2.1. Lack of intrinsic InN .................................................................. 1-4 1.2.1.1. The optical properties of nominally non-doped InN .... 1-5 1.2.1.2. The electrical transport properties of nominally non- doped InN ................................................................................... 1-7 1.2.2. Uncontrolled surface charge properties ..................................... 1-7 1.2.3. Difficulty in achieving p-type doped InN .................................. 1-9 1.2.4. The underlying mechanism of the challenges ............................ 1-9 1.2.4.1. Lack of suitable substrate ............................................ 1-9 1.2.4.2. The surface electron accumulation: The most debatable issue in InN ............................................................................... 1-11 1.3. The need of InN nanowire structures ................................................... 1-13 1.4. InN nanowires: The current status and challenges .............................. 1-13 1.4.1. The current status ..................................................................... 1-13 i 1.4.1.1. The poor optical and electrical properties of InN nanowires compared with InN planar structures ...................... 1-14 1.4.2. The challenges ......................................................................... 1-15 1.5. Summary of the contribution and the organization of this thesis ........ 1-16 2. Growth of InN, and other III-nitride nanowires ...................................... 2-18 2.1. Growth techniques of III-nitride nanowires ......................................... 2-18 2.2. Mechanisms of nanowire formation in general ................................... 2-18 2.2.1. The vapor-liquid-solid (VLS) mechanism ............................... 2-19 2.2.1.1. Recent progress of growing InN nanowires by the VLS mechanism ................................................................................ 2-20 2.2.2. The diffusion driven mechanism.............................................. 2-21 2.2.2.1. The spontaneous formation of III-nitride nanowires by molecular beam epitaxy ............................................................ 2-23 2.2.2.2. The spontaneous formation of InN nanowires by molecular beam epitaxy: The material quality challenge ......... 2-25 2.3. A novel approach by the in situ In seeding layer deposition technique ………………………………………………………………………..2-26 2.3.1. Demonstration of non-tapered InN nanowires ......................... 2-26 2.4. Growth of III-nitride nanowires on amorphous template .................... 2-28 2.4.1. Demonstration of high-quality GaN nanowires on SiOx with controlled orientation ........................................................................... 2-28 2.4.2. Growth of InN nanowires on SiOx .......................................... 2-33 2.4.3. Discussions .............................................................................. 2-34 2.5. The importance of III-nitrides grown by MBE to industrial applications.... .............................................................................................. 2-36 3. Characterization methods of InN, and other semiconductor nanowires and heterostructures ............................................................................................... 3-38 3.1. An overview ......................................................................................... 3-38 3.2. Optical characterization ....................................................................... 3-39 3.2.1. Advantage of optical characterization ...................................... 3-40 ii 3.2.2. X-ray photoelectron spectroscopy ........................................... 3-40 3.2.3. Photoluminescence spectroscopy ............................................. 3-44 3.2.4. Raman scattering spectroscopy ................................................ 3-48 3.3. Electrical characterization .................................................................... 3-50 3.3.1. Electrical transport of bulk semiconductors: The experimental approach and properties ....................................................................... 3-51 3.3.2. Electrical transport of semiconductor nanowires: The challenge, experimental approach, and properties ................................................ 3-52 3.3.3. Nanoprobing: A new technique to study the electrical transport properties of semiconductor nanowires ............................................... 3-54 4. Demonstration of intrinsic InN nanowires (I): Direct evidence from optical characterization and their optical properties ................................................ 4-55 4.1. The absence of surface electron accumulation on the grown non-polar surfaces ........................................................................................................ 4-55 4.2. Photoluminescence properties of intrinsic InN nanowires .................. 4-58 4.2.1. The narrow photoluminescence spectral linewidth and extremely low free carrier concentration .............................................................. 4-59 4.2.2. Near-band-edge recombination in intrinsic InN nanowires ..... 4-60 4.2.3. Phonon sideband emission ....................................................... 4-63 5. Demonstration of intrinsic InN nanowires (II): The electrical transport properties .......................................................................................................... 5-68 5.1. I-V characteristics ................................................................................ 5-68 5.2. The electrical transport properties derived using bulk geometry ........ 5-71 5.3. The electrical transport properties derived considering the large aspect ratio of nanowires ........................................................................................ 