Experimental Investigation of Octane Requirement Relaxation in A

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Investigation of Octane Requirement Relaxation in A EXPERIMENTAL INVESTIGATION OF OCTANE REQUIREMENT RELAXATION IN A TURBOCHARGED SPARK-IGNITION ENGINE Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Mechanical Engineering By Jacob A. Baranski Dayton, Ohio August, 2013 EXPERIMENTAL INVESTIGATION OF OCTANE REQUIREMENT RELAXATION IN A TURBOCHARGED SPARK-IGNITION ENGINE Name: Baranski, Jacob Anthony APPROVED BY: Scott D. Stouffer, Ph.D. Frederick R. Schauer, Ph.D. Advisory Committee Chairman Committee Member Senior Research Engineer Head Energy and Environmental Engineering Advanced Concepts Group University of Dayton Research Institute U.S. Air Force Research Laboratory Sukh S. Sidhu, Ph.D. John L. Hoke, Ph.D. Committee Member Committee Member Head Senior Mechanical Engineer Energy Technologies and Materials Division Innovative Scientific Solutions Inc. University of Dayton Research Institute John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii 1. ABSTRACT EXPERIMENTAL INVESTIGATION OF OCTANE REQUIREMENT RELAXATION IN A TURBOCHARGED SPARK-IGNITION ENGINE Name: Baranski, Jacob Anthony University of Dayton Advisor: Scott D. Stouffer, Ph.D. Wide adoption of unmanned aerial systems (UAS) powered by spark ignition (SI) engines that require high-octane gasoline has triggered an increase in fuel costs incurred by the U.S. Department of Defense (DoD). Most current United States Air Force (USAF) vehicles are fueled with JP-8, a low-octane kerosene-like fuel that is well suited for turbine engines. A relaxation in octane requirement is required to fuel current SI engines with a low-octane fuel like JP-8 and avoid destructive end-gas knock. In this thesis, a two-phase octane requirement study is conducted using a Rotax 914 four-cylinder turbocharged SI engine. In phase one, net indicated mean effective pressure (IMEPn) is characterized at typical cruise speeds as fuel octane number (ON) is varied on-the-fly using a dual port-fuel-injection (PFI) system. IMEPn is compared among dual-PFI blends from 20 to 87 ON, neat n-heptane, neat JP-8, and JP-8/iso-octane blends. A JP- 8/iso-octane demonstration is conducted to show the volume proportion of JP-8 that could be used to sustain flight. Results for typical cruise operation using JP-8/iso-octane blends show that a maximum volume flow proportion of 88% JP-8 at low-load cruise, and 40% at high-load cruise could be used to sustain flight. Although an impractical configuration, these results reveal iii that low-load neat JP-8 cruise is a possibility if the octane requirement of the Rotax 914 can be relaxed. The second phase of testing focuses on achieving full-load takeoff performance on 87 ON, since high-load operation is impractical with JP-8. The effects of intake air temperature (IAT), equivalence ratio, ignition timing, and dual-simultaneous ignition on knock are investigated. The combination of delayed combustion phasing with dual-simultaneous-ignition and increased equivalence ratio enables greater maximum IMEPn on 87 ON than the base configuration on 100 ON. To offset the additional fuel used for takeoff, a cruise fuel consumption study is conducted to characterize the reduction in indicated specific fuel consumption (ISFC) with an optimized fuel-lean, dual-simultaneous-ignition, and advanced ignition timing configuration compared to base conditions. The ISFC reduction in the optimized cruise configuration can directly offset the additional fuel used in the optimized 87 ON take-off configuration for flights as short as 4 hours. The 87 ON optimized cruise and take-off configurations can be combined to allow up to 3.5 additional hours of cruise. iv 2. ACKNOWLEDGMENTS This work would not have been completed without all the help that I have received along the way. I would like to thank John Hoke, Fred Schauer, and Sukh Sidhu of my committee for their encouragement and guidance throughout this process, especially my advisor Scott Stouffer. I would also like to thank the guys of SERL for all of their hard work: Paul Litke and Keith Grinstead for your technical guidance and making sure that things “just make sense” in the lab; Adam Brown for pushing me to keep fighting my engine gremlins even when they were winning and for not fat-fingering the controls too many times when we were running; Eric Anderson for pursuing high-quality data; Rich Ryman for coming through for me when I really needed it and putting up with me being so particular about everything; Sheldon (Joseph) Ausserer for your help with the PIC32, MATLAB code, and your general grammatical prowess. Thanks as well to Dave Burris, JR Groenewegen, Ben Naguy, Curtis Rice, and Justin Goffena for all of your help. A