5-73 5.3.1. The formulae ............................................................................ 5-73 5.3.2. Free carrier concentration and electron mobility: Revised by considering the large aspect ratio of nanowires ................................... 5-74 6. Tuning the surface charge properties of InN nanowires ......................... 6-78 6.1. The presence of surface electron accumulation due to Si doping ........ 6-78 iii 6.2. Photoluminescence properties influenced by the presence of surface electron accumulation .................................................................................. 6-81 6.3. Discussions .......................................................................................... 6-84 6.3.1. The presence of two emission regions due to the presence of surface electron accumulation ............................................................. 6-84 6.3.2. The influence of surface electron accumulation on the phonon sideband emission ................................................................................ 6-89 6.3.3. Understanding the influence of the nanowire morphology on the surface charge properties ..................................................................... 6-90 7. The realization of p-type InN nanowires ................................................... 7-93 7.1. Evidence of the presence of Mg-acceptors in InN nanowires ............. 7-93 7.1.1. Photoluminescence properties of Mg-doped InN nanowires ... 7-94 7.2. Evidence of p-type surface in Mg-doped InN nanowires .................. 7-100 7.3. Direct evidence of p-type conduction measured by single nanowire field effect transistor .......................................................................................... 7-101 7.3.1. Discussions ............................................................................ 7-103 8. InN nanowire photodetectors ................................................................... 8-106 8.1. A brief introduction to photodetectors ............................................... 8-106 8.1.1. Photodetectors for
Recommended publications
  • 21St American Conference on Crystal Growth and Epitaxy (ACCGE-21)
    Program Book 21st American Conference on Crystal Growth and Epitaxy (ACCGE-21) and 18th US Workshop on Organometallic Vapor Phase Epitaxy (OMVPE-18) and 3rd Symposium on 2D Electronic Materials and Symposium on Epitaxy of Complex Oxides July 30 – August 4 1 | P a g e Table of Contents Table of Contents ........................................................................................................... 2 Welcome to Santa Fe, New Mexico………………………………...………………………..3 Maps of Conference Area and Resort ............................................................................ 4 Conference Sponsors & Supporters ............................................................................... 7 Conference Exhibitors .................................................................................................... 7 Conference Organizers .................................................................................................. 8 OMVPE Workshop Committee………………………. ...................................................... 9 AACG Organization (2015-2017) ................................................................................. 10 ACCGE Symposia and Organizers .................................................... ………………….11 Plenary Speakers ............................................................................... ………………….13 Award Recipients ............................................................................... ………………….14 Scope and Purpose of the Conferences ......................................................................
    [Show full text]
  • Nobel Molecules Number 2 Summer 2007
    AMERICAN CRYSTALLOGRAPHIC ASSOCIATION Number 2 Summer 2007 Nobel Molecules American Crystallographic Association ACA HOME PAGE: www.amercrystalassn.org Table of Contents 2 President’s Column 2-3 Guest Editorial - Making the ACA Meeting Climate Neutral 4 News from the Evolution/Creationism Front 4-6 News from Canada 8-9 AIP Update 9 2008 ACA Patterson Award to Bi-Cheng Wang 10 Awards to ACA Members 12-20 2006 Warren Award Lecture - Determining the Structures of Layered Materials by Neutron Diffration 21 ACA Corporate Members 24-36 Candidates for ACA Offices in 2008 36 What's on the Cover 36 Contributors to this Issue 38-39 Notes of a Protein Crystallographer 37 ACA 2007 - Travel Grantees - Sponsors - Exhibitors 39-40 John Backus - Father of Fortran (1915-2007) 41-42 SER-CAT Symposium 43 ACA Balance Sheet 44 Index of Advertisers 44 Calendar of Meetings Contributions to ACA RefleXions may be sent to either of the Editors: Please address matters pertaining to advertisements, membership inquiries, or use of the ACA mailing list to: Connie Chidester ...................................... Judith L. Flippen-Anderson 2115 Glenwood Dr. ............................................. 3521 Launcelot Way Marcia J. Colquhoun, Director of Administrative Services Kalamazoo, MI 49008 ...................................... Annandale, VA 22003 American Crystallographic Association tel. 269-342-1600 ..................................................tel. 703-346-2441 P.O. Box 96, Ellicott Station Buffalo, NY 14203-0906 fax 716-898-8695 ...................................................fax 716-898-8695 phone: 716-898-8692; fax: 716-898-8695 [email protected] ..................... [email protected] email: [email protected] Deadlines for contributions are: February 1 (Spring), May 1 (Summer), August 1 (Fall) and November 1 (Winter) ACA RefleXions (ISSN 1958-9945) Number 2, 2007.
    [Show full text]
  • Semiconductor Nanowires: Characterization and Surface Modification
    Semiconductor Nanowires: Characterization and surface modification Yngman, Sofie 2019 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Yngman, S. (2019). Semiconductor Nanowires: Characterization and surface modification. Lund University (Media-Tryck). Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Semiconductor Nanowires Characterization and surface modification SOFIE YNGMAN SYNCHROTRON RADIATION RESEARCH | FACULTY OF SCIENCE | LUND UNIVERSITY Even mobile phone cameras can take pictures of nanowires! Lund University Faculty of Science 952854 Department of Physics Division of Synchrotron Radiation Research 789178 ISBN 978-91-7895-285-4 9 Semiconductor Nanowires: Characterization and surface modification Sofie Yngman DOCTORAL THESIS by due permission of the Faculty of Science, Lund University, Sweden.
    [Show full text]
  • Abstract Book & Schedule
    Abstract Book & Schedule Corporate Gold Sponsors Corporate Silver Sponsors S T SVT Associates, Inc. Corporate Gold Sponsors General Sponsor PCSI 41 General Information Conference Hotel: La Fonda Hotel, Santa Fe, New Mexico Program Committee: Chagaan Baatar, Office of Naval Research Anand Bhattacharya, Argonne National Lab Leonard Brillson, The Ohio State University Alex Demkov, University of Texas, Austin Helen Farrell Michael Flatté, University of Iowa Rachel S. Goldman, University of Michigan Jessica Hilton, Mantis Deposition Harold Hwang, Stanford University Hisao Ishiii, Chiba University Karen Kavanagh, Simon Fraser University Roland Kawakami, The Ohio State University William Lampert, Sustema Research LLC Lincoln Lauhon, Northwestern University Rudy Ludeke Matthew R. Libera, Stevens Institute of Technology Chris McConville, Warwick University Anders Mikkelsen, Lund University Roberto Myers, Ohio State University Chris J. Palmstrøm, University of California, Santa Barbara Henning Riechert, Paul Drude Institute Jack Rowe Nitin Samarth, Penn State University Masaaki Tanaka, University of Tokyo Akira Toriumi, University of Tokyo Pani Varanasi, Army Research Office Robert Wallace, University of Texas, Dallas Roland Wiesendanger, University of Hamburg Ed Yu, University of Texas at Austin Chair: JVST Special Issue Editor: Roland Kawakami Rudy Ludeke The Ohio State University E-mail: [email protected] E-mail: [email protected] Registration: General Chair: Della Miller/Heather Korff AVS, 110 Yellowstone Dr.,
    [Show full text]
  • Photonics North 2014, May 28-30, Montreal Convention Centre
    2014 TABLE OF CONTENT Let’s Talk Buisness ................................ .....................................................................................................6 Palais des congrès of Montreal .............. .....................................................................................................8 General Information .................................................................................................................................... 9 A word from the Conference Co-Chairs ................................................................................................... 11 Technical Program Committees ................................................................................................................ 12 Plenary and Invited Speakers .................................................................................................................... 14 Conference Schedule ................................................................................................................................ 24 Oral presentations: Plenary Presentations ................................................................................................................................53 Session COMM : Photonics commercialization ....................................................................................... 58 Session DESIGN : Photonics theory design and simulation ................................ ....................................70 Session GREEN : Green photonics, energy, and related technologies
    [Show full text]
  • DTU Cen Annual Report for 2008
    Annual Report 2008 Center for Electron Nanoscopy Technical University of Denmark Fysikvej Building 307 2800 Kgs. Lyngby Denmark Phone +45 4525 6474 www.cen.dtu.dk Annual Report 2008 Page 2 Preface Note From the Director · Organizing student evenings, demonstrations, tours and This is the first annual report of the Center for Electron seminars; Nanoscopy in the Technical University of Denmark (DTU · Securing national and European research funding for Cen), which was established in 2007 following a generous projects; donation of 102,6M DKr by the A.P. Møller and Chastine · Organizing the annual meeting of the Scandinavian Mc-Kinney Møller Foundation. societies for electron microscopy in June 2008. The facility contains seven new electron microscopes in I am grateful to all of our core staff, colleagues and a purpose-built high-specification building. Two of the equipment manufacturers, as well as to DTU’s management microscopes are state-of-the-art monochromated aberration- and the A.P. Møller Foundation, for their hard work in the corrected instruments. The remaining instruments include establishment of the Center. two dual-beam focused-ion-beam microscopes and three I particularly welcome and encourage contact from potential smaller microscopes. collaborators to work with us to make the best possible use of the new equipment and resources. This report contains an outline of the establishment and inauguration of the facility. It also provides an account of the Center’s events and achievements in the calendar year 2008, June 2009 which
    [Show full text]