special thank you goes to my lovely wife Sarah Baranski for all of her support and encouragement throughout the last two years. I truly appreciate it. I would also like to thank the rest of my family for their love and support, and for not getting too upset when I wasn’t able to attend all of the family gatherings. Thanks to my dad, Ed Baranski, for always explaining how things work and for helping me develop “the knack”. Finally I would like to thank my Savior, Jesus Christ, for seeing fit to give me the skills and abilities to do this work, and for putting me in a place to do it. v 3. TABLE OF CONTENTS 1. ABSTRACT ........................................................................................................................... iii 2. ACKNOWLEDGMENTS ......................................................................................................... v 4. LIST OF FIGURES .................................................................................................................. x 5. LIST OF TABLES .................................................................................................................. xvi 6. LIST OF ABBREVIATIONS AND NOTATIONS ..................................................................... xviii 1. 1. INTRODUCTION ............................................................................................................ 1 2. 2. BACKGROUND .............................................................................................................. 4 2.1 Engine Performance Metrics............................................................................ 4 2.1.1 Mean Effective Pressure ............................................................................ 4 2.1.2 Specific Fuel Consumption ......................................................................... 6 2.2 SI Combustion .................................................................................................. 7 2.2.1 Classification of Combustion ..................................................................... 7 2.2.2 Combustion Progress Characterization ..................................................... 7 2.2.3 Normal SI Combustion ............................................................................... 9 2.2.4 Abnormal SI Combustion ......................................................................... 11 2.3 Homogeneous Charge Compression Ignition Combustion ............................ 36 2.4 Engine Control ................................................................................................ 38 vi 2.4.1 Fuel Injection Control .............................................................................. 38 2.4.2 Spark Ignition Control .............................................................................. 42 2.4.3 Automotive Engine Control Units ............................................................ 43 2.4.4 Flexible Research Engine Control Units ................................................... 44 3. 3. RESEARCH OBJECTIVES – PHASE ONE ........................................................................ 46 4. 4. EXPERIMENTAL SETUP – PHASE ONE ......................................................................... 47 4.1 Rotax 914 Research Engine ............................................................................ 47 4.2 Engine Research Cell ...................................................................................... 49 4.3 Engine Control Unit ........................................................................................ 55 4.3.1 PIC18 Microcontroller .............................................................................. 55 4.3.2 Timing Signals .......................................................................................... 56 4.3.3 Interrupts ................................................................................................. 58 4.3.4 Spark Ignition Program ............................................................................ 59 4.3.5 Main Fuel Injection Program ................................................................... 60 4.3.6 Dual-fuel Injection Program ..................................................................... 62 4.4 Data Acquisition ............................................................................................. 63 4.4.1 Low-Speed Data Acquisition .................................................................... 63 4.4.2 High-Speed Data Acquisition ................................................................... 66 5. 5. RESULTS – PHASE ONE ............................................................................................... 76 5.1 PFI Blend Verification ....................................................................................
Recommended publications
  • 852 Subpart D—Block Tests; Reciprocating Aircraft Engines
    § 33.37 14 CFR Ch. I (1–1–10 Edition) all attitudes that the applicant estab- installation on the engine must be es- lishes as those the engine can have tablished and recorded. when the aircraft in which it is in- [Amdt. 33–6, 39 FR 35465, Oct. 1, 1974] stalled is in the static ground attitude. (e) If provided as part of the engine, § 33.43 Vibration test. the applicant must show for each fluid (a) Each engine must undergo a vi- injection (other than fuel) system and bration survey to establish the tor- its controls that the flow of the in- sional and bending vibration character- jected fluid is adequately controlled. istics of the crankshaft and the pro- [Doc. No. 3025, 29 FR 7453, June 10, 1964, as peller shaft or other output shaft, over amended by Amdt. 33–10, 49 FR 6851, Feb. 23, the range of crankshaft speed and en- 1984] gine power, under steady state and transient conditions, from idling speed § 33.37 Ignition system. to either 110 percent of the desired maximum continuous speed rating or Each spark ignition engine must 103 percent of the maximum desired have a dual ignition system with at takeoff speed rating, whichever is high- least two spark plugs for each cylinder er. The survey must be conducted and two separate electric circuits with using, for airplane engines, the same separate sources of electrical energy, configuration of the propeller type or have an ignition system of equiva- which is used for the endurance test, lent in-flight reliability. and using, for other engines, the same configuration of the loading device § 33.39 Lubrication system.
    [Show full text]
  • Spark Plug Condition Chart
    Spark Plug Condition Chart Normal Mechanical Damage Oil Fouled May be caused by a foreign object that Too much oil is entering the combustion has accidentally entered the combus- Combustion deposits are slight chamber. This is often caused by piston tion chamber. When this condition is and not heavy enough to cause rings or cylinder walls that are badly discovered, check the other cylinders to any detrimental effect on engine worn. Oil may also be pulled into the prevent a recurrence, since it is possi- performance. Note the brown to chamber because of excessive clear- ble for a small object to "travel" from greyish tan color, and minimal ance in the valve stem guides. If the one cylinder to another where a large amount of electrode erosion which PCV valve is plugged or inoperative it degree of valve overlap exists. This clearly indicates the plug is in the can cause a build-up of crankcase pres- condition may also be due to improper correct heat range and has been sure which can force oil and oil vapors reach spark plugs that permit the piston operating in a "healthy" engine. past the rings and valve guides into the to touch or collide with the firing end. combustion chamber. Overheated Insulator Glazing Pre-Ignition A clean, white insulator firing tip and/or excessive electrode ero- Usually one or a combination of several sion indicates this spark plug con- Glazing appears as a yellowish, var- dition. This is often caused by over engine operating conditions are the nish-like color. This condition indicates prime causes of pre-ignition.
    [Show full text]
  • 1. the Future for Automotive Two-Stroke Engines – Part 2
    N0.21 THE FUTURE FOR AUTOMOTIVE TWO-STROKE ENGINES (Part 2) CURRENT DEVELOPMENTS Synthetic-based formulation likely to be the preferred option. In the previous issue of Lube, the origins and initial development of the 2T Tendency for combustion chamber deposit formation would have required a engine were described. The earlier engines, characterised by smoky exhausts low ash or ash less lubricant. and poor specific fuel economy, will be remembered by many of the older High temperatures require strong anti-oxidancy. fraternity, as they provided motive power for many commuter lightweight motorcycles, mopeds and scooters in the prewar and postwar years. Many WET SUMP vehicle manufacturers in the UK used proprietary power units manufactured Again, no valve train therefore no requirement for e.g. ZDDP anti-wear by specialist engine manufacturers such as Villiers, who dominated the agent. market, although smaller engine suppliers included companies such as British Diluent unnecessary/undesirable. Anzani. A number of other companies, including Scott, Associated Conventional base oil plus viscosity index-improver is possible (SAE 10/30?). Motorcycles, Excelsior and latterly Ariel also designed their own engines, use Polymer deposits may favour synthetic approach. of which was restricted in the main to vehicles of their own manufacture. However, with the demise of the UK motorcycle industry, 2T engine Tendency for combustion chamber deposits requires a low ash approach. developments, which have progressed steadily during subsequent years, The conclusion was that, in spite of the substantial differences between the have been largely attributable to overseas manufacturers with assistance types of the Orbital engines described above, it may well have been possible from some UK specialist consultancy organizations such as Ricardos at to meet the requirements of both types of engine with a single lubricant, Shoreham.
    [Show full text]
  • UAT-ARC Final Report
    Unleaded AVGAS Transition Aviation Rulemaking Committee FAA UAT ARC Final Report Part I Body Unleaded AVGAS Findings & Recommendations 17 February 2012 UAT ARC Final Report – Part I Body February 17, 2012 Table of Contents List of Figures …………………………………………………………………………… 6 Executive Summary……………………………………………………………………… 8 1. Background …………………..……………………………………………………. 11 1.1. Value of General Aviation………………………………………………… 11 1.2. History of Leaded Aviation Gasoline…………………………………….. 13 1.3. Drivers for Development of Unleaded Aviation Gasoline……………… 14 2. UAT ARC Committee ……………………………………………………………… 16 2.1. FAA Charter……………………………………………………………….. 16 2.2. Membership ………………..…………………………………………….. 17 2.3. Meetings, Telecons, & Deliberations…………….……………………… 17 3. UAT ARC Assessment of Key Issues…………………………………………… 18 3.1. Summary of Key Issues Affecting Development & Transition to an Unleaded AVGAS…………………………………………………………….. 18 3.1.1. General Issues……………………………………………………… 18 3.1.2. Market & Economic Issues………………………………………… 18 3.1.3. Certification & Qualification Issues……………………………….. 18 3.1.4. Aircraft & Engine Technical Issues………………………………. 19 3.1.5. Production & Distribution Issues………………………………….. 19 3.1.6. Environment & Toxicology Issues………………………………… 19 3.2. General Issues – Will Not Be A Drop-In…………………………….……. 20 3.2.1. Drop-In vs. Transparent……………..……………………………. 20 3.2.2. Historic Efforts Focused on Drop-In…………………………….. 21 3.2.3. No Program to Support Development of AVGAS………………. 21 3.3. Market & Economic Issues…………………….. …………………………. 22 3.3.1. Market Forces……………………………………………………… 22 3.3.2. Aircraft Owner Market Perspective……………………………….. 23 3.3.3. Fleet Utilization …………..…………………………………………. 24 3.3.4. Design Approval Holder (DAH) Perspective ……………………. 25 3.4. Certification & Qualification Issues…………………………………………. 26 3.4.1. FAA Regulatory Structure…….……………………………………. 26 3.4.2. ASTM and FAA Data Requirements………………..……………. 27 3.4.3. FAA Certification Offices…………………………………………… 28 3.4.4.
    [Show full text]
  • General Aviation Aircraft Propulsion: Power and Energy Requirements
    UNCLASSIFIED General Aviation Aircraft Propulsion: Power and Energy Requirements • Tim Watkins • BEng MRAeS MSFTE • Instructor and Flight Test Engineer • QinetiQ – Empire Test Pilots’ School • Boscombe Down QINETIQ/EMEA/EO/CP191341 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Contents • Benefits of electrifying GA aircraft propulsion • A review of the underlying physics • GA Aircraft power requirements • A brief look at electrifying different GA aircraft types • Relationship between battery specific energy and range • Conclusions 2 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Benefits of electrifying GA aircraft propulsion • Environmental: – Greatly reduced aircraft emissions at the point of use – Reduced use of fossil fuels – Reduced noise • Cost: – Electric aircraft are forecast to be much cheaper to operate – Even with increased acquisition cost (due to batteries), whole-life cost will be reduced dramatically – Large reduction in light aircraft operating costs (e.g. for pilot training) – Potential to re-invigorate the GA sector • Opportunities: – Makes highly distributed propulsion possible – Makes hybrid propulsion possible – Key to new designs for emerging urban air mobility and eVTOL sectors 3 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Energy conversion efficiency Brushless electric motor and controller: • Conversion efficiency ~ 95% for motor, ~ 90% for controller • Variable pitch propeller efficiency
    [Show full text]
  • Diesel and Fuel-Oil Engines
    HdiiUiiat uuioTAt* VI i nPicrence moK not to do AUG 2 ^ : , CuKCH JlUili lilO L, iDi slil CS102E-42 Jf' Engines, Diese! and fuei-oil (export classifications) U. S. DEPARTMENT OF COMMERCE JESSE H. JONES, Secretary NATIONAL BUREAU OF STANDARDS LYMAN J. BRIGGS, Director DIESEL AND FUEL-OIL ENGINES (Export Classifications) COMMERCIAL STANDARD CS102E-42 Effective Date for New Production from October 30, 1942 A RECORDED VOLUNTARY STANDARD OF THE TRADE UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1942 For sale by the Superintendent of Documents, Washington, D. C. Price 10 cents . U. S. Department of Commerce National Bureau of Standard? PROMULGATION of COMMERCIAL STANDARD CS102E-42 for DIESEL AND FUEL-OIL ENGINES (Export Classifications) On January 30, 1942, at the instance of the Diesel Engine Manu- facturers’ Association, a conference of representative manufacturers adopted a recommended commercial standard for Diesel and fuel -oil engines (export classifications). Those concerned have since accepted and approved the standard as shown herein for promulgation by the U. S. Department of Commerce, through the National Bureau of Standards. The standard is effective for new production from October 30, 1942. Promulgation recommended I. J. Fairchild, Chieff Division of Trade Standards, Promulgated. Lyman J. Briggs, Director^ National Bureau of Standards, Promulgation approved. Jesse H. Jones, Secretary of Commerce. II DIESEL AND FUEL-OIL ENGINES (Export Classifications) COMMERCIAL STANDARD CS102E-42 PARTS Page 1. Nomenclature and definitions.. ' 1 2. Slow- and medium-speed stationary Diesel engines 7 3. Slow- and medium-speed marine Diesel engines 13 4. Small, medium- and high-speed stationary, marine, and portable Diesel engines 19 5.
    [Show full text]
  • Installation Instructions SUPERCHARGER ‘90-’93 Mazda Miata Part# 999-000, 999-005, 999-010, 999-015
    Installation Instructions SUPERCHARGER ‘90-’93 Mazda Miata Part# 999-000, 999-005, 999-010, 999-015 440 Rutherford St. P.O. Box 847 Goleta, CA 93117 1-888-888-4079 • FAX 805-692-2523 • www.jacksonracing.com INSTALLATION TIME IN AS LITTLE AS 4 HOURS regularly (every 3000 miles or so), you should FOR EXPERIENCED MECHANICS, AROUND 5 have no trouble. If in doubt, check your engine’s TO 6 HOURS FOR “OCCASIONAL” MECHAN- compression. You should have at least 135psi of ICS. compression in each cylinder with no more than a 10% variance between any two cylinders or with a TOOLS REQUIRED: 3/8” Drive Socket set w/ 10% increase in any cylinder after a tablespoon of 17mm, 14mm, 13mm, 12mm, 10mm & 8mm sock- oil is poured in. Your cooling system should be up ets; Deep sockets (14mm or 9/16”, 10mm): to par (50/50 mix of water and new coolant). Phillips and Standard screwdriver, 10mm, 12mm, Basically, if you have a good engine, it will be very and 17mm open end wrench; 5mm Allen wrench happy with this supercharger. with a 3/8” drive; paper clip; a box to store your OLD PARTS in. A 1/4” drive socket set will be use- BEFORE INSTALLING THIS SYSTEM: ful with some of the tight working areas. A timing A. Drive your fuel tank empty and refill with 92 light will be needed to set the ignition timing. Octane major brand gasoline. If you can only find 91 Octane, see step #3 under “Adjustments” at the A NOTE ON ADDING A SUPERCHARGER TO end of these instructions.
    [Show full text]
  • Harry Ricardo – a Passion for Efficiency
    The Piston Engine Revolution Harry Ricardo – A Passion for Efficiency David Morrison Harry Ricardo, born in 1885, was a true pioneer of internal combustion engine research and development, designing and building his first practical engine from the age of 16. His early life, especially at Trinity College, Cambridge, coincided with some key embryonic developments in internal combustion engines, which had a strong influence on his research, especially the work of Bertram Hopkinson and Sir Dugald Clerk. He was passionate about energy efficiency in both his business and private life. This paper covers Harry Ricardo’s early work, experimenting with stratified charge concepts as early as 1903, leading to his work in the early decades of the twentieth century which generated internationally-renowned designs in both diesel and gasoline road vehicle combustion systems. Of these, perhaps the Comet indirect injection system for diesel engines was the most prolific and persisted in various forms well into the 1980s. A very important opportunity for the company was the early work with Shell to study the influence of fuel properties, using a Ricardo variable compression ratio engine. During his time, he had none of the powerful simulation and visualisation tools we take for granted today. He had to use his vivid imagination by trying to visualise what the airflow and fuel mixing must be like inside a combustion chamber. Significant engines up to 1950 included the Dolphin two-stroke, the Comet IDI diesel engine for the world’s first production diesel car – the Citroen Rosalie, the Rolls-Royce diesel conversion for the Flying Spray land speed record car and many developments of spark-ignition combustion systems, including the Turbulent Head.
    [Show full text]
  • ! National Advisory Committee for Aeronautics
    ! . \ i NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE No. 1374 EXPERIMENTAL STUDIES OF THE KNOCK - LIlvITTED BLENDIDG CHARACTERISTICS OF AVIATION FUELS II - INVESTIGATION OF LEADED PARAFFINIC FUELS IN AN AIR-COOLED CYLrnDER By Jerrold D. Wear and Newell D. Sanders Flight Propulsion Research Laboratory Cleveland, Ohio Washington July 1947 , \ I NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TN 1374 EXPERIMENTAL STUDIES OF THE KNOCK-LIMITED BLENDING CH.~~ACTERISTICS OF AVIATION FUELS II - INVESTIGATION OF LEADED PARAFFINIC FUELS IN ~~ AIR-COOLED CYLINDER By Jerrold D. Wear and. Newell D. Sanders SUMMARY The relation between knock limit and blend composition of selected aviation fuel components individually blended with virgin base and ''lith alkylate was determined in a full-scale air-cooled aircraft-·engine cylinder. In addition the follow­ ing correlations were examined: (a) The knock-·limited performance of a full -scale engine at lean-mixture operation plotted against the knock-limited perform­ ance of the engine at rich-mixture operation for a series of fuels (b) The knock-limited performance of a full-scale engine at rich-mixture operation plotted against the knock-limited perform­ ance at rich-mixture operation of a small-scale engine for a series of fuels In each case the following methods of specifying the knock­ limi ted perfOl'IDanCe of the engine were investigated: (l) Knock·-limited indicated mean effective pressure (2) percentage of S-4 plus 4 ml T~~ per gallon in M-4 plus 4 ml TEL per gallon to give an equal knock-limited indicated mean effective pressure (3) Ratio of indicated mean effective pressure of test fuel ~o indicated mean effective pressure of clear S-4 reference fuel, all other conditions being the same .
    [Show full text]
  • Mitsubishi Evolution 4 to 9 4G63 DOHC Engine Dry Sump Installation Guide
    Mitsubishi Evolution 4 to 9 4G63 DOHC Engine Dry Sump Installation Guide Mitsubishi Evo 4G63 DOHC Dry Sump Kit Installation Guide Thank you for purchasing the Pace Products dry sump kit for the Mitsubishi Evo. The kit is designed for the 4G63 engine as fitted to the Mitsubishi Evo 4 through to 9, from standard tune engines to high power special installations. It features a high strength cast aluminium sump, machined billet aluminium front cover and our well proven BG 3 stage oil pump. The pump is mounted externally to the engine and is bolted to the exhaust side of the engine block via a mounting bracket and is powered by a toothed rubber belt. Our kit is a bolt on solution requiring no modifications of standard engine components. The kit has been tested and developed using Automotive Performance Tuning’s 700hp Mitsubishi Evo time attack car. If you have any comments on this kit or would like additional information on the Pace Products range of kits and components please call 01440 760960 or email [email protected] - 2 - Pace Products Ltd. Issue D, 05th April 2011. Disclaimer No warranty is offered or inferred on this product. Fitment of this product may invalidate the manufactures’ warranty, please check before. Please note there are some minor differences on later 4G63 engines, primarily effecting sump fitment. Whilst every effort has been made to accommodate these, some modifications may be required to ensure correct fitment to your engine. These depend on your engine variant and specification, particularly if using an aftermarket crankshaft cradle and con rod stud kit.
    [Show full text]
  • BOSE , CUTTACK 1. Mist Lubrication System
    BOSE , CUTTACK CHAPTER-06 LUBRICATION SYSTEM IN AUTOMOBILE Functions of lubricating oil: A good lubricating oil should perform the following function. · It reduces the friction between the moving parts. · It cools the piston so it also acts as a cooling medium. · It also prevents the leakage of gas between the piston and cylinder because it makes a film of lubricant between them. · It also reduces the noise between the rubbing surfaces. The various lubrication systems used for lubricating the various parts of engine are classified as 1. Mist lubrication system 2. Wet sump lubrication system, and 3. Dry sump lubrication system. 1. Mist lubrication system: Mist lubrication system is a very simple type of lubrication. In this system, the small quantity of lubricating oil (usually 2 to 3%) is mixed with the fuel (preferably gasoline). The oil and fuel mixture is introduced through the carburetor. The gasoline vaporized and oil in the form of mist enters the cylinder via the crank base. The droplets of oil strike the crank base. The droplets of oil strike the crank base, lubricate the main and connecting rod bearings and the rest of the oil lubricates the piston, piston rings and cylinder. The system is preferred in two stroke engines where crank base lubrication is not required. In a two-stroke engine, the charge is partially compressed in a crank base, so it is not possible to have the oil in the crank base. This system is simple, low cost and maintenance free because it does not require any oil pump, filter, etc. However, it has certain serious disadvantages.
    [Show full text]
  • Digital Twin and Triple Spark Ignition in Four- Stroke Internal Combustion Engines of Two- Wheelers
    International Journal of Innovations in Engineering and Technology (IJIET) Digital Twin and Triple Spark Ignition in Four- Stroke Internal Combustion Engines of Two- Wheelers G.V.N.B.Prabhkar Department Of Mechanical Engineering, V.K.R, V.N.B &A.G.K College of Engineering B.Kiran Babu Department Of Mechanical Engineering, V.K.R, V.N.B &A.G.K College of Engineering K.Durga Prasad Department Of Mechanical Engineering, V.K.R, V.N.B &A.G.K College of Engineering Abstract - Today it is a common trend. It has become a fashion for the people especially living in urban areas to ride such vehicles. Now the companies even want to launch such vehicles that attract the younger generation. This can be achieved by technology known as DTSi. Due to DTSi (digital twin spark ignition) system it is possible to combine strong performance and fuel efficiency. The improved engine efficiency modes have also resulted in lowered fuel consumption. The efficiency of these small engines were enhanced with increased power output just by increasing the number of fuel igniting element i.e. Spark Plug. Spark ignition is one of the most vital systems of an engine. Any variation in the spark timing and number of sparks per minute affects the engine performance severely. Thus a good design and control of the system parameters becomes most essential for optimum performance of an engine. Due to Digital Twin Spark Ignition system it is possible to combine strong performance and higher fuel efficiency. DTSi offers many advantages over conventional mechanical spark ignition system.
    [Show full text]